Appendices

A Proof of Upper Bound

In the proofs below we drop the superscript (n) for simplicity.
Proof of Lemma 2 Similar to Lemma 4.2 of [Jin et al., 2018], we can write down a recursive formula for both $\left(Q_{h}^{k}-Q_{h}^{\pi_{k}}\right)(s, a)$ and $\left(\bar{Q}_{h}^{k}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)(s, a)$, and perform a subtraction, which gives

$$
\begin{align*}
& {\left[\left(\bar{Q}_{h}^{k}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)-\left(Q_{h}^{k}-Q_{h}^{\pi_{k}}\right)\right](s, a) } \tag{8}\\
= & \alpha_{t}^{0}\left(Q_{h}^{\pi_{k}}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)(s, a) \tag{9}\\
& +\sum_{i=1}^{t} \alpha_{t}^{i}\left[\left(\bar{V}_{h+1}^{k_{i}}-\bar{V}_{h+1}^{\pi_{k}}\right)-\left(V_{h+1}^{k_{i}}-V_{h+1}^{\pi_{k}}\right)\right]\left(s_{h+1}^{k_{i}}\right) \tag{10}\\
& +\sum_{i=1}^{t} \alpha_{t}^{i}\left[\left[\hat{\mathbb{P}}^{k_{i}}-\mathbb{P}_{h}\right]\left[\bar{V}_{h+1}^{\bar{\pi}_{k}}-V_{h+1}^{\pi_{k}}\right](s, a)+\left(r_{h}^{k_{i}}-\mathbf{E}\left[r_{h}\right]\left(s_{h}^{k_{i}}, s_{h}^{k_{i}}\right)\right)\right] \tag{11}\\
& +\sum_{i=1}^{t} \alpha_{t}^{i} b_{i} . \tag{12}
\end{align*}
$$

We now show that $\left[\left(\bar{Q}_{h}^{k}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)-\left(Q_{h}^{k}-Q_{h}^{\pi_{k}}\right)\right](s, a) \geq 0$ by induction on $h=H, H-1, \ldots, 1$ and $k=1, \ldots, K$. It is easy to see that the first term of right-hand side $\alpha_{t}^{0}\left(Q_{h}^{\pi_{k}}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)(s, a) \geq 0$ since $\bar{Q}_{h}^{\bar{\pi}_{k}}=0$. For the second term, consider two cases:
(1) If $\max _{a} \bar{Q}_{h+1}^{k_{i}}\left(s_{h+1}^{k_{i}}, a\right) \geq H$, then $\left[\left(\bar{V}_{h+1}^{k_{i}}-\bar{V}_{h+1}^{\bar{\pi}_{k}}\right)-\left(V_{h+1}^{k_{i}}-V_{h+1}^{\pi_{k}}\right)\right]\left(s_{h+1}^{k_{i}}\right)=H-\left(V_{h+1}^{k_{i}}-\right.$ $\left.V_{h+1}^{\pi_{k}}\right)\left(s_{h+1}^{k_{i}}\right) \geq 0$.
(2) If $\max _{a} \bar{Q}_{h+1}^{k_{i}}\left(s_{h+1}^{k_{i}}, a\right)<H$, then

$$
\begin{align*}
\left(\bar{V}_{h+1}^{k_{i}}-\bar{V}_{h+1}^{\bar{\pi}_{k_{i}}}\right)\left(s_{h+1}^{k_{i}}\right) & =\max _{a}\left[\bar{Q}_{h+1}^{k_{i}}\left(s_{h+1}^{k_{i}}, a\right)-\bar{Q}_{h+1}^{\bar{\pi}_{k_{i}}}\left(s_{h+1}^{k_{i}}, a\right)\right] \tag{13}\\
& \geq \max _{a}\left[Q_{h+1}^{k_{i}}\left(s_{h+1}^{k_{i}}, a\right)-Q_{h+1}^{\pi_{k_{i}}}\left(s_{h+1}^{k_{i}}, a\right)\right] \tag{14}\\
& \geq Q_{h+1}^{k_{i}}\left(s_{h+1}^{k_{i}}, \pi_{k_{i}}\left(s_{h+1}^{k_{i}}\right)\right)-Q_{h+1}^{\pi_{k_{i}}}\left(s_{h+1}^{k_{i}}, \pi_{k_{i}}\left(s_{h+1}^{k_{i}}\right)\right) \tag{15}\\
& =\left(V_{h+1}^{k_{i}}-V_{h+1}^{\pi_{k_{i}}}\right)\left(s_{h+1}^{k_{i}}\right) \tag{16}
\end{align*}
$$

