
A Appendix

A.1 Envelope - Multi-Dimensional Case

Recall from Section 3.1.2 that to construct an envelope for a function f and S set of features, it is not
sufficient to identify maximal counterexamples in each dimension and then take the maximum of these
maxima. The envelopes produced using this approach are not guaranteed to be monotonic, which
we now demonstrate with an example. Consider a function f that is intended to be monotonically
increasing in its two input features. Now, consider the point (3, 5), suppose that (1, 5) and (3, 3) are
the upper envelope counterexamples in each dimension (Definition 4), and suppose that f(3, 3) >
f(1, 5) so we set fu

{0,1}(3, 5) = f(3, 3). Now consider a second point (7, 5), suppose that (1, 5) and
(7, 2) are the upper envelope counterexamples in each dimension, and suppose that f(1, 5) > f(7, 2)
so we set fu

{0,1}(7, 5) = f(1, 5). Since f(3, 3) > f(1, 5) we have that fu
{0,1}(3, 5) > fu

{0,1}(7, 5),
which violates monotonicity.

Therefore in the multi-dimensional case we search for counterexamples jointly over all monotonic
dimensions (Definition 6). We now prove the correctness of this approach.

Theorem 1. For any function f and set of features S, the upper envelope fu
S is monotonic in S.

Proof. Let i0 ∈ S and x and x′ be any two inputs such that x[i0] ≤ x′[i0] and ∀k 6= i0, x[k] = x′[k].
We will prove that fu

S (x) ≤ fu
S (x

′) and hence that fu
S is monotonic. There are two cases:

• An input x′
e is the upper envelope counterexample for x′, f , and S, so fu

S (x
′) = f(x′

e) and
by Definition 6 f(x′) < f(x′

e). We have two subcases.

– An input xe is the upper envelope counterexample for x, f , and S, so fu
S (x) = f(xe).

By Definition 6 we have that ∀i ∈ S, xe[i] ≤ x[i] ∧ ∀i 6∈ S, xe[k] = x[k], so also
∀i ∈ S, xe[i] ≤ x′[i] ∧ ∀i 6∈ S, xe[k] = x′[k]. Therefore again by Definition 6 either
f(xe) ≤ f(x′) or f(xe) ≤ f(x′

e). Since f(x′) < f(x′
e), either way we have that

f(xe) ≤ f(x′
e).

– There is no upper envelope counterexample for x, f , and S, so fu
S (x) = f(x). Since

∀i ∈ S, x[i] ≤ x′[i] ∧ ∀i 6∈ S, x[k] = x′[k], by Definition 6 either f(x) ≤ f(x′) or
f(x) ≤ f(x′

e). Since f(x′) < f(x′
e), either way we have that f(x) ≤ f(x′

e).

• There is no upper envelope counterexample for x′, f , and S, so fu
S (x

′) = f(x′). We have
two subcases.

– An input xe is the upper envelope counterexample for x, f , and S, so fu
S (x) = f(xe).

By Definition 6 we have that ∀i ∈ S, xe[i] ≤ x[i] ∧ ∀i 6∈ S, xe[k] = x[k], so also
∀i ∈ S, xe[i] ≤ x′[i] ∧ ∀i 6∈ S, xe[k] = x′[k]. Therefore again by Definition 6
it must be the case that f(xe) ≤ f(x′), or else x′ would have an upper envelope
counterexample.

– There is no upper envelope counterexample for x, f , and S, so fu
S (x) = f(x). Then

again by Definition 6 it must be the case that f(x) ≤ f(x′), or else x′ would have an
upper envelope counterexample.

A.2 Empirical Evaluation

In this section we provide additional experiment setup details and results from Section 3.2 and
Section 4.2.

System Specifications and experiment Setup: All experiments were run on an Intel(R) Xeon(R)
Gold 5220 CPU @ 2.20GHz CPU with 512GB of DDR3 RAM running Ubuntu 18.04.3 LTS with
kernel 5.3.0-28-generic. Experiments were implemented in Python using the Keras deep learning
library [9]. We use the ADAM optimizer [29] to perform stochastic optimization of the neural
network models, and the Optimathsat [38] solver for counterexample generation. For each dataset, we
train five baseline architectures from a set of configurations and choose the best architecture based on
train error. For Boston Housing, Heart Diseases, and Adult dataset, best baseline architecture includes
three layers and 16 hidden neurons per layer. For Auto MPG dataset, best baseline architecture

13



includes three layers and 12 hidden neurons per layer (see Table 8 for best baseline neural network
parameters).

