
Appendices
A Reinforcement Learning using Matrix Estimation: The Pseudo Code

Below is a pseudo-code of the generic RL method presented in Section 3.

Algorithm 1 Main Algorithm: Low-rank Reinforcement Learning
Input: S, A, �, Q(0), T , {�(t)}t=1,...,T , {N (t)}t=1,...,T

Output: Q
(T ), the Q-value oracle after T iterations

1: Initialization: For all s 2 S , initialize the value oracle Q
(0)(s).

2: for t = 1, 2, . . . , T do
3: /* Step 1: Discretization of S and A */
4: Discretize S and A so that S(t) is a �

(t)-net of S and A(t) is a �
(t)-net of A.

5: /* Step 2: Exploration of a few (s, a) pairs */
6: Select a subset of (s, a) pairs, ⌦(t) ✓ S(t) ⇥A(t).
7: for (s, a) 2 ⌦(t) do
8: Estimate Q

⇤(s, a) via simple lookahead based on the current value oracle V
(t�1), i.e., query the

generative model to sample N (t) independent transitions from (s, a) and obtain an estimate Q̂(t)(s, a)
with the sampled next states {s0i}i=1,...,N(t) :

Q̂
(t)(s, a) R(s, a) + � · 1

N (t)

N(t)X

i=1

V
(t�1)(s0i). (7)

9: end for
10: /* Step 3: Matrix completion to obtain Q̄ from Q̂ */
11: Estimate Q̄(s, a) for (s, a) 2 S(t) ⇥A(t) from the data {Q̂(t)(s, a)}(s,a)2⌦(t) , utilizing the low-rank

structure of Q̄(s, a), viz.,
Q̄

(t)  Matrix Estimation
�
Q̂

(t); ⌦(t)�
.

12: /* Step 4: Generalization via interpolating Q̄ */
13: Update the oracles Q(t) and V

(t) by calling a subroutine that interpolates Q̄(t) through non-parametric
regression methods:

Q
(t)  Interpolation

�
Q̄

(t); S(t)
,A(t)�

,

and subsequently, V (t)(s) maxa2A Q
(t)(s, a), for all s 2 S .

14: end for

B Proof of Theorem 1

The proof of Theorem 1 follows from the classical results in functional analysis. Interested reader
may find lecture notes [6] and a classical textbook on the topic [14] as excellent references. In this
section, we present and prove a more general version of Theorem 1 that is applicable to any compact
metric spaces equipped with finite measures.

Let S and A be compact metric spaces, equipped with finite measures µ, ⌫, respectively. We consider
the space of square integrable functions

L
2(S, µ) =

⇢
f : S ! R such that kfkL2(S,µ) ⌘

⇣Z

S

|f(s)|2dµ(s)
⌘ 1

2
<1

�

and L
2(A, ⌫) defined similarly. L

2(S, µ) and L
2(A, ⌫) are known to be Hilbert spaces and in

particular, they are separable because S and A are compact metric spaces. Therefore, they have
countable bases.

Recall that given any vector space V over R, its dual space V
⇤ is defined as the set of all linear maps

� : V ! R. It is known that the dual of L2(S, µ) is isometrically isomorphic to L
2(S, µ), e.g., by

the isomorphism f 7! f
⇤ where f

⇤(f 0) = hf 0
, fi =

R
S
f(s)f 0(s)dµ(s) (Appendix B, [14]).

Given two Hilbert spaces, H1,H2, we let H1 ⌦ H2 denote the tensor product of the two Hilbert
spaces. The inner product in H1 ⌦ H2 is defined on the basis elements so that h�1 ⌦ �2, 1 ⌦

13



 2iH1⌦H2 = h�1, 1iH1h�2, 2iH2 for all �1, 1 2 H1 and �2, 2 2 H2. Also, for every element
�1 ⌦ �2 2 H1 ⌦ H2, one can associate the rank-1 operator from H

⇤

1 ! H2 that maps a given
x
⇤
2 H

⇤

1 to x
⇤(�1)�2.

Our main theorem in this section is the following spectral theorem (singular value theorem) for Q⇤. It
is indeed a classical result from operator theory on Hilbert spaces. However, most results in existing
literature cover the theory for self-adjoint operators and symmetric kernels. Although it is already
implied by the classical results in a similar manner as eigenvalue decomposition extends to singular
value decomposition, here we state our theorem and its proof for readers’ convenience and future
references.
Theorem 7. Let (S, dS , µ) and (A, dA, ⌫) be compact metric spaces equipped with finite measures.
Let Q⇤

2 L
2(S ⇥ A, µ ⇥ ⌫). If Q⇤ is L-Lipschitz with respect to the product metric, then there

exist a nonincreasing sequence (�i � R+ : i 2 N) with
P

1

i=1 �
2
i
< 1 and orthonormal bases

{fi 2 L
2(S, µ) : i 2 N} and {gi 2 L

2(A, ⌫) : i 2 N} such that

Q
⇤ =

1X

i=1

�ifi ⌦ gi. (8)

Subsequently, for any � > 0, there exists r⇤(�) 2 N such that
��Pr

i=1 �ifi⌦gi�Q
⇤
��2
L2(S⇥A,µ⇥⌫)



�) for all r � r
⇤(�).

Note that we obtain the equality (8) in the L
2 sense. However, since Q

⇤ is assumed Lipschitz
continuous on a compact domain, this actually gives us a pointwise equality, i.e., Q⇤(s, a) =P

1

i=1 �ifi(s)gi(a) for all (s, a) 2 S ⇥A.

Proof. We define an integral kernel operator K = KQ⇤ : L2(S, µ) ! L
2(A, ⌫) induced by the

kernel Q⇤
2 L

2(S ⇥A, µ⇥ ⌫) so that

Kf(·) =

Z

S

Q
⇤(s, ·)f(s)dµ(s).

Observe that Q⇤ is a continuous function defined on a compact domain and hence bounded, viz.,
there exists Vmax <1 such that |Q⇤(s, a)|  Vmax for all (s, a) 2 S ⇥A.

We present our proof in four parts. First, we verify that K is a compact operator from L
2(S, µ)

to L
2(A, ⌫). Next, we argue K admits a generalized singular value decomposition with square

summable singular values, based on the spectral theory of compact operators. Then we transfer the
results for K 2 L

2(S, µ)⇤ ⌦ L
2(A, ⌫) to argue the spectral decomposition of Q⇤

2 L
2(S, µ) ⌦

L
2(A, ⌫). Lastly, we conclude the proof by discussing rank-r approximation of Q⇤.

1. K is a compact operator from L
2(S, µ) to L

2(A, ⌫).

First, we argue that K is a bounded linear operator with kKk  V
2
maxµ(S)⌫(A). Recall that

Q
⇤ : S ⇥A! R is Lipschitz continuous on a compact domain, hence, bounded, i.e., there exists

Vmax <1 such that |Q⇤(s, a)|  Vmax for all (s, a) 2 S ⇥A. For any f 2 L
2(S, µ),

kKfk
2
L2(A,⌫) =

Z

A

Kf(a)2d⌫(a)

=

Z

A

✓Z

S

Q
⇤(s, a)f(s)dµ(s)

◆2

d⌫(a)



Z

A

kQ
⇤(·, a)k2

L2(S,µ)kfk
2
L2(S,µ)d⌫(a) * Cauchy-Schwarz

 V
2
maxµ(S)⌫(A)kfk2

L2(S,µ). * kQ⇤(·, a)k2
L2(S)  V

2
maxµ(S)

Next, we show that K : L
2(S, µ) ! L

2(A, ⌫) is indeed a compact operator. It suffices to
show that for any bounded sequence (fn)n�1 in L

2(S, µ), the sequence (Kfn)n�1 contains a
convergent subsequence. For this, we use (generalized) Arzelà-Ascoli theorem, which states that
if (Kfn)n�1 is uniformly bounded and uniformly equicontinuous, then it contains a convergent
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subsequence. To that end, first note that kKfnk  kKkkfnk and therefore, if kfnk  B for
all n � 1, then kKfnk  kKkB for all n � 1. That is, the sequence (Kfn)n�1 is uniformly
bounded. Next, we can also verify that (Kfn)n�1 is equicontinuous because for all n � 1,

��Kfn(a1)�Kfn(a2)
�� 

����
Z

S

�
Q

⇤(s, a1)�Q
⇤(s, a2)

 
fn(s)dµ(s)

����

 kQ
⇤(s, a1)�Q

⇤(s, a2)kL2(S)kfnkL2(S,µ)

 Lµ(S)
1
2 dA(a1, a2)kfnkL2(S,µ)

 BLµ(S)
1
2 dA(a1, a2).