where the first inequality is by the induction hypothesis.
Similar to the proof of Lemma 4.3 in [Jin et al., 2018], observe that $\left(\mathbb{1}\left[k_{i} \leq K\right]\right.$. $\left.\left[\left[\hat{\mathbb{P}}^{k_{i}}-\mathbb{P}_{h}\right]\left[\bar{V}_{h+1}^{\bar{\pi}_{k}}-V_{h+1}^{\pi_{k}}\right](s, a)+\left(r_{h}^{k_{i}}-\mathbf{E}\left[r_{h}\right]\left(s_{h}^{k_{i}}, s_{h}^{k_{i}}\right)\right)\right]\right)_{i=1}^{\tau}$ is a martingale difference sequence. By Azuma-Hoeffding, we have that with probability $1-p /(S A H N)$:

$$
\begin{aligned}
\forall \tau \in[K], \mid \sum_{i=1}^{\tau} \alpha_{\tau}^{i}\left(\mathbb{1}\left[k_{i} \leq K\right] \cdot\right. & {\left.\left[\left[\hat{\mathbb{P}}^{k_{i}}-\mathbb{P}_{h}\right]\left[\bar{V}_{h+1}^{\bar{\pi}_{k}}-V_{h+1}^{\pi_{k}}\right](s, a)+\left(r_{h}^{k_{i}}-\mathbf{E}\left[r_{h}\right]\left(s_{h}^{k_{i}}, s_{h}^{k_{i}}\right)\right)\right]\right) \mid } \\
& \leq \frac{c^{\prime}(H+1)}{2} \sqrt{\sum_{i=1}^{\tau}\left(\alpha_{\tau}^{i}\right)^{2} \cdot(\log N+\iota)} \leq c \sqrt{\frac{H^{3}(\log N+\iota)}{\tau}}
\end{aligned}
$$

for some absolute constant c. Using a union bound, we see that with at least probability $1-p$, the following holds simultaneously for all $(s, a, h, k, n) \in S \times A \times[H] \times[K] \times[N]$:

$$
\begin{equation*}
\left|\sum_{i=1}^{t} \alpha_{t}^{i}\left(\mathbb{1}\left[k_{i} \leq K\right] \cdot\left[\hat{\mathbb{P}}^{k_{i}}-\mathbb{P}_{h}\right]\left[\bar{V}_{h+1}^{\bar{\pi}_{k}}-V_{h+1}^{\pi_{k}}\right](s, a)\right)\right| \leq c \sqrt{\frac{H^{3}(\log N+\iota)}{t}} \tag{17}
\end{equation*}
$$

Finally, since we choose $b_{t}=c \sqrt{\frac{H^{3}(\log N+\iota)}{t}}$, we have that the last two terms of $\left[\left(\bar{Q}_{h}^{k}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)-\right.$ $\left.\left(Q_{h}^{k}-Q_{h}^{\pi_{k}}\right)\right](s, a)$ also adds up at least zero. Putting everything together, we have shown that with probability at least $1-p,\left[\left(\bar{Q}_{h}^{k}-\bar{Q}_{h}^{\bar{\pi}_{k}}\right)-\left(Q_{h}^{k}-Q_{h}^{\pi_{k}}\right)\right](s, a)>0$ for all $(s, a, h, k, n) \in$ $S \times A \times[H] \times[K] \times[N]$. This concludes the proof.

Given Lemma 2 the proof of Theorem 1 follows from the proof sketch in the main text.

B Proof of Additional Properties of UCBZero

We first give two lemmas:
Lemma 7. For any $(s, a, h, k) \in S \times A \times[H] \times[K]$, let $t=N_{h}^{k}(s, a)$, then we have

$$
\begin{equation*}
\bar{V}_{h}^{k}(s) \geq \min \left(H, b_{t}\right) \tag{18}
\end{equation*}
$$

Proof. We have, for any $(s, a, h, k) \in S \times A \times[H] \times[K]$,

$$
\begin{align*}
\bar{Q}_{h}^{k}(s, a) & =\alpha_{t}^{0} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left[\bar{V}_{h+1}^{k_{i}}\left(x_{h+1}^{k_{i}}\right)+b_{i}\right] \tag{19}\\
& \geq \sum_{i=1}^{t} \alpha_{t}^{i} b_{i} \geq \sum_{i=1}^{t} \alpha_{t}^{i} b_{t}=b_{t} \tag{20}
\end{align*}
$$

Thus, $\bar{V}_{h}^{k}(s) \geq \min \left(H, \max _{a} \bar{Q}_{h}^{k}(s, a)\right) \geq \min \left(H, b_{t}\right)$.
Lemma 8. With probability at least $1-p$, for any $(s, a, h, k) \in S \times A \times[H] \times[K]$, let $t=N_{h}^{k}(s, a)$, then we have

$$
\begin{equation*}
\bar{Q}_{h}^{k}(s, a) \geq \sum_{i=1}^{t} \alpha_{t}^{i}\left[\mathbb{P}_{h} \bar{V}_{h+1}^{k_{i}}\right](s, a) \tag{21}
\end{equation*}
$$