Min-Max and Deep Lattice Network setup: Min-Max networks [12] proposes a fixed, feedfor-
ward three-layer (two hidden layer) architecture. The first layer computes different linear combina-
tions of input that are partitioned into different groups. If increasing monotonicity is desired, then
all weights connected to that input are constrained to be positive. Corresponding to each group, the
second layer computes the maximum, and the final layer computes the minimum over all groups.
For monotone features that are decreasing, we negate the feature to use the same architecture. The
Deep Lattice Network [52] architecture consists of six layers as proposed by the authors: calibrators,
linear embedding, calibrators, ensemble of lattices, calibrators, and linear embedding. Note that for
these approaches, for each dataset, we tune parameters separately for each combination of monotonic
features at each fold using grid search; hence it is optimized for each monotone prediction task.
However, for COMET it is sufficient to tune parameters for the original neural network (NNb) once
per dataset.

Table 6: Here we present the results referred to in Q1. Empirically, the best baseline neural network model
(NNb) trained on data is not monotonic. The table presents the percentage of examples that have an upper or
lower envelope counterexample.

Dataset Feature Train Test
% CG % CG

Auto-MPG

Weight 7.11 6.41
Displ. 48.62 52.99
W,D 50.85 54.7
W,D,HP 50.96 54.7

Boston Housing Rooms 7.59 7.92
Crime 16.75 16.5

Heart

Trestbps 73.14 74.86
Chol. 86.91 87.98
T,C 97.38 98.91

Adult Cap. Gain 1.57 1.39
Hours 18.93 19.58

Table 7: Here we present the results referred to in Q5. Counterexample-guided learning (CGL) is able to make
a model more monotonic by reducing the number of test and train counterexamples compared to the baseline
model (NNb). However, the algorithm is unable to guarantee monotonicity, motivating the need for monotonic
envelopes.

Dataset Features Train Test
NNb CGL NNb CGL

Auto-MPG

Weight 22.33 11.33 5 2
Displ. 139.67 37 37 10.33
W,D 159.67 85.67 42.67 22.67
W,D,HP 149.67 61.33 39.33 15

Boston Rooms 30 15.67 8 6.33
Crime 80 38.67 19 8

Heart
Trestbps 188.67 31 49 7
Chol. 212.67 45.33 53 10.67
T,C 235.67 169.67 60.33 40.33

Adult Cap. Gain 7407 2755 1903 700
Hours 379 0 84 0

Table 8: Best parameter configurations on each dataset for each data fold found using grid search for baseline
neural networks (NNb).

Auto-MPG Boston Heart Adult
Batch Size # Epochs LR Batch Size # Epochs LR Batch Size # Epochs LR Batch Size # Epochs LR

0 32 2000 0.01 64 1000 0.01 32 400 0.01 1024 500 0.01
1 32 1500 0.01 64 1000 0.001 32 400 0.01 - - -
2 32 2000 0.01 32 500 0.01 32 400 0.001 - - -

14



Displacement # Rooms
5

10

15

20

Te
st

M
SE

NNb Envelope COMET Envelope (Min MSE) COMET Envelope (Min Counterexample)

Figure 5: Monotonicity is a good inductive bias and
helps in improving model accuracy. However, there is a
tradeoff between performance and reducing the number
of examples that have counterexamples.

Q6. Additional model selection experiment.
In Section 4.2, model selection was based on
minimum train error. In this experiment, we
carry out model selection based on the least
number of counterexamples. Overall, we find
that monotonicity counterexamples act as a good
inductive bias and improve model quality. How-
ever, there is a tradeoff on how much one could
enforce monotonicity as a bias. Figure 5 plots
test envelope MSE of Auto MPG and Boston
Housing datasets. We can see that envelope
construction on a function with minimum coun-
terexamples has a higher error than the original
model’s envelope.

15