In the second to last inequality, we used the fact that Q⇤ is L-Lipschitz to show

kQ
⇤(s, a1)�Q

⇤(s, a2)kL2(S,µ)kfnkL2(S,µ) =

✓Z

S

�
Q

⇤(s, a1)�Q
⇤(s, a2)

�2
dµ(S)

◆ 1
2



✓Z

S

L
2
dA(a1, a2)

2
dµ(S)

◆ 1
2

= Lµ(S)
1
2 dA(a1, a2).

2. Spectral decomposition of K.

• First of all, we show that there exist orthonormal bases {fi 2 L
2(S, µ) : i 2 N}, {gi 2

L
2(A, ⌫) : i 2 N} and singular values {�i � 0 : i 2 N} such that

K =
1X

i=1

�if
⇤

i
⌦ gi. (9)

To see this, we consider the adjoint operator of K, namely, K⇤ : L2(A, ⌫)! L
2(S, µ). Since

K : L2(S, µ)! L
2(A, ⌫) is compact, K⇤ is also compact. Note that K⇤

K is compact and self-
adjoint. By the spectral theorem for compact self-adjoint operators, there exist {⌧i 2 R : i 2 N}
and an orthonormal basis {fi 2 L

2(S, µ) : i 2 N} such that K⇤
Kfi = ⌧ifi for all i 2 N. We

can observe that ⌧i � 0 for all i because ⌧i = ⌧ihfi, fii = hK⇤
Kfi, fii = kKfik

2
L2(S,µ) � 0.

We let I := {i 2 N : ⌧i > 0}.
Next, we observe that ker(K⇤

K) = ker(K). Showing ker(K⇤
K) ◆ ker(K) is trivial. To show

the other direction, let’s suppose that f 2 ker(K⇤
K). Then kKfk

2
L2(A,⌫) = hKf,Kf, i =

hK
⇤
Kf, fi = 0, which requires Kf = 0 and thus f 2 ker(K).

For i 2 I , we let gi = 1
p
⌧i
Kfi. Then hgi, gji = 1

p
⌧i⌧j
hKfi,Kfji =

1
p
⌧i⌧j
hK

⇤
Kfi, fji =

�ij , and hence, {gi : i 2 I} consists of orthonormal vectors. We can augment {gi : i 2 I} by
adding appropriate vectors to make {gi : i 2 N} an orthonormal basis of L2(A, ⌫).
Every vector � 2 L

2(S, µ) can be expanded as � =
P

1

i=1h�, fiifi. Then we see that K� =P
1

i=1h�, fiiKfi =
P

1

i=1

p
⌧ih�, fiigi. By letting �i =

p
⌧i, we obtain (9).

• In addition, we show that
P

1

i=1 �
2
i
= kQ⇤

k
2
L2(S⇥A,µ⇥⌫) < 1. The Hilbert-Schmidt norm

of operator K is defined as kKkHS = Tr(K⇤
K) =

P
1

i=1 kKfik
2
L2(A,⌫) < 1. Note that

kKkHS =
P

1

i=1 �
2
i
.

First, we observe that for each i 2 N,

hKfi,KfiiL2(A,⌫) =

Z

A

✓Z

S

Q
⇤(s, a)fi(s)dµ(s)

◆2

d⌫(a)

=

Z

A

⌦
Q

⇤(·, a), fi
↵2
L2(S,µ)

d⌫(a).

We define a function G(a) :=
⌦
Q

⇤(·, a), fi
↵2
L2(S,µ)

. Recall that Q⇤
2 L

2(S ⇥A, µ⇥ ⌫) and
observe that G is a nonnegative measurable function. Then we can use Tonelli’s theorem to see
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that

Tr(K⇤
K) =

1X

i=1

hKfi,KfiiL2(A,⌫) =
1X

i=1

Z

A

⌦
Q

⇤(·, a), fi
↵2
L2(S,µ)

d⌫(a)

=

Z

A

1X

i=1

⌦
Q

⇤(·, a), fi
↵2
L2(S,µ)

d⌫(a) * Tonelli’s theorem

=

Z

A

kQ
⇤(·, a)k2

L2(S,µ)d⌫(a). * the orthonormality of {fi}

We have
R
A
kQ

⇤(·, a)k2
L2(S,µ)d⌫(a) =

R
A

� R
S
|Q

⇤(s, a)|2dµ(s)
�
d⌫(a) = kQ⇤

k
2
L2(S⇥A,µ⇥⌫)

by Fubini’s theorem and therefore,
P

1

i=1 �
2
i
= kQ⇤

k
2
L2(S⇥A,µ⇥⌫).

3. Spectral decomposition of Q⇤.

Now we show that Q⇤ =
P

1

i=1 �ifi ⌦ gi for the same singular values {�i � 0 : i 2 N} and
orthonormal bases {fi 2 L

2(S, µ) : i 2 N}, {gi 2 L
2(A, ⌫) : i 2 N} as in (9).

For that purpose, we assume that

Q
⇤ =

1X

i=1

�ifi ⌦ gi + " (10)

for some " 2 L
2(S ⇥A, µ⇥ ⌫). For all � 2 L

2(S, µ) and  2 L
2(A, ⌫), we have

h ,K�iL2(A,⌫) =

Z

A

 (a)

✓Z

S

Q
⇤(s, a)�(s)dµ(s)

◆
d⌫(a)

=

Z

A

 (a)

✓Z

S

⇣ 1X

i=1

�ifi(s)gi(a) + "(s, a)
⌘
�(s)dµ(s)

◆
d⌫(a)

=

Z

A

 (a)

⌧ 1X

i=1

�ifi, �

�

L2(S,µ)

gi(a)d⌫(a)

+

Z

A

 (a)

✓Z

S

"(s, a)�(s)dµ(s)

◆
d⌫(a).

When � = fi and  = gj , we have hgj ,KfiiL2(A,⌫) = �i�ij . By Fubini’s theorem,

�i�ij = �ihgj , gii+

Z

S⇥A

"(s, a)fi(s)gj(a)d(µ⇥ ⌫)(s⇥ a) (11)

= �i�ij + h", fi ⌦ gjiL2(S⇥A,µ⇥⌫). (12)

In order to satisfy (11), we must have h", fi ⌦ gjiL2(S⇥A,µ⇥⌫) = 0 for all (i, j) 2 N2.

It is known that L2(S⇥A, µ⇥⌫) is isomorphic to L
2(S, µ)⌦L2(A, ⌫) and {fi⌦gj : (i, j) 2 N2

}

constitutes an orthonormal basis of L2(S, µ)⌦L2(A, ⌫). Therefore, " = 0 and Q⇤ =
P

1

i=1 �ifi⌦

gi.

4. Best rank-r approximation of Q⇤.

Without loss of generality, we may assume �1 � �2 � · · · � 0, i.e., the singular values are sorted
in descending order. For any finite r 2 N, let Q⇤

r
=
P

r

i=1 �ifi ⌦ gi.

Then,
��Q⇤

�Q
⇤

r

��2
L2(S⇥A,µ⇥⌫)

=

����
1X

i=r+1

�ifi ⌦ gi

����
2

L2(S⇥A,µ⇥⌫)

=
1X

i,j=r+1

�i�j

⌦
fi ⌦ gi, fj ⌦ gj

↵
L2(S⇥A,µ⇥⌫)

=
1X

i=r+1

�
2
i
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where we have used the orthonormality of {fi} and {gi}.

