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A. Notations

Some used notations are summarized in Table 4.

B. Optimization Details

In this section, we present the details of HQ-DFBB and two partial derivative calculators. Since these
calculators are separable w.r.t each task, we only focus on the computation associated with single
task by omitting the index t, i.e., hϑ(β̂(ϑ), ν) and hν(β̂(ϑ), ν) in the subsequent analysis.

B.1. HQ-DFBB for inner problem

According to HQ optimization, a convex minimization problem minxQ(x) is equivalent to the
half-quadratic function u(x, t) with a potential function s(t):

min
x,t

u(x, t) + s(t),

where the dual potential function s(t) can be determined by the convex optimization theory [8]. For a
convex function f(a) with its Fenchel conjugate g(b), we have f(a) = max

b
(ab − g(b)). Assume

that there are a convex function f(a) and a modal kernel φ satisfying

φ
(
t/σ
)

= f((t/σ)2) = max
b

((t/σ)2b− g(b)), t ∈ R. (1)

Substituting (1) into the inner problem in Section 2.4, we formulate the transformed inner problem as

min
β,b

{ 1

nσ

n∑
i=1

(bi
(yi −Ψiβ

σ

)2
+ g(−bi)) +

µ

2
‖β‖22 + λ

L∑
l=1

τl‖Tϑlβ‖2
}
, (2)

where b = (b1, ..., bn)T ∈ Rn is a weight vector with respect to the observations. Problem (2) can be
optimized via alternating optimization algorithm.

Update weight b (given β): According to Theorem 1 in [10], we have

bi = −f ′
((yi −Ψiβ

σ

)2)
, (3)
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Table 4: Notations

Notations Descriptions
X ,Y the input space and the output space, respectively
X,Y random variables taking values in X and Y , respectively
x, y realizations of X and Y , respectively
P the dimension of input invariables
d the order of spline basis function
n sample size
T the number of tasks
X (t),Y(t) the input space and the output space of t-th task, respectively
X(t), Y (t) random variables taking values in X (t) and Y(t), respectively
x(t), y(t) realizations of X(t) and Y (t), respectively
S(t) the data set of t-task with 2n sample size, i.e., S(t) = {(x(t)

i , y
(t)
i )}2ni=1

S
(t)
val a part of S(t) with sample size n, which is used for the outer problem
S

(t)
train a part of S(t) with sample size n, which is used for the inner problem
S the union of the data set S(t) of all T tasks, i.e., S = {S(t)}Tt=1
L the number of group among the variables
Gl the l-th (l ≤ L) group over {1, ..., P}
G(t) the dominant groups of t-th task, i.e., G(t) ⊂ {G1, ..., GL}
V the set of inactive variables
f∗ the ground truth function
φ(·) the representation of modal kernel
σ the bandwidth of modal kernel
H additive hypothesis spaceH = H1 ⊕ ...⊕HP
B̄ the spline-based additive space with infinite order d, i.e., B = B̄1 ⊕ ...⊕ B̄P
B the spline-based additive space with finite order d, i.e., B = B1 ⊕ ...⊕ BP
R(f) the mode-induced metric for function f
Rσ(f) the KDE-based mode-induced metric for function f
Rσemp(f) the empirical mode-induced metric for function f
ϑ ∈ RP×L the representation of group structure
ν ∈ RP the representation of variable effect
Ŝ the inferred variable structure shared by all tasks
S∗ the oracle variable structure shared by all tasks

where f ′
((
yi−Ψiβ

σ

)2)
means the derivative of function f with respect to variable

(
yi−Ψiβ

σ

)2
. For

modal kernel functions, we summarize the corresponding function f(a) and weight b in Table 5.

Update coefficient β (given b): Since the proximity operator of ‖Tϑlβ‖2, l ∈ {1, ..., L} in (2) cannot
be computed in a closed form, the standard forward-backward splitting method [4] cannot be used
here directly. In this paper, we apply the forward-backward scheme with Bregman distances (DFBB)
to tackle this problem. We first introduce the Fenchel-Rockafellar duality theorem [1]:
Definition 1. (Fenchel-Rockafellar duality): Let f : X → [−∞,+∞] and g : Y → [−∞,+∞]
be convex functions. Let T : X → Y be a linear operator with its adjoint operator T ∗ such that
< y, T x >=< T ∗y, x >, ∀x ∈ X ,∀y ∈ Y . The primal problem associated with f and g is

min
x
f(x) + g(T x),

and the dual problem is
min
y
f∗(−T ∗y) + g∗(y).