Proof. We have, for any $(s, a, h, k) \in S \times A \times[H] \times[K]$,

$$
\begin{align*}
Q_{h}^{k}(s, a) & =\alpha_{t}^{0} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left[V_{h+1}^{k_{i}}\left(x_{h+1}^{k_{i}}\right)+b_{i}\right] \tag{22}\\
& \geq \sum_{i=1}^{t} \alpha_{t}^{i}\left[\mathbb{P}_{h} \bar{V}_{h+1}^{k_{i}}(s, a)+\left(\hat{\mathbb{P}}_{h}^{k_{i}}-\mathbb{P}_{h}\right) \bar{V}_{h+1}^{k_{i}}(s, a)+b_{i}\right] \tag{23}\\
& \quad \geq \sum_{i=1}^{\text {w.p. 1-p }} \alpha_{t}^{t}\left[\mathbb{P}_{h} \bar{V}_{h+1}^{k_{i}}(s, a)\right] \tag{24}
\end{align*}
$$

The last inequality is by the same martingale bound as in the proof of Lemma 2 .

Now, we are ready to prove Theorem 3
Proof of Theorem 3. Let h^{*}, s^{*}, a^{*} be given, and denote $t^{*}=N_{h^{*}}^{K}\left(s^{*}, a^{*}\right), b_{t}^{*}=c \sqrt{H^{3} \iota / t^{*}}$. Then, by Lemma 7, we have

$$
\begin{equation*}
\bar{V}_{h^{*}}^{K}\left(s^{*}, a^{*}\right) \geq \min \left(H, b_{t}^{*}\right) \tag{25}
\end{equation*}
$$

Now, by Lemma 8, we have that for any (s, a),

$$
\begin{align*}
\bar{Q}_{h^{*}-1}^{K}(s, a) & \geq \sum_{i=1}^{t} \alpha_{t}^{i}\left[\mathbb{P}_{h^{*}-1} \bar{V}_{h^{*}}^{k_{i}}\right](s, a) \tag{26}\\
& \geq \sum_{i=1}^{t} \alpha_{t}^{i} P\left(s^{*} \mid s, a\right) \min \left(H, b_{i}\right) \tag{27}\\
& =P\left(s^{*} \mid s, a\right) \min \left(H, b_{t}^{*}\right) \tag{28}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
\bar{V}_{h^{*}-1}(s) & =\max _{a} \bar{Q}_{h^{*}-1}(s, a) \tag{29}\\
& \geq \max _{a} P\left(s^{*} \mid s, a\right) \min \left(H, b_{t}^{*}\right) \tag{30}\\
& =\delta_{h^{*}-1, h^{*}}\left(s, s^{*}\right) \min \left(H, b_{t}^{*}\right) \tag{31}
\end{align*}
$$

We now show by induction that for all $h<h^{*}$,

$$
\begin{equation*}
\bar{V}_{h}(s) \geq \delta_{h, h^{*}}\left(s, s^{*}\right) \min \left(H, b_{t}^{*}\right) \tag{32}
\end{equation*}
$$

We again use Lemma 8 to get

$$
\begin{align*}
\bar{Q}_{h}(s, a) & \geq \sum_{i=1}^{t} \alpha_{t}^{i}\left[\mathbb{P}_{h} \bar{V}_{h+1}^{k_{i}}\right](s, a) \tag{33}\\
& \geq \sum_{i=1}^{t} \alpha_{t}^{i}\left[\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \bar{V}_{h+1}^{k_{i}}\left(s^{\prime}\right)\right] \tag{34}\\
& \geq \sum_{i=1}^{t} \alpha_{t}^{i}\left[\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \delta_{h+1, h^{*}}\left(s^{\prime}, s^{*}\right) \min \left(H, b_{t}^{*}\right)\right] \tag{35}\\
& =\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \delta_{h+1, h^{*}}\left(s^{\prime}, s^{*}\right) \min \left(H, b_{t}^{*}\right) \tag{36}
\end{align*}
$$

Then,

$$
\begin{align*}
\bar{V}_{h}(s) & =\max _{a} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \delta_{h+1, h^{*}}\left(s^{\prime}, s^{*}\right) \min \left(H, b_{t}^{*}\right) \tag{37}\\
& =\delta_{h, h^{*}}\left(s^{\prime}, s^{*}\right) \min \left(H, b_{t}^{*}\right) \tag{38}
\end{align*}
$$

where in the last equality, we use the Bellman optimality equation w.r.t. δ, i.e. $\delta_{h, h^{*}}\left(s^{\prime}, s^{*}\right)=\max _{a} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \delta_{h+1, h^{*}}\left(s^{\prime}, s^{*}\right)$. Therefore, we have established that $\bar{V}_{1}(s) \geq \delta_{1, h^{*}}\left(s, s^{*}\right) \min \left(H, b_{t}^{*}\right)$. This implies that

$$
\begin{equation*}
\sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right) \geq K \delta\left(s^{*}\right) \min \left(H, b_{t}^{*}\right) \tag{39}
\end{equation*}
$$

Furthermore, we know from the proof of Theorem 1 that

$$
\begin{equation*}
\sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right) \leq O\left(\sqrt{H^{5} S A K \iota}\right) \tag{40}
\end{equation*}
$$