We conclude the proof with two final remarks:

• Among all rank-r functions of the form
P

r

i=1 �i�i⌦ i for some �i 2 L
2(S, µ),  i 2 L

2(A, ⌫),
Q

⇤

r
is the “best” rank-r approximation of Q⇤ in the L

2(S ⇥A, µ⇥ ⌫) sense.
• Since

P
1

i=1 �
2
i
<1, for any � > 0, there exists r = r(�) so that

P
1

i=r+1 �
2
i
< �. That is, we

can approximate Q
⇤

r
arbitrarily well with a sufficiently large, yet still finite, rank r.

This completes the proof of Theorem 7.

C Proof of Theorem 2

C.1 Helper Lemma: Error Bound for Lookahead Subroutine

This section is devoted to the proof of Theorem 2. To this end, we first need to understand the error
guarantees for the lookahead (exploration) subroutine based on the current oracle V

(t�1), cf. Eq. (3)
and Line 8 of Algorithm 1. This is summarized in the following lemma.
Lemma 8. Suppose that we have access to a value oracle V : S ! R such that

sup
s2S

��V (s)� V
⇤(s)

��  B.

Given (s, a) 2 S ⇥ A, let s01, . . . , s0N be the next states of (s, a) independently drawn from the
generative model and let Q̂(s, a) = R(s, a) + � ·

1
N

P
N

i=1 V (s0
i
). Then for any � > 0,

|Q̂(s, a)�Q
⇤(s, a)|  �

 
B +

s
2V 2

max

N
log

✓
2

�

◆!

with probability at least 1� �.

Proof. Note that Q⇤(s, a) = R(s, a) + �Es0⇠Ps,a [V
⇤(s0)] by definition of Q⇤ and V

⇤ (cf. Bellman
equation). It follows that

|Q̂(s, a)�Q
⇤(s, a)| = �

����
1

N

NX

i=1

V (s0
i
)� Es0⇠Ps,a [V

⇤(s0)]

����

 �

�����
1

N

NX

i=1

V (s0
i
)�

1

N

NX

i=1

V
⇤(s0

i
)

�����+ �

�����
1

N

NX

i=1

V
⇤(s0

i
)� Es0⇠Psa [V

⇤(s0)]

�����

=
�

N

NX

i=1

��V (s0
i
)� V

⇤(s0
i
)
��+ �

�����
1

N

NX

i=1

V
⇤(s0

i
)� Es0⇠Psa [V

⇤(s0)]

����� . (13)

By assumption, the first term in Eq. (13) is bounded by �B. Meanwhile, since |V
⇤(s0)|  Vmax, we

can apply Hoeffding’s inequality to control the second term. Specifically, for any t > 0,

Pr

 
1

N

NX

i=1

V
⇤(s0

i
)� Es0⇠Psa [V

⇤(s0)] > t

!
 exp

✓
�

Nt
2

2V 2
max

◆
.

Solving � = 2 exp
⇣
�

Nt
2

2V 2
max

⌘
for t yields t =

q
2V 2

max
N

log
�
2
�

�
and this completes the proof.

C.2 Proof of Theorem 2

Proof of Theorem 2. We prove the first statement by mathematical induction. For t = 0, Q(0)(s, a) ⌘
0 and thus |Q(0)(s, a)�Q

⇤(s, a)|  Vmax for all (s, a). Next, we want to show that for t = 1, . . . , T ,

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

��  ⇢ sup
(s,a)2S⇥A

��Q(t�1)(s, a)�Q
⇤(s, a)

��. (14)
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Fix t and suppose that sup(s,a)2S⇥A

��Q(t�1)(s, a) � Q
⇤(s, a)

��  B
(t�1). Note that this implies

sup
s2S

��V (t�1)(s)� V
⇤(s)

��  B
(t�1) because Q

(t�1)
, Q

⇤ are continuous and A is compact 2. To
prove the inequality in Eq. (14), we backtrack the updating steps in Algorithm 1.

For each s 2 S and a 2 A, let ŝ(t) 2 argmins02S(t) ks
0
� sk2 and â

(t)
2 argmina02A(t) ka

0
� ak2.

Since S
(t) is a �(t)-net of S, kŝ(t) � sk  �

(t). Likewise, kâ(t) � ak  �
(t). As Q

(t)(s, a) =
Q̄

(t)(ŝ(t), â(t)) and Q
⇤ is L-Lipschitz,

��Q(t)(s, a)�Q
⇤(s, a)

�� =
��Q̄(t)(ŝ(t), â(t))�Q

⇤(s, a)
��

=
��Q̄(t)(ŝ(t), â(t))�Q

⇤(ŝ(t), â(t))
��+
��Q⇤(ŝ(t), â(t))�Q

⇤(s, a)
��


��Q̄(t)(ŝ(t), â(t))�Q

⇤(ŝ(t), â(t))
��+ 2L�(t)

.

Therefore, we obtain the following upper bound for Step 4 (interpolation):

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

��  max
(s,a)2S(t)⇥A(t)

��Q̄(t)(s, a)�Q
⇤(s, a)

��+ 2L�(t)
. (15)

By Assumption 1, we have the following upper bound for Step 3 (matrix estimation):

max
(s,a)2S(t)⇥A(t)

��Q̄(t)(s, a)�Q
⇤(s, a)

��  cme max
(s,a)2⌦(t)

��Q̂(t)(s, a)�Q
⇤(s, a)

��. (16)

Lastly, applying Lemma 8 and taking union bound over (s, a) 2 ⌦(t), we can show that

max
(s,a)2⌦(t)

��Q̂(t)(s, a)�Q
⇤(s, a)

��  �
 
B

(t�1) +

s
2V 2

max

N (t)
log

✓
2|⌦(t)|T

�

◆!
(17)

with probability at least 1� �

T
.

Combining Eqs. (15), (16), (17) yields

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

��  B
(t)

with probability at least 1� �

T
where

B
(t) = �cme

 
B

(t�1) +

s
2V 2

max

N (t)
log

✓
2|⌦(t)|T

�

◆!
+ 2L�(t)

.

By Assumption 1, this requires at most |⌦(t)
| = Cme

�
|S

(t)
|+ |A

(t)
|
�
. Moreover, for each 1  t  T ,

if we choose �(t) = Vmax
8L (2�cme)t and

N
(t) =

8

(2�cme)2(t�1)
log

✓
2|⌦(t)

|T

�

◆
, (18)

then B
(t�1)

 (2�cme)t�1
Vmax implies that B(t)

 (2�cme)tVmax with probability at least 1� �

T
.

At the beginning, we observed |Q
(0)(s, a)�Q

⇤(s, a)|  Vmax for all (s, a), i.e., B(0)
 Vmax. By

taking the union bound over t = 1, . . . , T ,

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

��  (2�cme)
t
Vmax, 8t = 1, . . . , T

with probability at least 1� �.

2For each s 2 S, there exist a(t�1)(s), a⇤(s) 2 A such that V (t�1)(s) = Q
(t�1)(s, a(t�1)(s)) and

V
⇤(s) = Q

⇤(s, a⇤(s)). If V
(t�1)(s) � V

⇤(s), then V
(t�1)(s) � V

⇤(s) = Q
(t�1)(s, a(t�1)(s)) �

Q
⇤(s, a⇤(s))  Q

(t�1)(s, a(t�1)(s))�Q
⇤(s, a(t�1)(s)). If V (t�1)(s) < V

⇤(s), then V
⇤(s)�V

(t�1)(s) =
Q

⇤(s, a⇤(s))�Q
(t�1)(s, a(t�1)(s))  Q

⇤(s, a⇤(s))�Q
(t�1)(s, a⇤(s)). Therefore, |V (t�1)(s)�V

⇤(s)| 
maxa2{a(t�1)(s),a⇤(s)}

�
Q

(t�1)(s, a)�Q
⇤(s, a)

 
.
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Sample complexity. If � <
1

2cme
, then 2�cme < 1. Let T✏ =

l
log
�

Vmax
✏

�

log
�

1
2�cme

�
m

and observe that

(2�cme)✏  (2�cme)T✏Vmax  ✏. For each t, 1  t  T , we query Q̂
(t)(s, a) for (s, a) 2 ⌦(t), each

of which requires exploring N
(t) samples. Therefore, the total sample complexity of Algorithm 1

with T = T✏ is
P

T✏

t=1

��⌦(t)
��N (t).