Denote � as the Hardamard product and Ψ = (ΨT
1 , ...,Ψ

T
n )T ∈ Rn×Pd. Given weight b, let

ỹ =
√
b� y = (

√
b1y1, ...,

√
bnyn)T ∈ Rn and Ψ̃ =

√
b�Ψ = (

√
b1ΨT

1 , ...,
√
bnΨT

n )T ∈ Rn×Pd.
Set ε = nσ3µ/2 and η = nσ3λ/2. Then the transformed inner problem can be rewritten as

min
β

{ 1

2
‖ỹ − Ψ̃β‖22 +

ε

2
‖β‖22︸ ︷︷ ︸

L(β): RPd→R

+ η‖(τlTϑlβ)1≤l≤L‖2︸ ︷︷ ︸
Ω((Tϑlβ)1≤l≤L): RPd×L→R

}
, (4)
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Table 5: Definitions and properties of different modal kernel (t = yi−Ψiβ
σ , a ∈ R, z1 = et + 2 + e−t,

z2 = et + e−t and z3 = e−t − et)
Gaussian Kernel Logistic Kernel Sigmoid Kernel

φ(t) e
− t

2

2 1
et+2+e−t

2
π(et+e−t)

φ
′
(t) −te−

t2

2 e−t−et
(et+2+e−t)2

2(e−t−et)
π(et+e−t)2

f(a) e
− a

2 1

e
√
a+2+e−

√
a

2

π(e
√
a+e−

√
a)

bi
1
2
e
− t

2

2
(e−t−et)

2t(et+2+e−t)2
(e−t−et)

πt(et+e−t)2

(∂βDb)T
(
t
2
e
−t2

2 ΨTi

)
1≤i≤N

(ΨTi [z2tz
2
1+z1z3(2tz3+z1)]

2σt2z41

)
1≤i≤N

(ΨTi [tz32+z2z3(2tz3+z1)]

2σt2z42

)
1≤i≤N

where ε
2‖β‖

2
2 assures that L(β) is ε-strongly convex. Denote w = (w1, ..., wL) ∈ RPd×L, where

wl = (w(11)l, ..., w(1d)l, ..., w(P1)l, ..., w(Pd)l)
T ∈ RPd. According to Fenchel-Rockafellar duality

theorem, we can formulate the dual problem of (4) as

ŵ = arg min
w∈RPd×L

{
L∗(−T ∗ϑ w) + Ω∗(w)

}
. (5)

Here L∗(−T ∗ϑ w) is the Fenchel conjugate of L(β) with T ∗ϑ w =
∑L
l=1 Tϑlwl ∈ RPd, and

Ω∗(w) =
∑L
l=1 δC(wl) is the Fenchel conjugate of Ω(β), where the indicator function δC(wl)

satisfies δC(wl) = 0 if ‖wl‖2 ≤ ητl, and +∞ otherwise.

According to the property of strong convex function, L∗ is everywhere differentiable with ε−1-
Lipschitz continuous gradient, and ∇w[L∗(−T ∗ϑ w)] = −(Tϑl∇L∗(−T ∗ϑ w))1≤l≤L ∈ RPd×L is
‖(Tϑl ·)1≤l≤L‖22ε−1-Lipschitz continuous.

We next apply the forward-backward splitting with Bregman proximity operator proxϕΩ∗(w) to the
dual problem (5), where ϕ is the separable Helinger-like function [5, 9], i.e.,

ϕ(w) =

L∑
l=1

ϕl(wl) = −
L∑
l=1

√
η2τ2

l − ‖wl‖22 ∈ R, s.t. ‖wl‖2 ≤ ητl

with its Fenchel conjugate

ϕ∗(w) =

L∑
l=1

ϕ∗l (wl) =

L∑
l=1

ητl

√
1 + ‖wl‖22.

By direct computation, we get

∇ϕ(w) =

(
wl√

η2τ2
l − ‖wl‖22

)
1≤l≤L

and

∇ϕ∗(w) =

(
ητlwl√

1 + ‖wl‖22

)
1≤l≤L

.

Moreover, for any a = (a1, ..., aL) ∈ RPd×L,

∇2ϕ(w)a =

(
wlw

T
l al

(η2τ2
l − ‖wl‖22)3/2

+
al√

η2τ2
l − ‖wl‖22

)
1≤l≤L

∈ RPd×L

and

∇2ϕ∗(w)a =

(
ηwlw

T
l alτl

(1 + ‖wl‖22)3/2
+

ητlal√
1 + ‖wl‖22

)
1≤l≤L

∈ RPd×L.

3



Denote q as the q-th iteration and γ as the step-size. To tackle the dual problem (5), we update w by
the following iterative step:

w(q+1) = proxϕΩ∗(w)

(
∇ϕ(w(q))− γ∇w[L∗(−T ∗ϑ w(q))]

)
= arg min
w∈RPd×L

ϕ(w) + Ω∗(w)−
〈
∇ϕ(w(q))− γ∇w[L∗(−T ∗ϑ w(q))], w

〉
= arg min
‖wl‖2≤ητl,l=1,...,L

ϕ(w)−
〈
∇ϕ(w(q))− γ∇w[L∗(−T ∗ϑ w(q))], w

〉
= arg min
‖wl‖2≤ητl,l=1,...,L

L∑
l=1

{
ϕl(wl)−

〈
∇ϕl(w(q)

l )− γ∇wl [L
∗(−T ∗ϑ w(q))], wl

〉}
=
(
∇ϕ∗l

(
∇ϕl(w(q)

l )− γ∇wl [L
∗(−T ∗ϑ w(q))]

))
1≤l≤L

∈ RPd×L

=
(
∇ϕ∗l

(
∇ϕl(w(q)

l ) + γTϑl(Ψ̃
T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(q))

))
1≤l≤L

.