When $K \geq \Omega\left(\frac{H^{3} S A \iota}{\delta\left(s^{*}\right)}\right), \sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right) \leq K \delta\left(s^{*}\right) H$. Therefore, we have

$$
\begin{equation*}
K \delta\left(s^{*}\right) b_{t}^{*}=K \delta\left(s^{*}\right) c \sqrt{H^{3} \iota / t^{*}} \leq O\left(\sqrt{H^{5} S A K \iota}\right) \tag{41}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
t^{*} \geq O\left(\frac{K \delta\left(s^{*}\right)^{2}}{H^{2} S A}\right) \tag{42}
\end{equation*}
$$

This holds for any s^{*}, a^{*}, h^{*}, establishing the results.

Proof of Theorem 4 First, notice that for any given $r_{h}\left(s, a, s^{\prime}\right)$ out of a set of size $H S^{2} A$, by the proof of Theorem 1. we have

$$
\begin{equation*}
\sum_{k=1}^{K}\left(V_{1}^{k}-V_{1}^{*}\right)\left(s_{1}\right) \leq \sum_{k=1}^{K} \bar{V}_{1}^{k} \leq O\left(\sqrt{H^{5} S A \iota K}\right) \tag{43}
\end{equation*}
$$

Define $\tilde{V}_{1}^{K}=\frac{1}{K} \sum_{k=1}^{K} V_{1}^{k}\left(s_{1}\right)$, then

$$
\begin{equation*}
0 \leq \tilde{V}_{1}^{K}-V_{1}^{*}\left(s_{1}\right) \leq O\left(\sqrt{\frac{H^{5} S A \iota}{K}}\right) \leq \varepsilon \tag{44}
\end{equation*}
$$

Now, let $\left(h^{*}, s^{*}, a^{*}, s^{*}\right)$ be given. Define reward functions $R^{(1)}, R^{(2)}$ as

$$
\begin{align*}
R_{h}^{(1)}\left(s, a, s^{\prime}\right) & = \begin{cases}1, & \text { if } h=h^{*}, s=s^{*}, a=a^{*}, s^{\prime}=s^{*} \\
0, & \text { otherwise }\end{cases} \tag{45}\\
R_{h}^{(2)}\left(s, a, s^{\prime}\right) & = \begin{cases}1, & \text { if } h=h^{*}, s=s^{*} \\
0, & \text { otherwise }\end{cases} \tag{46}
\end{align*}
$$

Then, we observe that the corresponding $V_{1}^{*(1)}=\delta_{h^{*}}\left(s^{*}\right) P_{h^{*}}\left(s^{\prime *} \mid s^{*}, a^{*}\right)$ and $V_{1}^{*(2)}=\delta_{h^{*}}\left(s^{*}\right)$. Now, define

$$
\begin{equation*}
\hat{P}\left(s^{\prime *} \mid s^{*}, a^{*}\right)=\frac{\tilde{V}_{1}^{K(1)}}{\tilde{V}_{1}^{K(2)}} \tag{47}
\end{equation*}
$$

Next, we show that $\left\|\hat{P}\left(s^{\prime *} \mid s^{*}, a^{*}\right)-P\left(s^{\prime *} \mid s^{*}, a^{*}\right)\right\|$ is small. In particular,

$$
\begin{align*}
\hat{P}\left(s^{\prime *} \mid s^{*}, a^{*}\right) & =\frac{\tilde{V}_{1}^{K(1)}}{\tilde{V}_{1}^{K(2)}} \tag{48}\\
& \leq \frac{\delta_{h^{*}}\left(s^{*}\right) P_{h^{*}}\left(s^{\prime *} \mid s^{*}, a^{*}\right)+\varepsilon}{\delta_{h^{*}}\left(s^{*}\right)} \tag{49}\\
& =P\left(s^{\prime *} \mid s^{*}, a^{*}\right)+\frac{\varepsilon}{\delta_{h^{*}}\left(s^{*}\right)}, \tag{50}\\
\hat{P}\left(s^{\prime *} \mid s^{*}, a^{*}\right) & =\frac{\tilde{V}_{1}^{K(1)}}{\tilde{V}_{1}^{K(2)}} \tag{51}\\
& \geq \frac{\delta_{h^{*}}\left(s^{*}\right) P_{h^{*}}\left(s^{\prime *} \mid s^{*}, a^{*}\right)}{\delta_{h^{*}}\left(s^{*}\right)+\varepsilon} \tag{52}\\
& \geq \frac{\delta_{h^{*}\left(s^{*}\right) P_{h^{*}}\left(s^{\prime *} \mid s^{*}, a^{*}\right)-\varepsilon}^{\delta_{h^{*}}\left(s^{*}\right)}}{} \tag{53}\\
& =P\left(s^{\prime *} \mid s^{*}, a^{*}\right)-\frac{\varepsilon}{\delta_{h^{*}\left(s^{*}\right)}} . \tag{54}
\end{align*}
$$

A union bound on all $\left(h^{*}, s^{*}, a^{*}, s^{*}\right) \in[H] \times S \times A \times S$ completes the proof. Notice that the sample complexity only changes by constant factor as $\log (N)=\log \left(H S^{2} A\right) \leq 2 \log (H S A)$.