By standard argument on covering number, we can see that |S
(t)
|, |A

(t)
|  C

0
�

1
�(t)

�d
=

C
0
�

8L
Vmax

�d�
2�cme

��dt for some absolute constant C 0
> 0. This is an increasing function of t

and hence, |⌦(t)
| = Cme

�
|S

(t)
|+ |A

(t)
|
�

and N
(t) as described in Eq. (18) are also increasing with

respect to t.

Observe that �(T✏) = Vmax
8L (2�cme)T✏ �

2�cme

8L ✏. Hence, |S(T✏)|, |A(T✏)|  C
0
�

8L
2�cme

�d 1
✏d

. Therefore,
the overall number of samples utilized by the algorithm are
T✏X

t=1

��⌦(t)
��N (t)

 T✏

��⌦(T✏)
��N (T✏)

 T✏ · Cme

�
|S

(T✏)|+ |A
(T✏)|

�
·

8

(2�cme)2(T✏�1)
log

✓
2Cme

�
|S

(T✏)|+ |A
(T✏)|

�
T✏

�

◆

 T✏ · 2CmeC
0

✓
8L

2�cme

◆d 1

✏d
· 8

✓
Vmax

✏

◆2

log

✓
4CmeC

0
T✏

�

⇣ 8L

2�cme

⌘d 1

✏d

◆

= 16CmeC
0
V

2
max

✓
8L

2�cme

◆d

·
T✏

✏d+2
· log

✓
4CmeC

0

⇣ 8L

2�cme

⌘d
·
T✏

✏d
·
1

�

◆
. (19)

Since T✏ =
l
log
�

Vmax
✏

�

log
�

1
2�cme

�
m
= O

�
log 1

✏

�
, it follows from (19) that the overall sample complexity scales

as O
✓

1
✏d+2 log

1
✏
·

⇣
log 1

✏
+ log 1

�

⌘◆
. This completes the proof of Theorem 2.

D Rank(Q⇤) = 1

We state Theorem 9 which incorporates implications of Proposition 3 on Theorem 2. The proof of
Proposition 3 and Theorem 9 can be found in our full technical report [34].

D.1 Theorem 9 = Proposition 3 + Theorem 2

Theorem 9. Let Q⇤ be rank 1. Consider the RL algorithm (cf. Section 3) with the Matrix Estimation
method as described in Section 5.1. If � <

Rmin
14Rmax

, then the following two statements are true.

1. For any � > 0, we have

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

�� 
✓
14Rmax

Rmin
�

◆t

Vmax, 8 1  t  T,

with probability at least 1� � by choosing algorithmic parameters �(t)
, N

(t) appropriately.

2. Further, given ✏ > 0, it suffices to set T = ⇥(log 1
✏
) and use Õ( 1

✏d+2 · log 1
�
) number of samples

to achieve
P
✓

sup
(s,a)2S⇥A

��Q(T )(s, a)�Q
⇤(s, a)

��  ✏
◆
� 1� �.

E Rank(Q⇤) = r

In this section, we state a general version of Proposition 5. Once we have the general version
Proposition 10, we state Theorem 11 which incorporates implications of Proposition 10 on Theorem
2. The proof of Proposition 10 and Theorem 11 can be found in our full technical report [34]. Lastly,
we discuss corollaries for finite space in Section E.3.
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E.1 A General Version of Proposition 5

Proposition 10. Let ⌦(t) and Q̄
(t) as described above. For any ✏  1

2
p

|S]||A]|
�r

�
Q

⇤(S]
,A

])
�
, if

max(s,a)2⌦(t)

��Q̂(t)(s, a)�Q
⇤(s, a)

��  ✏, then

max
(s,a)2S(t)⇥A(t)

��Q̄(t)(s, a)�Q
⇤(s, a)

��



 
6
p

2

✓ p
|S]||A]|

�r

�
Q⇤(S],A])

�
◆
+ 2(1 +

p

5)

✓ p
|S]||A]|

�r

�
Q⇤(S],A])

�
◆2
!
Vmax✏. (20)

E.2 Theorem 11 = Proposition 10 + Theorem 2

We state Theorem 11 that follows as Corollary of Theorem 2 using Proposition 5 (or Proposition 10).
Recall that assuming |S

]
| = |A

]
| = r, we defined the following quantity

c(r;S]
,A

]) =

✓
6
p

2
⇣

r

�r(Q⇤(S],A]))

⌘
+ 2(1 +

p

5)
⇣

r

�r(Q⇤(S],A]))

⌘2◆
Vmax

in Proposition 5. This is a special case of cme for |S]
| = |A

]
| = r that appears in Proposition 10 as

the multiplier on the right-hand side of (20). This quantity appears in the following theorem statement
to determine the range of � and the convergence rate.

As a matter of fact, our algorithm does not require |S
]
| = |A

]
| = r. We present a general

theorem for approximate rank-r setup (Theorem 16) in Appendix F in full generality without
assuming |S

]
| = |A

]
| = r. One can derive a general version of Theorem 11 for S]

,A
] beyond

|S
]
| = |A

]
| = r from Theorem 16 by letting ⇣r = 0, where ⇣r is the approximation error between

the rank-r approximation of Q⇤ and the actual Q⇤. That is, if Q⇤ is of rank r, ⇣r = 0. Parsing our
general results briefly, we remark that as long as |S]

| = |A
]
| = O(r), we achieve the same scaling of

sample complexity in terms of the problem dimensions.
Theorem 11. Let Q⇤ have rank r. Consider the RL algorithm (cf. Section 3) with the Matrix
Estimation method as described in Section 5.2. If �  1

2c(r;S],A]) , then the following statements hold.

1. For any � > 0, we have

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

�� 
�
2c(r;S]

,A
])�
�t
Vmax, for all t = 1, . . . , T

with probability at least 1� � by choosing algorithmic parameters �(t)
, N

(t) appropriately.

2. Further, given ✏ > 0, it suffices to set T = ⇥(log 1
✏
) and use Õ( 1

✏d+2 · log 1
�
) number of samples

to achieve

P
✓

sup
(s,a)2S⇥A

��Q(T )(s, a)�Q
⇤(s, a)

��  ✏
◆
� 1� �.

E.3 Corollaries of Theorem 11

Recall that our algorithm do not demand any special properties of S,A except the existence of
�
(t)-net, which is the case whenever S,A are compact. Also, our analysis is general in the sense that

it only requires S,A to be compact with finite measures, and Q
⇤ to be L-Lipschitz. Therefore, it is

not hard to see that our algorithm and analysis are applicable to the case where state or action space
is finite, or both. We summarize results below as corollaries of Theorem 11 without proofs.

Before presenting the results, we recall the following quantity defined in Proposition 5:

c(r;S]
,A

]) =

✓
6
p

2
⇣

r

�r(Q⇤(S],A]))

⌘
+ 2(1 +

p

5)
⇣

r

�r(Q⇤(S],A]))

⌘2◆
Vmax,

which is a special case of cme for |S]
| = |A

]
| = r that appears in Proposition 10 as the multiplier on

the right-hand side of (20). This quantity determines the range of � and the convergence rate.
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Continuous S ⇢ Rd and Finite A. In this case, the algorithm only needs to discretize the state space
at each iteration. In other words, A(t) = A, for all t = 1, . . . , T and ⌦(t) = {(s, a) 2 S̄

(t)
⇥ A :

s 2 S
] or a 2 A

]
}. Finally, the generalization step only needs to interpolate the state space S. Let

|S
]
| = |A

]
| = r. Then, we have the following guarantees as an immediate corollary of Theorem 11:

Corollary 12. Consider the rank-r setting with continuous S and finite A. Suppose that we run
the RL algorithm (cf. Section 3) with the Matrix Estimation method described in Section 5.2. If
� 

1
2c(r;S],A]) , then the following holds.