After Q iterations, we obtain the following primal-dual equation

β = ∇L∗(−T ∗ϑ w(Q)) = (∇L(−T ∗ϑ w(Q)))−1 = (Ψ̃T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(Q)).

Now, we summary the HQ-DFBB optimization for the inner problem in Algorithm 2.

Algorithm 2: HQ-DFBB(ϑ, λ, σ, µ, τ ; Strain)
Input: Training set Strain = {(xi, yi)}ni=1, Hyper- parameter ϑ, Modal kernel φ with designed
function f (Table 5), Bandwidth σ, Regularization parameter λ > 0, Penalty parameter µ > 0,
weights τl, l = 1, ..., L.

Initialization: Spline basis matrix Ψ ∈ Rn×Pd with order d, Max-Iter M,Q ∈ R, η = nσ3λ/2,
ε = nσ3µ/2, β(0) = 0P , step-size γ < εη−1‖(Tϑl ·)1≤l≤L‖−2

2 .
for m = 0 : M − 1 do

1: Fixed β(m), b(m+1) =
(
− f ′

((
yi−Ψiβ

(m)

σ

)2))T
1≤i≤n

∈ Rn;

2: Let ỹ =
√
b(m+1) � y, Ψ̃ =

√
b(m+1) �Ψ;

3: Fixed b(m+1), solve dual problem:
Initialization: q = 0, w(m+1,0) = 0;
for q = 0 : Q− 1 do

w(m+1,q+1) =(
∇ϕ∗l

(
∇ϕl(w(m+1,q)

l ) + γTϑl(Ψ̃T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(m+1,q))
))

1≤l≤L
;

4: β(m+1) = (Ψ̃T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(m+1,Q))

Output: β̂(ϑ) = β(M)

B.2. Partial derivative calculator: hϑ(β̂(ϑ), ν)

We calculate the partial derivative calculator hϑ(β̂(ϑ), ν) based on the backward gradient descent
method, i.e.,

hϑ(β̂(ϑ), ν) = −∂U(β̂(ϑ), ν)

∂ϑ
= −(

dβ̂(ϑ)

dϑ
)T
∂U(β̂(ϑ), ν)

∂β
,

where

∂U(β̂(ϑ), ν)

∂β
= − 1

nσ2

n∑
i=1

TνΨT
i φ
′
(
yi −ΨiTν β̂(ϑ)

σ
) ∈ RPd

and φ
′

is the derivative of modal kernel (see details in Table 5). We next specify the implementation
of the partial derivative. For m = 0, ...,M − 1 and q = 0, ..., Q − 1, we denote the equations in
Algorithm 2 as (

− f ′
((yi −Ψiβ

(m)

σ

)2))T
1≤i≤n

:= Db(β(m)),
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(Ψ̃T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(m,Q)) := Dβ(b(m), w(m,Q), ϑ),(
∇ϕ∗l

(
∇ϕl(w(m,q)

l ) + γTϑl(Ψ̃
T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(m+1,q))

))
1≤l≤L

:= Dw(b(m), w(m,q), ϑ).

To illustrate the application of the chain rule, we show a graphical representation of the information

dβ(m+1)

dϑ∂𝒟β(b(m+1), w(m,Q), ϑ)
∂ϑ

∂𝒟β(b(m+1), w(m,Q), ϑ)
∂b

db(m+1)

dϑ
d𝒟b(β(m))

dβ

dβ(m)

dϑ

dϑ dw(Q)

dϑ

∂𝒟β(b(m+1), w(m,Q), ϑ)
∂w

∂𝒟w(b(m+1), w(m,Q−1), ϑ)
∂b

db(m+1)

dϑ

db(m+1)

dϑ

db(m+1)

dϑ

∂𝒟w(b(m+1), w(m,Q−1), ϑ)
∂ϑ ∂𝒟w(b(m+1), w(m,Q−1), ϑ)

∂w

dw(Q−1)

dϑ
∂𝒟w(b(m+1), w(m,Q−2), ϑ)

∂b

d𝒟b(β(m))
dβ

dβ(m)

dϑ

dβ(m)

dϑ

∂𝒟w(b(m+1), w(m,Q−2), ϑ)
∂ϑ …

…

dϑ

dϑ

dϑ

dw(1)

dϑ
∂𝒟w(b(m+1), w(m,0), ϑ)

∂ϑ
∂𝒟w(b(m+1), w(m,0), ϑ)

∂b …

dβ(m)

dϑ

d𝒟b(β(m))
dβ

d𝒟b(β(m))
dβ

Figure 4: This graph illustrates how the information is back propagated between β(m+1) and
β(m). The derivatives at the nodes show which derivative is to be evaluated from this point down-
wards through the graph. The edges shows multiplicative factors. The final relationship between
dβ(m+1)/dϑ and dβ(m)/dϑ is the sum over all leaf nodes.

flow in Figure 4. For simplicity, we represent the notations in Figure 4 by using the following
abbreviations:

Db(β(m)) := D(m)
b , Dβ(b(m), w(m,Q), ϑ) := D(m,Q)

β , Dw(b(m), w(m,q), ϑ) := D(m,q)
w ,

with corresponding partial derivatives

dD(m)
b

dβ
:= ∂βD(m)

b ,
∂D(m,Q)

β

∂ϑ
:= ∂ϑD(m,Q)

β ,
∂D(m,Q)

β

∂w
:= ∂wD(m,Q)

β ,
∂D(m,Q)

β

∂b
:= ∂bD(m,q)

β ,

∂D(m,q)
w

∂ϑ
:= ∂ϑD(m,q)

w ,
∂D(m,q)

w

∂w
:= ∂wD(m,q)

w ,
∂D(m,q)

w

∂b
:= ∂bD(m,q)

w .