C Proof of Lower Bound

We based our construction on the classic lower-bound construction for multi-armed bandits. For a detailed introduction of the problem setting, please refer to [Mannor and Tsitsiklis, 2004]. We first introduce some bandit notation: let n be the number of arms, $p \in[0,1]^{n}$ represent the parameters of the Bernoulli distribution of rewards associated with each arm. We let T_{ℓ} be the total number of times that arm ℓ is pulled, and $T=\sum_{\ell=1}^{n} T_{\ell}$ be the total number of arm pulls. We also let I be the arm that is selected at the end of the exploration phase.
Lemma 9. There exists a $p \in[0,1]^{n}, n \geq 2$ such that for any fixed number of episodes K, there exists $N=O\left(2^{K}\right)$ reward functions, so that with probability at least 0.5 , no RL algorithm can learn an ε-optimal policy with $\varepsilon \leq 0.08$ for at least one reward function.

Proof. We construct a bandit with two arms $\ell=1,2$. We consider two reward functions. The first reward function is p with $p_{1}=0.1, p_{2}=0$ and the second reward function is q with $q_{1}=0.1$, $q_{2}=\operatorname{Bernoulli}(0.5)$. Thus, it is easy to see that the optimal arm corresponding to p and q are $\ell=1$ and $\ell=2$ respectively. We assume among the N reward functions we need to learn, $N-1$ of them
are q and only one is p. Next, we show that no learner is able to distinguish whether the instantiated rewards are from p or q.
Let T_{2} be the number of episodes where arm 2 is taken in the K instantiated rewards. Then for each of the $N-1$ reward function q, it has probability $0.5^{T_{2}}$ to generate the same instantiated rewards with r_{1}. Note that $0.5^{T_{2}} \geq 0.5^{K}$, so the probability that at least one of the q generate the same instantiated rewards as p is at least

$$
\begin{equation*}
1-\left(1-0.5^{K}\right)^{N-1} \geq 1-e^{-0.5^{K}(N-1)} \tag{55}
\end{equation*}
$$

Let $N=\left\lceil 1+2^{K} \ln 2\right\rceil$, then the probability that the rewards can be generated by one of the q is at least 0.5 . Given such a reward configuration, let $\hat{\pi}=(x, 1-x)$ be the learned (stochastic) policy where x is the probability of choosing arm 1 . Then for reward function q, the optimality gap is

$$
\begin{equation*}
V_{2}^{*}-V_{2}(\hat{\pi})=0.5-0.1 x-(1-x) * 0.5=0.4 x \tag{56}
\end{equation*}
$$

while for reward function r_{1}, the optimality gap is

$$
\begin{equation*}
V_{1}^{*}-V_{1}(\hat{\pi})=0.1-0.1 x \tag{57}
\end{equation*}
$$

One can see that regardless of p_{1}, one of the above two gaps will be large, and the minimum of $\max \left(V_{2}^{*}-V_{2}(\hat{\pi}), V_{1}^{*}-V_{1}(\hat{\pi})\right)$ is achieved when $p_{1}=0.2$, and the minimum value is 0.08 .
Therefore with probability at least 0.5 , no RL algorithm can learn ε-optimal policy with $\varepsilon=0.08$.

Theorem 10. There exist some positive constant $c_{1}, c_{2}, \varepsilon_{0}, \delta_{0}$, such that for every $n \geq 2, \varepsilon \in\left(0, \varepsilon_{0}\right)$, and $\delta \in\left(0, \delta_{0}\right)$, and for every (ε, δ)-correct policy on N tasks, there exists some $p \in[0,1]^{n}$ such that

$$
\begin{equation*}
\mathbf{E}_{p}[T] \geq c_{1} \frac{n}{\varepsilon^{2}} \log \frac{c_{2} N}{\delta} \tag{58}
\end{equation*}
$$

Proof. The proof largely mimic the original proof of Theorem 1 in [Mannor and Tsitsiklis, 2004], with the distinction in handling N tasks instead of 1 . Consider a bandit problem with $n+1$ arms. We also consider a finite set of $n+1$ possible reward functions p, which we refer to as "hypotheses". Under any one of the hypothesis, arm 0 has a Bernoulli reward with $p_{0}=(1+\varepsilon) / 2$. Under one hypothesis, denoted H_{0}, all other arm has $p_{i}=1 / 2$, which makes arm 0 the best arm. Furthermore, for $\ell=1, \ldots, n$, there is a hypothesis

$$
\begin{equation*}
H_{\ell}: p_{0}=\frac{1+\varepsilon}{2}, \quad p_{\ell}=\frac{1}{2}+\varepsilon, \quad p_{i}=\frac{1}{2}, \text { for } i \neq 0, \ell . \tag{59}
\end{equation*}
$$