1. For any � > 0, we have

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

�� 
�
2c(r;S]

,A
])�
�t
Vmax, for all t = 1, . . . , T

with probability at least 1� � by choosing algorithmic parameters �(t)
, N

(t) appropriately.

2. Further, given ✏ > 0, it suffices to set T = ⇥(log 1
✏
) and use Õ( 1

✏d+2 · log 1
�
) number of samples

to achieve

P
✓

sup
(s,a)2S⇥A

��Q(T )(s, a)�Q
⇤(s, a)

��  ✏
◆
� 1� �.

Finite S and Finite A. Since the spaces are discrete, we have an optimal Q⇤ being a |S| ⇥ |A|

matrix. For this special case, the algorithm simply skips the discretization (i.e., �(t) = 0) and
generalization steps at each iteration. In other words, S(t) = S and A

(t) = A, for all t = 1, . . . , T ,
and ⌦(t) = {(s, a) 2 S ⇥ A : s 2 S

] or a 2 A
]
}. Suppose that the optimal matrix Q

⇤(S,A) is
rank-r and let |S]

| = |A
]
| = r. We then have the following guarantees:

Corollary 13. Consider finite S and finite A with the optimal matrix Q⇤(S,A) being rank-r. Suppose
that we run the RL algorithm (cf. Section 3) with the Matrix Estimation method described in Section
5.2. If �  1

2c(r;S],A]) , then the following holds.

1. For any � > 0, we have

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

�� 
�
2c(r;S]

,A
])�
�t
Vmax, for all t = 1, . . . , T

with probability at least 1� � by choosing algorithmic parameters �(t)
, N

(t) appropriately.

2. Further, given ✏ > 0, it suffices to set T = ⇥(log 1
✏
) and use Õ(max(|S|,|A|)

✏2
· log 1

�
) number of

samples to achieve

P
✓

sup
(s,a)2S⇥A

��Q(T )(s, a)�Q
⇤(s, a)

��  ✏
◆
� 1� �.

F Approximate Rank-r Reinforcement Learning

In Section 5.2, we considered the setup where the underlying Q
⇤ has rank r. In practice, the Q

function may not have an exact low-rank structure, but it can be well approximated by the first few
spectral components in many cases. In this section, we consider such an approximate rank-r setup.

To be precise, for a positive integer r, we let Q⇤

r
denote the best rank-r approximation of Q⇤ in the

L
2-sense (cf. Theorem 1 and its generalized version Theorem 7 in Appendix B). As a reminder,

by the spectral theorem of compact operators, we can always write Q
⇤(s, a) =

P
1

i=1 �ifi(s)gi(a)
with �1 � �2 � . . . � 0 and fi, gi form orthonormal bases in L

2(S) and L
2(A). Therefore,

Q
⇤

r
(s, a) =

P
r

i=1 �ifi(s)gi(a).

We begin with introducing the notion of r-anchor states/actions that generalizes Definition 4.

Definition 14. (r-Anchor States and Actions) A set of states S
] = {s

]

i
}
Rs
i=1 ⇢ S and actions

A
] = {a

]

i
}
Ra
i=1 ⇢ A for some Rs, Ra are called r-anchor states and r-anchor actions for Q

⇤ if
rank Q

⇤

r
(S]

,A
]) = r for a positive integer r.

21



It is easy to see that if S
] and A

] are r-anchor states/actions for Q
⇤, then they are r

0-anchor
states/actions for Q⇤ for all r0  r.

Matrix Estimation Algorithm. The algorithm remains the same as the exact rank-r case, except that
we replace anchor states and actions with r-anchor states and actions. Precisely, we select r-anchor
states S]

⇢ S , r-anchor actions A]
⇢ A and fix them throughout all iterations 1  t  T . At each

iteration, we choose appropriate �(t)-nets S(t) and A
(t) and augment them with the r-anchor states

and r-anchors actions: S̄(t)
 S

(t)
[ S

] and Ā
(t)
 A

(t)
[A

]. Then, we set the exploration set as
⌦(t) = {(s, a) 2 S̄

(t)
⇥ Ā

(t) : s 2 S
] or a 2 A

]
}.

Given estimation Q̂
(t)(s, a) for (s, a) 2 ⌦(t), the ME method produces estimates for all (s, a) 2

S
(t)
⇥A

(t) as
Q̄

(t)(s, a) = Q̂
(t)(s,A])

⇥
Q̂

(t)(S]
,A

])
⇤†
Q̂

(t)(S]
, a) (21)

where
⇥
Q̂

(t)(S]
,A

])
⇤† is the Moore-Penrose pseudoinverse of Q̂(t)(S]

,A
]). Again, with choice

of Rs = |S
]
| = r and Ra = |A

]
| = r (or in general, a constant mulitple of r), the size of the

exploration set is at most r
�
|S̄

(t)
|+ |Ā

(t)
|� r

�
⌧ |S̄

(t)
||Ā

(t)
|.

Theoretical Guarantee. Previously, we imposed some regularity assumptions on Q
⇤, but the

truncated function Q
⇤

r
is not guaranteed to inherit the regularity properties. Here, we additionally

assume that (i) kQ⇤

r
k1  Vmax and (ii) Q⇤

r
is L-Lipschitz, for the convenience of exposition.

At a high level, our analysis is simple: for a given parameter r > 0, we treat Q⇤

r
as the true

function and repeat our analysis for the rank-r setup. Of course, there will be an additional bias,
Q

⇤

r
(s, a)�Q

⇤(s, a), incurred by this substitution which requires careful tracking at each iteration.
We formalize this argument in the following proposition and theorem.

Proposition 15. Let ⌦(t) and Q̄
(t) as described above. Given a positive integer r > 0, let S] and

A
] be some r-anchor states and actions for Q⇤.

For any ✏  1

2
p

|S]||A]|
�r

�
Q

⇤

r
(S]

,A
])
�
, if max(s,a)2⌦(t)

��Q̂(t)(s, a)�Q
⇤

r
(s, a)

��  ✏, then

max
(s,a)2S(t)⇥A(t)

��Q̄(t)(s, a)�Q
⇤

r
(s, a)

��  �c(r;S]
,A

])✏,

where

�c(r;S
]
,A

]) =
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(S],A])

�
◆
+ 2(1 +

p

5)

✓ p
|S]||A]|
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�
Q⇤
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(S],A])

�
◆2
!
Vmax. (22)

We omit the proof of Proposition 15 because it is exactly the same with the proof of Proposition
10 with minor modifications. With Proposition 15 at hand, we can obtain the following theorem
as a Corollary of Theorem 2 for the approximate rank-r setup. The theorem guarantees that when
the model bias kQ⇤

r
� Q

⇤
k1 is sufficiently small, we obtain convergence and sample complexity

results similar to the rank-r setting with an additive error induced by the model bias. Denote by
⇣r , sup(s,a)2S⇥A

|Q
⇤

r
(s, a)�Q

⇤(s, a)| the approximation error.

Theorem 16. Consider the approximate rank-r setting in this section. Suppose that we run the RL
algorithm (cf. Section 3) with the Matrix Estimation method described above. If �  1

2�c(r;S],A])

and ⇣r  min
n

�r

�
Q

⇤
r(S

]
,A

])
�

2
p

|S]||A]|+(1+ 1
Vmax

)�r

�
Q⇤

r(S
],A])

� , 3
2Vmax

o
, then the following holds:

1. For any � > 0, with probability at least 1� �, the following inequality holds for all t = 1, . . . , T

sup
(s,a)2S⇥A

��Q(t)(s, a)�Q
⇤(s, a)

�� 
�
2�c(r;S

]
,A

])�
�t
Vmax

+ (1 + �c(r;S
]
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])�)⇣r

tX
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�
�c(r;S

]
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])�
�i�1

by choosing algorithmic parameters �(t)
, N

(t) appropriately.