From Figure 4, the relationship between dβ(m+1)

dϑ and dβ(m)

dϑ can be represented by

dβ(m+1)

dϑ
= Am+1 +Bm+1

dβ(m)

dϑ
,

where Am+1 is the sum of left leaf nodes and Bm+1 is the sum of right leaf nodes. Naturally, we
have the corresponding transpose

(
dβ(m+1)

dϑ
)T = ATm+1 + (

dβ(m)

dϑ
)TBTm+1, (6)
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where

ATm+1 = (∂ϑD(m+1,Q)
β )T

+ (∂ϑD(m+1,Q−1)
w )T (∂wD(m+1,Q)

β )T

+ (∂ϑD(m+1,Q−2)
w )T (∂wD(m+1,Q−1)

w )T (∂wD(m+1,Q)
β )T

+ ... ...

+ (∂ϑD(m+1,0)
w )T (∂wD(m+1,1)

w )T · · · (∂wD(m+1,Q−1)
w )T (∂wD(m+1,Q)

β )T

(7)

and

BTm+1 = (∂βD(m)
b )T (∂bD(m+1,Q)

β )T

+ (∂βD(m)
b )T (∂bD(m+1,Q−1)

w )T (∂wD(m+1,Q)
β )T

+ ... ...

+ (∂βD(m)
b )T (∂bD(m+1,0)

w )T (∂wD(m+1,1)
w )T · · · (∂wD(m+1,Q)

β )T .

(8)

We now specialize the computation of ATm and BTm, for every m = 1, ...,M . Denote Ψ =
(Ψ̄1, ..., Ψ̄Pd) ∈ Rn×Pd, where each Ψ̄j = (ψj(x1j), ..., ψj(xnj))

T ∈ Rn, j = 1, ..., P . Denote
TΨ̄j b = Ψ̄j � b ∈ Rn and u = (Ψ̃T Ψ̃ + εI) ∈ RPd×Pd. Then we get

(∂bD(m,Q)
β )T = u−1(TΨ̄j

b(m))T1≤j≤Pd +
(
u−1Ψ̃T

i Ψ̃iu
−1(Ψ̃T ỹ − T ∗ϑ w(m,Q))

)
1≤i≤n

. (9)

For each a = (a1, ..., aL) ∈ RPd×L, there hold

(∂wD(m,Q)
β )T a =

(
Tϑl(u

−1al)
)

1≤l≤L
∈ RPd×L

(∂ϑD(m,Q)
β )T a =

(
T
w

(m,Q)
l

(u−1al)
)

1≤l≤L
∈ RP×L.

(10)

Note that Twla = (
∑d
t=1 w(jt)lajt)

T
1≤j≤P for every a = (a11, .., a1d, ..., aP1, ..., aPd)

T ∈ RPd, j ∈
{1, ..., P}. Let vl = ∇ϕl(w(m,q)

l ) + γTϑlD
(m,Q)
β . For every a = (a1, ..., aL) ∈ RPd×L, we have

(∂bD(m,q)
w )T a = γ(∂bD(m,q)

β )TT ∗ϑ∇2ϕ∗(v)a,

(∂wD(m,q)
w )T a =

(
∇2ϕ(w

(m,q)
l )∇2ϕ∗(vl)al − γ(∂wD(m,q)

β )TT ∗ϑ∇2ϕ∗
(
v
)
a
)

1≤l≤L
,

(∂ϑD(m,q)
w )T a = γ

(
(∂ϑD(m,Q)

β )TT ∗ϑ∇ϕ∗(v)a+ T∇ϕ∗
l
(vl)alD

(m,Q)
β

)
1≤l≤L

.

In addition, the partial derivative (∂βD(m)
b )T in (8) is summarized in Table 5. Combining the above

computations, we have

∂U(β̂(ϑ), ν)

∂ϑ
= (

dβ̂(M)(ϑ)

dϑ
)T

∂U(β̂(ϑ), ν)

∂β︸ ︷︷ ︸
DM

= ATMDM︸ ︷︷ ︸
CM−1

+(
dβ̂(M−1)(ϑ)

dϑ
)T BTMDM︸ ︷︷ ︸

DM−1

= CM−1 +ATM−1DM−1︸ ︷︷ ︸
CM−2

+(
dβ̂(M−2)(ϑ)

dϑ
)T BTM−1DM−1︸ ︷︷ ︸

DM−2

= ...