which makes arm ℓ the best arm. We define $\varepsilon_{0}=1 / 8$ and $\delta_{0}=e^{-4} / 8$. From now on, we fix $\varepsilon \in\left(0, \varepsilon_{0}\right), \delta \in\left(0, \delta_{0}\right), N \geq 1$ and a policy, which we assume to be $(\varepsilon / 2, \delta)$-correct on N rewards. If H_{0} is true, the policy must have a probability at least $1-\delta$ of eventually stopping and selecting arm 0 . If H_{ℓ} is true, for some $\ell \neq 0$, the policy must have a probability at least $1-\delta$ of eventually stopping and selecting arm ℓ. These further hold simultaneously for N hypotheses. We denote $P_{\ell}^{N}(\cdot)$ as the probability of some event that happens simultaneously under $N H_{\ell}$ hypotheses.

We define t^{*} by

$$
\begin{equation*}
t^{*}=\frac{1}{c \varepsilon^{2}} \log \frac{N}{8 \delta}=\frac{1}{c \varepsilon^{2}} \log \frac{N}{\theta} \tag{60}
\end{equation*}
$$

where $\theta=8 \delta$ and c is an absolute constant we will specify later. Note that $\theta<e^{-4}$ and $\varepsilon \leq 1 / 4$.
We assume by contradtion that $\mathbf{E}\left[T_{1}\right] \leq t^{*}$. We will eventually show that under this assumption, the probability of selecting H_{0} under one of $N H_{1}$ exceeds δ, thus violates $(\varepsilon / 2, \delta)$-correctness.

We now introduce some special events A, B and C . We define

$$
\begin{align*}
A & =\left\{T_{1} \leq 4 t^{*}\right\} \tag{61}\\
B & =\{I=0, \text { i.e. the policy eventually pick arm } 0\} \tag{62}\\
C & =\left\{\max _{1 \leq t \leq 4 t^{*}}\left|K_{t}-\frac{1}{2} t\right|<\sqrt{t^{*} \log (N / \theta)}\right\} \tag{63}
\end{align*}
$$

where K_{t} is the number of getting reward 1 if the first arm is pulled t times. Similar to the original proof [Mannor and Tsitsiklis, 2004], we have the following lemmas.

Lemma 11. $P_{0}^{N}(A)=P_{0}(A)>3 / 4$, where $P_{0}^{N}(C)$ denotes the probability of event B under all of N hypothesis H_{0}.

This is directly due to the definition of A that is independent of rewards and the use of Markov inequality.
Lemma 12. $P_{0}^{N}(B)>3 / 4$.
This is due to $\delta<e^{-4} / 8<1 / 4$.
Lemma 13. $P_{0}^{N}(C)>3 / 4$.
This is due to the observation that $K_{t}-t / 2$ is a martingale, and by applying Kolmogorov's inequality.
Lemma 14. If $0 \leq x \leq 1$ and $y \geq 0$, then

$$
\begin{equation*}
(1-x)^{y} \geq e^{-d x y} \tag{64}
\end{equation*}
$$

where $d=1.78$
This is straightforward arithmetics. Please refer to the original proof in [Mannor and Tsitsiklis, 2004 for the detailed proofs of the lemmas. Let $S=A \cap B \cap C$, then we have $P_{0}^{N}(S)>1 / 4$. Now we are ready to prove our main results. Let W be the history of the process (the number of arm pulls for each arm in the exploration phase, and the sampled rewards in the policy-optimization phase). We define $L_{\ell}(W)$ to be the likelihood of a history W under reward function ℓ. We denote K be a shorthand notation for $K_{T_{1}}$, the number of reward 1 instantiated on arm $\ell=1$. Observe that, given the history up to time $t-1$, the arm choice at time t has the same probability distribution under either hypothesis H_{0} and H_{1}; similarly, the arm reward at time t has the same probability distribution, under either hypothesis, unless the chosen arm was arm 1 . For this reason, the likelihood ratio $L_{1}(W) / L_{0}(W)$ is given by

$$
\begin{align*}
\frac{L_{1}(W)}{L_{0}(W)} & =\frac{\left(\frac{1}{2}+\varepsilon\right)^{K}\left(\frac{1}{2}-\varepsilon\right)^{T_{1}-K}}{\left(\frac{1}{2}\right)^{T_{1}}} \tag{65}\\
& =\left(1-4 \varepsilon^{2}\right)^{K}(1-2 \varepsilon)^{T_{1}-2 K} \tag{66}
\end{align*}
$$

Let $T_{1}^{N}(W)$ be the likelihood that W appears under one of N hypothese H_{1}. Since the instantiation of rewards under each hypothesis is completely independent from one another, we have

$$
\begin{align*}
L_{1}^{N}(W) & =1-\left(1-L_{1}(W)\right)^{N} \tag{67}\\
& \geq 1-\frac{1}{1+L_{1}(W) N} \tag{68}\\
& =\frac{L_{1}(W) N}{1+L_{1}(W) N} \tag{69}
\end{align*}
$$