22



2. Further, given ✏ > 0, it suffices to set T = ⇥(log 1
✏
) and use Õ( 1

✏d+2 · log 1
�
) number of samples

to achieve

P
✓

sup
(s,a)2S⇥A

��Q(T )(s, a)�Q
⇤(s, a)

��  ✏+ 1 + ��c(r;S]
,A

])

1� ��c(r;S],A])
⇣r

◆
� 1� �.

The proof of Theorem 16 can be found in the technical report [34]. Theorem 16 establishes the
robustness of our method. When the approximation error ⇣r is not too large, with high probability,
we obtain estimate of Q⇤ that is within `1 error ✏ + 1+��c(r;S

]
,A

])
1���c(r;S],A])⇣r. Again, the algorithm only

efficiently utilizes Õ( 1
✏d+2 · log 1

�
) number of samples. Overall, the results on the approximate rank-r

setting justifies the soundness of our approach, from both theoretical and practical perspectives.

G Additional Discussions on RL and ME

G.1 Reinforcement Learning

Our work is motivated by the need to improve efficiency of RL algorithms for problems with
continuous state and action space, where literature results are scarce. As a byproduct of our analysis,
the resulting “low-rank” algorithm can also be reduced to settings where one of the spaces is finite
or both. We offer a high-level comparison in Table 1 with a few selected work from literature to
help readers see how our approach fares with others from literature. This is by no means a complete
illustration, given the vast literature on the finite settings.

We remark that Table 1 is not aimed at a strict comparison on sample complexity since each work
focuses on different problem settings. Rather, we intend to convey a rough sense of how our efficient
algorithm performs in the setting with finite spaces, and especially what we gain in sample complexity
with exploiting low-rank structure. In continuous state and action, our algorithm effectively removes
the dependence on the smaller dimension by leveraging the low-rank factorization. The same
heuristic in fact carries over to the finite cases, where the dependence on the size of smaller space is
“removed,” i.e., the sample complexity depends on |S| instead of |S||A|, assuming |S| � |A|. That is,
exploitation of low-rank structure consistently benefits the sample complexity of our method in the
same manner for all three settings.

In Table 1, we include two work per setting selected from literature (except the setting with continuous
S & continuous A where we were not able to find an appropriate work to compare with). This is
because there are extremely various problem settings considered in literature, which involve different
technical conditions, partly due to the long history involving finite spaces. For example, between
the two work selected for continuous S and finite A, [35] considers learning the Q-function in a
single sample path, whereas [51] considers learning the Q-function with sparse neural networks when
re-sampling i.i.d. transitions is possible. Learning from a single sample path is harder than the other
setup, and hence, leads to a sample complexity of Õ( 1

✏d+3 )

For problems with finite S and finite A, there has been a great effort in learning an ✏-optimal policy
instead of just learning an ✏-optimal value function. In this context, a line of work [37, 38] attempted
to improve the dependence on the term 1/(1� �) in sample complexity and recently this question
is addressed in [37] by achieving an Õ( |S||A|

(1��)3✏2
) upper bound that matches the lower bound from

[3]. Regardless, traditional results on learning ✏-optimal policy/value commonly scale as the product
|S||A|. The main message we want to convey with Table 1 in the setting is that the dependence of
sample complexity on the size of state/action space can be significantly improved from |S||A| to
max{|S|, |A|} by exploiting the low-rank structure of Q-function.

G.2 Matrix Estimation

We analyze the performance of our proposed algorithm in a decoupled fashion, controlling the
worst-case error (for a high-probability event w.r.t. the randomness in sampling step). For the success
of our analysis, it is imperative for the matrix estimation subroutine to satisfy Assumption 1 with
the two constants Cme, cme as small as possible. The assumption ensures that the matrix estimation
method in use does not amplify the `1 error too wildly.
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Why Existing Methods Fail. Matrix estimation has been a popular topic of active research for the
last few decades, which culminated in the low-rank matrix completion via convex relaxation of
rank minimization [32, 8, 9]. Also, various algorithms for matrix completion/estimation – including
singular value thresholding [22, 10] and nuclear-norm regularization [8, 9, 23] – have been proposed
and analyzed with provable guarantees. Despite the huge success in both theory and practice,
the available analysis for those existing methods only provides a handle on the error measured in
Frobenius norm and a few other limited class of norms (Schatten norms, regularizing norm and its
dual, etc.) under certain circumstances (Chapters 9-10, [47]). In particular, there are no satisfactory
results so far that provide a control on the `1 error of matrix estimation, to the best of our knowledge.

Recently, the convergence guarantees for the so-called Burer-Monteiro approach, which takes low-
rank factor matrices as decision variables (also commonly referred to as “nonconvex optimization”
in literature), has been actively studied in pursuit of developing a computationally more efficient
alternative of convex program-based approaches [19, 13]. For example, [13] provides an `1 guarantee
under certain setup. However, they assumed i.i.d. zero-mean noise and requires a proper initialization
at the ground truth (for analysis). As a result, we were not able to use existing ME methods and their
analysis in this work.

We do not believe this is an algorithmic failure of the ME methods, but it is rather a limitation
stemming from the disparity between the traditional analysis in ME and the needs in RL application.
For example, considering the error in Frobenius norm is natural in the ME tradition for several reasons,
but that analysis is not sufficient for applications where entrywise error is more important. Moreover,
it seems manageable, but is not straightforward at once how the mathematical conditions for matrix
recovery in ME literature will translate in the context of reinforcement learning. For example, the
finite-dimensional incoherence condition between the principal subspaces and the measurement in
matrix estimation could translate to a similar infinite-dimensional version of incoherence condition,
but some efforts would be needed to reforge existing ME analysis to fit in RL applications seamlessly.

Why Our ME Method Works. Instead, we develop an alternative matrix estimation subroutine,
which is simple, yet sufficiently powerful for our RL task, thereby enabling us to achieve the ultimate
conclusion for the RL problem of interest. The proposed method is amenable to `1-error analysis
facilitated by matrix algebra (see Proposition 10 and its proof). At first glance, our proposal seems
extremely simple, and one might doubt its efficacy, worrying about its numerical stability, etc. because
it involves the pseudoinverse of a matrix. That concern is partly true, but indeed, there are two key
factors that make our method work for the problem of our interest.

First, we assume the existence of “anchor” states and actions, which contain all necessary information
for the global recovery of Q⇤. From a theoretical point of view, this assumption is related to the
eigengap condition and the incoherence condition between eigenspace and the sampling operator,
which are commonly assumed in existing ME literature. From a practical perspective, this means the
existence of faithful representatives that reflect the “diversity” of states and actions, which is the case
in many real-world applications.

Second, we are not only passively fed with data, but can actively decide which data to collect. Note
that our algorithm requires full measurement for the two cylinders (rectangles when represented as a
matrix) corresponding to the anchor states and anchor actions without any missing values in them.
This is feasible by adaptive sampling, which is not achievable by random sampling. As a byproduct,
active sampling allows us to get rid of the spurious log term that appears in sample complexity of
existing ME methods as a result of random sampling.

All in all, our ME method is expected to perform reasonably well in the setup considered in this work.
We confirm this is the case with experiments (see Section 6 and Appendix H).

Open Questions for Future Work. We have seen that the proposed ME method is successful in
the extremely sample deficient setting where |⌦(t)

| ⇣ max{|S(t)
|, |A

(t)
|}. However, it seems other

existing ME methods based on convex programs also work similarly well, which cannot be expained
with the current analysis.