= CM−1 +ATM−1DM−1 +ATM−2DM−2 + ....+AT1 D1︸ ︷︷ ︸
C0

.

(11)

Now, we state the computing steps for the partial derivative with respect to variable ϑ as below.
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Algorithm 3: Partial Derivative Calculator hϑ(β̂(ϑ), ν)

Input: Training set Strain = {(xi, yi)}ni=1, Validation set Sval = {(xi, yi)}ni=1,
Hyper-parameter ϑ, Max-Iter M,Q ∈ R, Modal kernel φ, Bandwidth σ, Regularization
parameter λ, Penalty parameter µ.

Initialization: Spline basis Ψ ∈ Rn×Pd with order d for validation set, η = mσ3λ/2,
ε = nσ3µ, β̂(0) = 0P , step-size γ < ελ−1‖(Tϑl ·)Ll=1‖22.

1. Solve the inner problem by HQ-DFBB based on training set Strain (Algorithm 2):
Output: β(m), b(m), w(m,q),∀m ∈ {1, ...,M}, ∀q ∈ {1, ..., Q}

2. Compute partial derivative based on validation set Sval with spline basis Ψ:
Initialization: DM = ∂U(β(M)(ϑ),ν)

∂β , CM = 0

for m = M : −1 : 1 do
1): Compute ATm by Equation (7)
2): Compute BTm by Equation (8)
3): Cm−1 = ATmDm + Cm
4): Dm−1 = BTmDm

Output: C0

B.3. Partial derivative calculator hν(β̂(ϑ), ν)

Since variable ν appears explicitly in the outer problem, we can obtain ∂U(β̂(ϑ), ν)/∂ν, t = 1, ..., T

directly. Given the solution β̂(ϑ) (also β(M)) of the inner problem, we have

hν(β̂(ϑ), ν) = −∂U(β̂(ϑ), ν)

∂ν
=

1

nσ2

n∑
i=1

φ′(
yi −ΨiTν β̂(ϑ)

σ
)TΨTi

β̂(ϑ),

where

TΨTi
β̂(ϑ) =

( d∑
t=1

ψ1t(xi1)T β̂1t(ϑ), ...,

d∑
t=1

ψPt(xiP )T β̂Pt(ϑ)
)T ∈ RP .

C. Convergence Analysis of Optimization Algorithm

From Theorem 2.1 in [5] and Theorem 4 in [7], we know that the Algorithm 1 in Section 3 converges
only if the iteration sequence generated by HQ-DFBB in Algorithm 2 converges to the solution of the
inner problem. Since the analysis result is suitable to every task, we only focus on a single task by
omitting the index t.

Denote J(β) as the objective function of inner problem and J(β, b) as the transformed inner objective
function (4) by omitting index t. From HQ optimization, we know that

J(β) = 2n−1σ−3 min
b
J(β, b), ∀β ∈ RPd. (12)

Due to ε-strongly convex, J(β, b) has a unique global minimum for a given b ∈ Rn.

HQ-DFBB is formulated with Q inner loops and M outer loops. For every m ∈ {0, ...,M − 1},
we denote β̄(m+1) = arg minβ J(β, b̄(m+1)) and b̄(m+1) = arg minb J(β̄(m), b). For given outer
iteration times M ∈ N, β(M) is the solution of HQ-DFBB and is dependent on the inner iteration Q.
Let lim

Q,M→+∞
β(M) = β∗, lim

Q,M→+∞
b(M) = b∗.

To get the convergence analysis for the computing algorithm, we introduce the following result
established in [5].

Lemma 1. For any step-size γ < ελ−1‖(Tϑl ·)1≤l≤L‖22, the sequence {β(m+1)}Q∈N converges to
β̄(m+1). If γ = 1

2ελ
−1‖(Tϑl ·)1≤l≤L‖22, there holds

1

2
‖β(m+1) − β̄(m+1)‖22 ≤

2η

Qε2
‖Tϑl‖2DΦ(ω, ω(0)), (13)
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where DΦ is the Bregman distance associated to Φ, ‖Tϑl‖2DΦ(ω, ω(0)) is uniformly bounded from
above on Θ. As a result, there exists a constant C > 0, such that

‖β(m+1) − β̄(m+1)‖22 ≤
C

Q
. (14)

It is a position to state the convergence guarantees for our HQ-DFBB in Algorithm 2.
Theorem 1. If weight b in (3) is a continuous differential function with respect to β, asQ,M → +∞,
there hold

(a) The function sequences {J(β(m), b(m)),m = 1, ...,M} and {J(β(m)),m = 1, ...,M} converge,

(b) ‖β(M) − β(M−1)‖22 → 0,

(c) β∗ = arg minβ J(β, b∗).

Proof. (a) Since J(β, b) is strong convex w.r.t. β, then

J(β̄(m+1), b̄(m+1)) < J(β̄(m), b̄(m+1)) ≤ J(β̄(m), b̄(m)). (15)

According to Lemma 1, we have

lim
Q→+∞

β(m+1) = β̄(m+1).