By lemma 9 , we have that in order for the policy to be ε, δ-correct, $T_{1} \geq \log _{2}(N)$. Thus, we have

$$
\begin{align*}
L_{1}(W) & \leq\left(\frac{1}{2}+\varepsilon\right)^{K}\left(\frac{1}{2}-\varepsilon\right)^{T_{1}-K} \tag{70}\\
& \leq\left(\frac{1}{2}\right)^{T_{1}} \tag{71}\\
& \leq \frac{1}{N} \tag{72}
\end{align*}
$$

We then have

$$
\begin{align*}
\frac{L_{1}^{N}(W)}{L_{0}(W)} & =\frac{L_{1}(W) N}{1+L_{1}(W) N} \frac{1}{L_{0}(W)} \tag{73}\\
& \geq \frac{N}{2} \frac{L_{1}(W)}{L_{0}(W)} \tag{74}\\
& =\frac{N}{2}\left(1-4 \varepsilon^{2}\right)^{K}(1-2 \varepsilon)^{T_{1}-2 K} \tag{75}
\end{align*}
$$

If event S occurred, then A occurred, and we have $K \leq T_{1} \leq 4 t^{*}$, so that

$$
\begin{align*}
\left(1-4 \varepsilon^{2}\right)^{K} \geq\left(1-4 \varepsilon^{2}\right)^{4 t^{*}} & =\left(1-4 \varepsilon^{2}\right)^{\frac{1}{c \varepsilon^{2}} \log \frac{N}{\theta}} \tag{76}\\
& \geq e^{-(16 d / c) \log (N / \theta)} \tag{77}\\
& =(\theta / N)^{16 d / c} \tag{78}
\end{align*}
$$

We have used here Lemma 14 , which applies because $4 \varepsilon^{2}<4 / 4^{2}<1 / \sqrt{2}$. Similarly, if event S has occurred, then $A \cap C$ has occurred, which implies

$$
\begin{equation*}
T_{1}-K \leq 2 \sqrt{t^{*} \log (N / \theta)}=(2 / \varepsilon \sqrt{c}) \log (N / \theta) \tag{79}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
(1-2 \varepsilon)^{T 1-2 K} & \geq(1-2 \varepsilon)^{(2 / \varepsilon \sqrt{c}) \log (N / \theta)} \tag{80}\\
& \geq e^{-(4 d / \sqrt{c} \log (N / \theta))} \tag{81}\\
& =(\theta / N)^{4 d / \sqrt{c}} \tag{82}
\end{align*}
$$

Substituting the above into the main equation, we obtain

$$
\begin{equation*}
\frac{L_{1}^{N}(W)}{L_{0}(W)} \geq \frac{N}{2}(\theta / N)^{(16 d / c)+4 d / \sqrt{c}} \tag{83}
\end{equation*}
$$

By picking c large enough ($c=100$ suffices), we obtain that $\frac{L_{1}^{N}(W)}{L_{0}(W)} \geq \theta / 2 \geq 4 \delta$ whenever the event S occurs. More precisely, we have

$$
\begin{equation*}
\frac{L_{1}^{N}(W)}{L_{0}(W)} \mathbb{1}[S] \geq 4 \delta \mathbb{1}[S] \tag{84}
\end{equation*}
$$

where $\mathbb{1}[S]$ iss the indicator function of the event S. Then,

$$
\begin{equation*}
P_{1}^{N}(B) \geq P_{1}^{N}(S)=\mathbb{E}_{1}^{N}[\mathbb{1}[S]]=\mathbb{E}_{0}^{N}\left[\frac{L_{1}^{N}(W)}{L_{0}(W)} \mathbb{1}[S]\right] \geq \mathbb{E}_{0}^{N}[4 \delta \mathbb{1}[S]]=4 \delta P_{0}^{N}(S)>\delta \tag{85}
\end{equation*}
$$

where we used the fact that $P_{0}^{N}(S)>1 / 4$. This contradict the assumption that the policy is $(\varepsilon / 2, \delta)$-correct. Similarly, we must have $\mathbf{E}\left[T_{\ell}\right]>t^{*}$, for all arms $\ell>0$. Therefore, if we have an (ε, δ)-correct policy, we must have $\mathbf{E}[T]>\left(n /\left(4 c \varepsilon^{2}\right)\right) \log (N / 8 \delta)$, which is of the desired form.