As a matter of fact, when the computation cost is ignored, convex-relaxation-based approach is widely
accepted as the best one in terms of robustness. This is glimpsed by the evolution of `1 error in
our experiments; unlike the fluctuations observed in our method and soft-impute, the error steadily
decreases for the nuclear norm minimization. Also, we believe existing ME methods can perform
better as |⌦(t)

| becomes larger. We have observed that our simple ME method is most efficient in
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the sample-deficient setting where |⌦(t)
| ⇣ max{|S(t)

|, |A
(t)
|}, but we do not know if the same

conclusion will still hold as |⌦(t)
| increases.

Therefore, how to harmonize existing ME methods and the low-rank RL task we consider in this
paper would be an exciting open question. This question might be tackled either by devising new
proof techniques to obtain stronger error guarantees for existing ME methods or by improving our
decoupled error analysis for RL iteration developed in this paper. We believe both directions are
promising and it would be a valuable contribution to make progress in either direction.

H Experimental Setup for Stochastic Control Tasks

In this section, we formalize the detailed settings for several stochastic control tasks we use. Following
previous work [43, 50], we briefly introduce the background for each task, and then present the
system dynamics as well as our simulation setting. For consistency, we follow the dynamics setup in
[43, 50], while adding additionally a noise term N to one dimension of the state dynamics.

General Setup. We first discretize the state space and the the action space into a fine grid and run
standard value iteration to obtain a proxy of Q⇤. Subsequently, when measuring the `1 error, we
take the max (absolute) difference between our estimate Q

(t) and the proxy of Q⇤ over this fine
grid. For the mean error, we use the average of the (absolute) difference over this grid. For anchor
states and actions, we simply select r states and r actions that are well separated in their respective
space. To do so, we divide the space uniformly into r parts and then select a state/action from each
part randomly. We use r = 10 in all experiments. For the baseline method used to confirm the
improvement of sample complexity for our method (i.e., Figure 2), we simply run the same algorithm
described in Section 3 but without the ME step. That is, at each iteration, instead of only explore the
set ⌦(t), the baseline method explores the entire discretized set S(t)

⇥A
(t). The other algorithmic

parameters such as N (t), the number of independent transitions sampled, are kept the same. In terms
of the comparison with different Matrix Estimation methods, we note that as mentioned, the sampling
procedure is different: traditional methods often work by independently sampling each entry with
some fixed probability p, while our method explores a few entire rows and columns. We hence control
all the ME methods to have the same number of observations (i.e., same size of the exploration set
⌦(t) as ours) at each iteration, but switch to independent sampling for the traditional methods.

Inverted Pendulum. In this control task, we aim to balance an inverted pendulum on the equilibrium
position, i.e., the upright position [43]. The angle and the angular speed tuple, (✓, ✓̇), describes the
system dynamics, which is formulated as follows [42]:

✓ := ✓ + ✓̇ ⌧,

✓̇ := ✓̇ +
⇣
sin ✓ � ✓̇ + u

⌘
⌧ +N (µ,�2),

where ⌧ is the time interval between decisions, u denotes the input torque on the pendulum, and N

refers to the noise term we added with mean µ and variance �. We formulate the reward function to
stabilize the pendulum on an upright pendulum:

r(✓, u) = �0.1u2 + exp (cos ✓ � 1).

In the simulation, we limit the input torque in [�1, 1] and set ⌧ = 0.3, µ = 0, and � = 0.1. We
discretize each dimension of the state space into 50 values, and action space into 1000 values, which
forms the discretization of the optimal Q-value matrix to be of dimension 2500⇥ 1000.

Mountain Car. The Mountain Car problem aims to drive an under-powered car up to a hill [42]. We
use the position and the velocity of the car, (x, ẋ), to describe the physical dynamics of the system.
Denote N as the noise term added, u as the acceleration input on the car, we can express the system
dynamics as

x := x+ ẋ+N (µ,�2),

ẋ := ẋ� 0.0025 cos (3x) + 0.001u.

We define a reward function that encourages the car to drive up to the top of the hill at x0 = 0.5:

r(x) =

⇢
10, x � x0,

�1, else.
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We follow standard settings [50] to limit the input u 2 [�1, 1]. We choose µ = 0 and � = 1e�3.
Similarly, the whole state space is discretized into 2500 values, and the action space is discretized
into 1000 values, which translates to a discretization of 2500⇥ 1000 for the optimal Q-value matrix.

Double Integrator. We consider the Double Integrator system [33], where a unit mass brick moves
along the x-axis on a frictionless surface. The brick is controlled with a horizontal force input u,
which aims to regulate the brick to x = [0, 0]T [43]. Similarly, we use the position and the velocity
(x, ẋ) of the brick to describe the physical dynamics:

x := x+ ẋ ⌧ +N (µ,�2),

ẋ := ẋ+ u ⌧,

where N is the noise term added. Following [43], we define the reward function using the quadratic
cost formulation, which regulates the brick to x = [0, 0]T :

r(x, ẋ) = �
1

2

�
x
2 + ẋ

2
�
.

The input torque is limited to be u 2 [�1, 1]. We again set ⌧ = 0.1, µ = 0, and � = 0.1. Similar to
the previous tasks, we obtain a discretization of 2500⇥ 1000 for the optimal Q-value matrix, with
state space discretized into 2500 values and action space discretized into 1000 values.

Cart-Pole. Despite simple tasks with smaller state dimensions, we consider the harder Cart-Pole
problem with 4-dimensional state space [4]. The problem consists a pole attached to a cart moving on
a frictionless track, aiming to stabilize the pole at the upright stable position. The cart is controlled
by a limited force that can be applied to both sides of the cart. To describe the physical dynamics
of the Cart-Pole system, we use a 4-element tuple (✓, ✓̇, x, ẋ), corresponding to the angle and the
angular speed of the pole, and the position and the speed of the cart. The dynamics can be expressed
as follows:

✓̈ :=
g sin ✓ � u+ml✓̇

2 sin ✓

mc+m
cos ✓

l

⇣
4
3 �

m cos2 ✓

mc+m

⌘ ,

ẍ :=
u+ml

⇣
✓̇
2 sin ✓ � ✓̈ cos ✓

⌘

mc +m
,

✓ := ✓ + ✓̇ ⌧,

✓̇ := ✓̇ + ✓̈ ⌧ +N (µ,�2),

x := x+ ẋ ⌧,

ẋ := ẋ+ ẍ ⌧,

where u 2 [�10, 10] denotes the input applied to the cart, N with µ = 0 nad � = 0.1 denotes the
noise term, mc = 1kg denotes the mass of the cart, m = 0.1kg denotes the mass of the pole, and
g = 9.8m/s

2 corresponds to the gravity acceleration.

We define the reward function similar to Inverted Pendulum that tries to stabilize the pole in the
upright position:

r(✓) = cos4 (15✓).

In the simulation, we discretize each dimension of the state space into 10 values, and action space
into 1000 values, which forms an optimal Q-value function as a matrix of dimension 10000⇥ 1000.

Acrobot. Finally, we present the Acrobot swinging up task [43]. The Acrobot is an underactuated
two-link robotic arm in the vertical plane (i.e., a two-link pendulum), with only an actuator on the
second joint. The goal is to stabilize the Acrobot at the upright position. The equations of motion for
the Acrobot can be derived using the method of Lagrange [43]. The physical dynamics of the system
is described by the angle and the angular speed of both links, i.e., (✓1, ✓̇1, ✓2, ✓̇2). Denote ⌧ as the
time interval, u as the input force on the second joint, N as the noise term added, the dynamics of
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Acrobot can be derived as

D1 := m1

�
l
2
1 + l

2
c1

�
+m2

�
l
2
1 + l

2
2 + l

2
c2 + 2l1lc2 cos ✓2

�
,

D2 := m2

�
l
2
2 + l

2
c2 + l1lc2 cos ✓2

�
,

�2 := m2lc2g sin (✓1 + ✓2),

�1 := �m2l1lc2✓̇2

⇣
✓̇2 + 2✓̇1

⌘
sin ✓2 + (m1lc1 +m2l1) g sin ✓1 + �2,

✓̈2 :=
u+ D2

D1
�1 �m2l1lc2✓̇1

2
sin ✓2 � �2

m2(l22 + l2
c2)�

D
2
2

D1

,

✓̈1 := �
D2✓̈2 + �1

D1
,

✓1 := ✓1 + ✓̇1 ⌧,

✓̇1 := ✓̇1 + ✓̈1 ⌧ +N (µ,�2),

✓2 := ✓2 + ✓̇2 ⌧,

✓̇2 := ✓̇2 + ✓̈2 ⌧,

where l1 = l2 = 1m are the length of two links, lc1 = lc2 = 0.5m denote position of the center of
mass of both links, m1 = m2 = 1kg denote the mass of two links, and g = 9.8m/s

2 denotes the
gravity acceleration. u corresponds to the input force applied, which is limited by u 2 [�10, 10].