Let b(m+1) = arg minb J(β(Q,m), b). Due to J(β, b) and b are continuous functions with respect to
β, for any m ∈ {0, ...,M − 1}, we have

b̄(m+1) = arg min
b

lim
Q→+∞

J(β(m), b).

Then,

lim
Q→+∞

J(β(m+1), b(m+1)) = J(β̄(m+1), b̄(m+1)), lim
Q→+∞

J(β(m), b(m+1)) = J(β̄(m), b̄(m+1)).

(16)

According to the order-preserving property of limit, there exists a large enough Q ∈ N such that

J(β(m+1), b(m+1)) < J(β(m), b(m+1)). (17)

Moreover, there exists a large enough Q ∈ N such that

J(β(m), b(m+1)) ≤ J(β(m), b(m)).

As a result, {J(β(m), b(m)),m = 1, 2, ...} is a decreasing sequence. Since J(β, b) is bounded
below, {J(β(m), b(m)),m = 1, 2, ...} converges. According to J(β) = minb J(β, b) in (12), we
obtain J(β(m)) = n−1σ−3J(β(m), b(m+1)). Naturally, the sequence {J(β(m)),m = 1, 2, . . .} also
converges.

(b) Since J(β, b) is a ε-strongly convex function w.r.t β, we get

J(β̄(m+1), b̄(m))− J(β̄(m), b̄(m)) ≥ gT (β̄(m+1) − β̄(m)) +
ε

2
‖β̄(m+1) − β̄(m)‖2,

where g denotes any gradient of J(β̄(m), b̄(m)). Due to β̄(m) = arg minβ J(β, b̄(m)), we can take
g = 0. Then,

ε

2
‖β̄(m+1) − β̄(m)‖2 ≤ J(β̄(m+1), b̄(m))− J(β̄(m), b̄(m)). (18)

Considering J(β̄(m+1), b̄(m)) − J(β̄(m), b̄(m)) → 0 as m → +∞, we can deduce from (18) that
‖β̄(m+1) − β̄(m)‖2 → 0 as m→ +∞. Moreover, from Lemma 1, we have

‖β(Q,m+1) − β(Q,m)‖2 ≤ ‖β(Q,m+1) − β̄(m+1)‖2 + ‖β̄(m+1) − β̄(m)‖2 + ‖β̄(m) − β(Q,m)‖2

≤ 2C

Q
+ ‖β̄(m+1) − β̄(m)‖2.

The desired result in (b) follows by taking m,Q→ +∞.
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(c) Since the weight b is continuous differential with respect to β, we have b(m) is convergent if β(m)

is convergent as Q,m→ +∞. Based on Theorem 3.1 in [9], the sequence {w(m,Q)}Q∈N generated
in Algorithm 2 is convergent to ŵ(m) as Q→ +∞. Let lim

m→+∞
ŵ(m) = ŵ∗, lim

Q,m→+∞
β(m) = β∗,

lim
Q,m→+∞

b(m) = b∗, Ψ̃∗ =
√
b∗ � Ψ and ỹ∗ =

√
b∗ � y. According to the following primal-dual

link
β(m+1) = (Ψ̃T Ψ̃ + εI)−1(Ψ̃T ỹ − T ∗ϑ w(m+1,Q)),

we have
β∗ = (Ψ̃∗T Ψ̃∗ + εI)−1(Ψ̃∗T ỹ∗ − T ∗ϑ ŵ∗), as Q,m→ +∞. (19)

By direct computation, (19) can be rewritten as

(Ψ̃∗T Ψ̃∗ + εI)β∗ − Ψ̃∗T ỹ∗ + T ∗ϑ ŵ∗ = 0.

From the foward-backward iteration process, we know ‖w(m,q)
l ‖ ≤ ητl for everym ∈ {1, ...,M}, l ∈

{1, ..., L}, q ∈ {1, ..., Q}. As a result, we get ‖ŵ∗l ‖ ≤ ητl by taking m,Q → +∞. Denote
w∗l = 1

ητl
ŵ∗l such that ‖w∗l ‖ ≤ 1. It follows that

(Ψ̃∗T Ψ̃∗ + εI)β∗ − Ψ̃∗T ỹ∗ + T ∗ϑ ŵ = (Ψ̃∗T Ψ̃∗ + εI)β∗ − Ψ̃∗T ỹ∗ +
L∑
l=1

ητlTϑlw∗l = 0. (20)

From the definition of Ω(β) in (4), we derive

∂Ω(β) = η

L∑
l=1

τlTϑlδl,

where δl, 1 ≤ l ≤ L satisfies ‖δl‖ = 1 if Tϑlβ 6= 0, and ‖δl‖ < 1 otherwise. Therefore

0 = (Ψ̃∗T Ψ̃∗ + εI)β∗ − Ψ̃∗T ỹ∗ +
L∑
l=1

ητlTϑlw
∗
l ∈ ∇L(β∗) + ∂Ω(β∗).

That is to say 0 ∈ ∂βJ(β∗, b∗). Since J(β, b) is strongly convex with respect to β, we know β∗ is
the unique solution of J(β, b∗).