Now we are ready to prove theorem 5
Proof of theorem 5. We consider an MDP M where the transition is defined as $P_{h}\left(s^{\prime} \mid s, a\right)=1 / S$ for all ($\left.h, s, a, s^{\prime}\right)$ and is known to the learner. Since the action has no control over the nextstate, this is equivalent to a collection of $S H$ multi-armed bandits. Due to the uniform transition, $P_{h}^{\pi}(s)=1 / S$ for any π, s, h, and so finding the ε-optimal policy amounts to finding an $\varepsilon_{s, h}$-optimal policy for each bandit (s, h), such that $\sum_{s, h} \varepsilon_{s, h}=S \varepsilon$. Theorem 10 implies that it takes at least $\Omega\left(A \log (N / p) / \varepsilon_{s, h}^{2}\right)$ visits to a bandit s, h to find an $\varepsilon_{s, h}$-optimal action simultaneously for each of N reward functions with probability at least $1-p$. It follows that the total number of samples required $\Omega\left(\sum_{s, h} A \log (N / p) / \varepsilon_{s, h}^{2}\right)$ is minimized when $\varepsilon_{s, h}=\varepsilon / H$ for all (s, h), which gives a total of at least $\left.\Omega\left(H^{3} S A \log (N / p) / \varepsilon^{2}\right)\right)$ samples, which translates to at least $\left.\Omega\left(H^{2} S A \log (N / p) / \varepsilon^{2}\right)\right)$ episodes.

D Proof of N-independent upper bound of UCBZERO in the Reward-free Setting

Proof of Theorem 6 Fixing the transition kernel, we consider dividing all possible MDPs into a set of equivalence classes based on different reward patterns. Specifically, given any $M \in \mathbb{Z}^{+}$, we split the support of reward $[0,1]$ into M segments, $I_{i}=\left[\frac{i-1}{M}, \frac{i}{M}\right], \forall 1 \leq i \leq M$. For any MDP,
the reward function $r_{h}(s, a)$ depends only on state s and action a, and for each (s, a) pair, the corresponding reward must lie in one of the M segments, thus there are $M^{|S| \times|A|}$ different patterns of reward functions for each step h, characterized by a matrix $\Phi_{h} \in[M]^{|S| \times|A|}$, where each entry $\Phi_{h}(i, j) \in[M]$ is the segment that $r_{h}(i, j)$ lies in. Given that we have H steps, in total we will have $M^{|S| \times|A| \times H}$ different reward patterns, denoted as $\Phi=\prod_{h=1}^{H} \Phi_{h}$. For each Φ, we next show that learning any single reward function $r \in \Phi$ is enough to cover all other reward functions in Φ. Specifically, assume we have learned a near-optimal policy π_{r} that satisfies

$$
\begin{equation*}
V_{r}^{*}\left(s_{1}\right)-V_{r}^{\pi_{r}}\left(s_{1}\right)<\varepsilon, \tag{86}
\end{equation*}
$$

where subscript r means the value function under reward function r and $V_{r}^{\pi_{r}}$ is the value function of the learned policy. Then for any other $r^{\prime} \in \Phi$ different from r, we have

$$
\begin{equation*}
V_{r^{\prime}}^{*}-V_{r^{\prime}}^{\pi_{r}}=V_{r^{\prime}}^{*}-V_{r}^{*}+V_{r}^{*}-V_{r}^{\pi_{r}}+V_{r}^{\pi_{r}}-V_{r^{\prime}}^{\pi_{r}} . \tag{87}
\end{equation*}
$$

Note that

$$
\begin{align*}
V_{r^{\prime}}^{*}-V_{r}^{*} & =\max _{\pi} \mathbf{E}_{\pi}\left[\sum_{h=1}^{H} r_{h}^{\prime}\left(s_{h}, a_{h}\right)\right]-\max _{\pi} \mathbf{E}_{\pi}\left[\sum_{h=1}^{H} r_{h}\left(s_{h}, a_{h}\right)\right] \\
& \leq \max _{\pi} \mathbf{E}_{\pi}\left[\sum_{h=1}^{H} r_{h}^{\prime}\left(s_{h}, a_{h}\right)-r_{h}\left(s_{h}, a_{h}\right)\right] \leq \frac{H}{M} \tag{88}
\end{align*}
$$

where the last inequality is due to r_{h}^{\prime} and r_{h} lie in the same segment for all h. Same result holds for $V_{r}^{\pi_{r}}-V_{r^{\prime}}^{\pi_{r}}$. Let $M=\frac{H}{\varepsilon}$. Then plug 88) back to 87, and also remember that $V_{r}^{*}\left(s_{1}\right)-V_{r}^{\pi_{r}}\left(s_{1}\right)<\varepsilon$, thus we have

$$
\begin{equation*}
V_{r^{\prime}}^{*}-V_{r^{\prime}}^{\pi_{r}}<\frac{H}{M}+\varepsilon+\frac{H}{M}=\frac{2 H}{M}+\varepsilon=3 \varepsilon \tag{89}
\end{equation*}
$$

which shows that the policy learned on reward function r is also near-optimal for other reward functions in the same equivalence class. Given that, it suffices for our UCBZero to successfully learn a total of $M^{|S| \times|A| \times H}$ reward functions in order to cover all possible MDPs. Then simply applying the conclusion in Theorem 1 concludes the proof.