Similar to the Inverted Pendulum, we define the reward function that favors the Acrobot to stabilize
at the upright unstable fixed point x = [⇡, 0, 0, 0]T :

r(✓, u) = exp (� cos ✓1 � 1) + exp (� cos (✓1 + ✓2)� 1).

Since the state space of Acrobot is also 4-dimensional, we again discretize each dimension of the state
space into 10 values, and action space into 1000 values, which forms discretization of the optimal
Q-value matrix to be of dimension 10000⇥ 1000.

I Additional Results on Stochastic Control Tasks

In this section, we provide additional results on all the 5 tasks. These include plots for sample
complexity, error guarantees and visualization of the learned policies.

Summary of Empirical Results. We remark that the conclusion remains the same as in the main
paper (cf. Section 6). Using our low-rank algorithm with the proposed ME method, the sample
complexity is significantly improved as compared with the baselines. For the error guarantees, our
ME method is very competitive, both in `1 and mean error. We again note that our simple method is
much more efficient in terms of computational complexity, compared to other ME methods based on
optimizations. Finally, the visualization of policies demonstrates that the learned policy, obtained
from the output Q(T ) is often very close to the policy obtained from Q

⇤, and this leads to the desired
behavior in terms of performance metrics, as summarized in Table 3 of the main paper. Overall, these
consistent results across various stochastic control tasks confirm the efficacy of our generic low-rank
algorithm.

I.1 Inverted Pendulum

Sample Complexity and Error Guarantees. Repeated from the main paper for completeness.
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(a) Sample Complexity (b) Sample Complexity (c) `1 Errors (d) Mean Errors

Figure 3: Empirical results on the Inverted Pendulum control task. In (a) and (b), we show the improved sample
complexity for achieving different levels of `1 error and mean error, respectively. In (c) and (d), we compare
the `1 error and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Policy Visualization.
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(c) Nuclear Norm
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(d) Ours

Figure 4: Policy visualization of different methods on the Inverted Pendulum control task. The policy is
obtained from the output Q(T ) by taking argmaxa2A Q

(T )(s, a) at each state s.

I.2 Mountain Car
Sample Complexity and Error Guarantees.

(a) Sample Complexity (b) Sample Complexity (c) `1 Errors (d) Mean Errors

Figure 5: Empirical results on the Mountain Car control task. In (a) and (b), we show the improved sample
complexity for achieving different levels of `1 error and mean error, respectively. In (c) and (d), we compare
the `1 error and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Policy Visualization.
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(a) Optimal Policy
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(b) Soft-Impute

�1.2 �1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4
�7

�6

�5

�4

�3

�2

�1

0

1

2

3

4

5

6

7

·10�2

position

sp
ee
d

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

(c) Nuclear Norm
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Figure 6: Policy visualization of different methods on the Mountain Car control task. The policy is obtained
from the output Q(T ) by taking argmaxa2A Q

(T )(s, a) at each state s.

I.3 Double Integrator
Sample Complexity and Error Guarantees.
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(a) Sample Complexity (b) Sample Complexity (c) `1 Errors (d) Mean Errors
Figure 7: Empirical results on the Double Integrator control task. In (a) and (b), we show the improved sample
complexity for achieving different levels of `1 error and mean error, respectively. In (c) and (d), we compare
the `1 error and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Policy Visualization.
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(a) Optimal Policy
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(b) Soft-Impute
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(c) Nuclear Norm

�3 �2.5 �2 �1.5 �1 �0.5 0 0.5 1 1.5 2 2.5 3
�3

�2.5

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

(d) Ours

Figure 8: Policy visualization of different methods on the Double Integrator control task. The policy is obtained
from the output Q(T ) by taking argmaxa2A Q

(T )(s, a) at each state s.

I.4 Cart-Pole
Sample Complexity and Error Guarantees.

(a) Sample Complexity (b) Sample Complexity (c) `1 Errors (d) Mean Errors
Figure 9: Empirical results on the Cart-Pole control task. In (a) and (b), we show the improved sample
complexity for achieving different levels of `1 error and mean error, respectively. In (c) and (d), we compare
the `1 error and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Policy Visualization.
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Figure 10: Policy visualization of different methods on the Cart-Pole control task. The policy is obtained from
the output Q(T ) by taking argmaxa2A Q

(T )(s, a) at each state s. Recall that the state space is 4-dimensional.
We hence visualize a 2-dimensional slice in the figure.

I.5 Acrobot
Sample Complexity and Error Guarantees.
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(a) Sample Complexity (b) Sample Complexity (c) `1 Errors (d) Mean Errors
Figure 11: Empirical results on the Acrobot control task. In (a) and (b), we show the improved sample
complexity for achieving different levels of `1 error and mean error, respectively. In (c) and (d), we compare
the `1 error and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Policy Visualization.
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(a) Optimal Policy
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(c) Nuclear Norm
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Figure 12: Policy visualization of different methods on the Acrobot control task. The policy is obtained from
the output Q(T ) by taking argmaxa2A Q

(T )(s, a) at each state s. Recall that the state space is 4-dimensional.
We hence visualize a 2-dimensional slice in the figure.

I.6 Comparisons on Runtime of Different ME Methods

Nuclear norm minimization is known to be computationally expensive for large matrices. Here, we
provide a preliminary result on the runtime of different ME methods in our experiments, demonstrating
the computational value of our approach beyond its theoretical guarantees.

Specifically, we calculate the average runtime for one iteration using different ME methods on the
Inverted Pendulum task with a 2500⇥1000 matrix. We leave other hyper-parameters unchanged, and
perform 5 runs for each method. As Table 4 reports, the nuclear norm minimization turns out to be
computationally most expensive; in contrast, our method is 40x faster, confirming the computational
efficiency of our approach.

Table 4: The runtime comparison of different ME methods for one iteration on the Inverted Pendulum
task. Results are averaged across 5 runs for each method.

ME Method Soft-Impute Nuclear norm Ours
Runtime (s) 41.5 ± 1.7 76.3 ± 8.2 1.9 ± .6

I.7 Additional Study on the Discounting Factor �

Throughout the empirical study, we follow the literature [43, 50] to use a large discounting factor �
(i.e., 0.9) on several real control tasks. We have demonstrated that the proposed low-rank algorithm
can perform well on those settings, confirming the efficacy of our method. Just as a final proof of
concept for our theoretical guarantees, we provide in this section an ablation study on the `1 error
with smaller value of �. We choose � = 0.5 on the Inverted Pendulum control task. note that this
affects the reward design and changes the original task. The experiment is only meant to further
validate our guarantees.

We show the sample complexity as well as the `1 errors in Fig. 13. As expected, with a smaller �,
the convergence is faster. Again, the overall conclusion is consistent with the previous experiments:
significant gains on sample complexity are achieved by our efficient algorithm, and the performance
of our simple ME method is competitive.
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(a) Sample Complexity, � = 0.5 (b) `1 Errors, � = 0.5

Figure 13: Empirical results on the Inverted Pendulum control task, with � = 0.5. We show the improved
sample complexity in (a) and compare the `1 error for various ME methods in (b).
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