Remark 1. Theorem 1 illustrates the convergence of HQ-DFBB in Algorithm 2. Combining Theorem
1 with Theorem 2.1 and Theorem 3.2 in [5], we obtain the convergence of Algorithm 1 in Section 3.
However, to solve the non-convex inner problem, our optimization strategy have extral computation
time and space complexity compared with [5]. For instance, the half-quadratic optimization is
introduced to solve the nonconvex inner problem, which results in more computation time for our
optimization strategy because of the additional outer loop in Algorithm 2.

D. Experiments

D.1. Simulated data analysis

In this section, we firstly give the remaining results associated with Chi-square noise and Student
noise in Table 6 and Figures 5-7. To investigate the impact of hyper-parameters on MAM, some
additional evaluations, exemplified by Example A (Gaussian noise and |V| = 0), are provided as
below:
Impact of the number of groups: In previous evaluations, the number of groups was known a priori,
i.e., L = 5. We relax this assumption and implement our method with a larger number of groups,
i.e., L = 10. Figures 8 (top right panel) shows that the 5 extra groups are empty. It indicates that a
satisfactory inference also can be obtained when the number of groups is set to be larger than the
oracle number of groups.
Impact of outer iterations Z and parameter λ: For various values of regularization parameter
λ = 10−4, 10−3, 10−2, 10−1, Figures 8 (bottom left panel) shows the outer objective increases until
converges as the number of outer iterations Z grows.
Impact of inner iterations Q and M : We further investigate the impact of the number of inner
iteration Q and M on the validation error. To do so, we repeat the same experiment for different
values of Q = 100, 200, 400, 800 and M = 1, 2, 4, 8, 16. The results in Figures 8 (top right panel)
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indicate that increasing Q and M sufficiently permits yielding smaller TD.
Impact of the bandwidth σ: To investigate the sensitivity of MAM towards the choice of bandwidths,
we repeat the same experiment for different bandwidths σ = 1, 2, 4, 8, 16. Figures 8 (bottom right
panel) shows that the performance of MAM gets close to mGAM as σ decreases.

Table 6: Performance comparisons on Example A (top) and Example B (bottom) w.r.t different
criterions.

Methods
|V| = 0 (Chi-square noise) |V| = 5 (Chi-square noise) |V| = 0 (Exponential noise) |V| = 5 (Exponential noise)

ASE TD WPI (SCP) ASE TD WPI (SCP) ASE TD WPI (SCP) ASE TD WPI (SCP)

MAM 0.8114 0.7982 0.2075(0.1019) 0.8212 0.8184 0.2079(0.1015) 0.8124 0.7894 0.2092(0.1025) 0.8373 0.8129 0.2080(0.1016)

BiGL 0.8908 0.8848 0.2182(0.1015) 0.8908 0.8594 0.2217(0.1017) 0.8958 0.8643 0.2268(0.1022) 0.8813 0.8648 0.2289(0.1018)

mGAM 0.8091 0.7887 0.2034(0.1016) 0.8118 0.8060 0.2052(0.1016) 0.8147 0.7902 0.2011(0.1023) 0.8316 0.8083 0.2143(0.1018)

GL 0.8642 0.8581 0.2139(0.1017) 0.8754 0.8391 0.2107(0.1022) 0.8729 0.8413 0.2231(0.1014) 0.8625 0.8420 0.2220(0.1020)

Lasso 3.6536 3.6364 0.4982(0.1018) 3.5545 3.5364 0.4926(0.1020) 3.5823 3.5798 0.5012(0.1020) 3.8042 3.8033 0.5192(0.1022)

RMR 1.8196 1.8158 0.3614(0.1016) 1.9145 1.8968 0.3733(0.1017) 2.0576 1.8686 0.3601(0.1024) 1.9875 1.9377 0.3574(0.1023)

MAM 0.8424 0.8356 0.2264(0.1038) 0.8229 0.8196 0.2383(0.1033) 0.8414 0.8294 0.2314(0.1045) 0.8331 0.8209 0.2292(0.1043)

BiGL 0.8982 0.8813 0.2327(0.1034) 0.8994 0.8994 0.2489(0.1026) 0.9007 0.9006 0.2420(0.1036) 0.8919 0.8975 0.2509(0.1036)

mGAM 0.8411 0.8322 0.2291(0.1034) 0.8196 0.8013 0.2406(0.1036) 0.8318 0.8163 0.2323(0.1035) 0.8308 0.8161 0.2261(0.1044)

GroupSpAM 0.8677 0.8555 0.2299(0.1029) 0.8489 0.8302 0.2477(0.1033) 0.8742 0.8602 0.2433(0.1029) 0.8599 0.8574 0.2277(0.1033)

GL 0.8843 0.8804 0.2279(0.1032) 0.8786 0.8778 0.2480(0.1028) 0.8856 0.8857 0.2441(0.1028) 0.8621 0.8672 0.2431(0.1031)

Lasso 3.4796 3.4313 0.4761(0.1025) 3.3763 3.3251 0.4679(0.1025) 3.3722 3.3618 0.4881(0.1023) 3.3537 3.3216 0.4778(0.1033)

RMR 1.9286 1.7885 0.3594(0.1031) 1.7860 1.7843 0.3506(0.1028) 1.8451 1.8241 0.3505(0.1026) 1.8920 1.8971 0.3622(0.1021)
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Figure 5: Variable structure discovery for Example B under different noise and sparsity index V
(white pixel means the grouped variables and red pixel means the inactive variables). Top left panel:
Gaussian noise and |V| = 0. Top right panel: Student noise and |V| = 0. Bottom left panel: Gaussian
noise and |V| = 5. Bottom right panel: Student noise and |V| = 5.

D.2. Coronal mass ejection analysis

CMEs data contain 137 observations with 21 variables including: (1) Central PA (CPA), (2) Angular
Width, (3)Acceleration, three approximated speeds ((4) Linear Speed, (5) 2nd-order Speed at final
height, (6) 2nd-order Speed at 20 Rs), (7) Mass, (8) Kinetic Energy, (9) MPA, (10) Field magnitude
average, (11) Bx, (12) By, (13) Bz , (14) Solar wind speed, (15) Vx, (16) Vy, (17) Vz , (18) Proton
density, (19) Temperature, (20) Flow pressure and (21) Plasma beta. Correspondingly, the outputs
(tasks) include CMEs arrive time, Mean ICME speed, Maximum solar wind speed, Increment in solar
wind speed and Mean magnetic field strength.

Figures 9 shows the impact of the hyper-parameters (the number of groups and regularization
parameter λ) on the average absolute error (AAE) for each task.
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Figure 6: Variable structure discovery for Example A under different noise and sparsity index V
(white pixel means the grouped variables and red pixel means the inactive variables). Top left panel:
Chi-square noise and |V| = 0. Top right panel: Exponential noise and |V| = 0. Bottom left panel:
Chi-square noise and |V| = 5. Bottom right panel: Exponential noise and |V| = 5.
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Figure 7: Variable structure discovery for Example B under different noise and sparsity index V
(white pixel means the grouped variables and red pixel means the inactive variables). Top left panel:
Chi-square noise and |V| = 0. Top right panel: Exponential noise and |V| = 0. Bottom left panel:
Chi-square noise and |V| = 5. Bottom right panel: Exponential noise and |V| = 5.

E. Discussion

This paper proposes the MAM and evaluate its effectiveness on regression prediction and structure
discovery. Now, we outline some future research directions related closely with our MAM.

E.1 Generalization error analysis based on algorithmic stability

In theory, it is valuable to provide some generalization ability analysis of MAM. The key challenges
for theoretical analysis are the non-convex mode-induced metric and nonlinear additive hypothesis
space. With the help of algorithmic stability in [2, 11], we can establish the generalization error
bound of multi-task additive models with some additional restrictions on error metric, e.g., Quadratic
Growth condition [3]. In the future, it is important to relax the restrictions on error metric.
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Figure 9: The impact of the regularization parameter λ and the number of groups on U(β̂(ϑ̂), ν̂) and
average absolute error (AAE).
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E.2 Overlapping variable structure discovery

It should be noticed that our MAM is limited to the automatic structure discovery without overlapping
groups. That is to say, each variable in the estimated structure Ŝ can only be assigned into one group
according to the property of unit simplex

∑L
l=1 ϑjl = 1. Some attempts have been made to achieve

promising estimation performance with a given overlapping group structure [6]. It is interesting to
extend our MAM to mine the overlapping structure automatically without priori knowledge.

References
[1] H. Bauschke and P. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert

Space. Springer Berlin, 2011.

[2] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2(3):499–526, 2002.

[3] Z. Charles and D. S. Papailiopoulos. Stability and generalization of learning algorithms that
converge to global optima. In International Conference on Machine learning (ICML). 2017.

[4] G. H. G. Chen and R. T. Rockafellar. Convergence rates in forward–backward splitting. SIAM
Journal on Optimization, 7(2):421–444, 1997.

[5] J. Frecon, S. Salzo, and M. Pontil. Bilevel learning of the group lasso structure. In Advances in
Neural Information Processing Systems (NIPS), pages 8301–8311, 2018.

[6] L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlap and graph lasso. In International
Conference on Machine Learning (ICML), pages 433–440, 2009.

[7] S. J. Reddi, S. Sra, B. Poczos, and A. J. Smola. Proximal stochastic methods for nonsmooth
nonconvex finite-sum optimization. In Advances in Neural Information Processing Systems
(NIPS), pages 1145–1153. 2016.

[8] R. T. Rockafellar. Convex Analysis. Princeton, NJ, USA: Princeton Univ. Press, 1997.

[9] Q. Van Nguyen. Forward-backward splitting with bregman distances. Vietnam Journal of
Mathematics, 45(3):519–539, 2017.

[10] X. Wang, H. Chen, W. Cai, D. Shen, and H. Huang. Regularized modal regression with
applications in cognitive impairment prediction. In Advances in Neural Information Processing
Systems (NIPS), pages 1448–1458, 2017.

[11] Y. Zhang. Multi-task learning and algorithmic stability. In Association for the Advancement of
Artificial Intelligence(AAAI), 2015.

13


