
Supplementary Material

A Distances and divergences for quantifying domain shift 15
A.1 The Wasserstein distance . 15
A.2 The source-normalized Wasserstein distance 15
A.3 The Jeffrey divergence . 16
A.4 Summary statistics and quantification of covariate shift between different IN-C

conditions . 16

B Notes on the experimental setup 19
B.1 Practical considerations for implementing the method 19
B.2 Notes on models . 19
B.3 Hyperparameter tuning . 19
B.4 Notes on datasets . 19
B.5 Overview of models in torchvision . 20
B.6 Baseline corruption errors . 20
B.7 Software stack . 20

C Additional results 22
C.1 Performance of SimCLRv2 models . 22
C.2 Relationship between parameter count and IN-C improvements 22
C.3 Per-corruption results on IN-C . 22
C.4 Qualitative analysis of similarities between common corruptions 23
C.5 Error prediction based on the Wasserstein distance 24
C.6 Training details on the models trained with Fixup initialization and GroupNorm . 24
C.7 Effect of Pseudo Batchsize . 24

D Analytical error model 27
D.1 Proof sketch . 27
D.2 Prerequisites . 28
D.3 Proof of Proposition 1 . 30
D.4 Extension to multivariate distributions. 32
D.5 Limits of Proposition 1 . 32
D.6 Bounds on the normalized Wasserstein distance 33

E Full list of models evaluated on IN 34
E.1 Torchvision models trained on IN . 34
E.2 Robust ResNet50 models . 34
E.3 SimCLRv2 models [27] . 35
E.4 Robust ResNext models [21] . 35
E.5 ResNet50 with Group Normalization [40] . 35
E.6 ResNet50 with Fixup initialization [39] . 35

14

A Distances and divergences for quantifying domain shift

Besides analyzing the performance drop when evaluating a model using source statistics on a target
dataset, we consider the mismatch in model statistics directly. We first take an ImageNet trained
model and adapt it to each of the 95 conditions in IN-C. To obtain a more exact estimate of the true
statistics, we split the model into multiple stages with only few BN layers per stage and apply the
following simple algorithm4:

• Start with image inputs z0n ← xn from the validation set to adapt to, for each n ∈ [50000].

• Split the model into multiple stages, h(x) = (fm ◦ · · · ◦ f1)(x), where each module fi can
potentially contain one or multiple BN layers. We denote the number of BN layers in the
i-th module as bi.

• For each stage i ∈ [m], repeat bi times: zin ← fi(z
i−1
n) for each n, and update the BN

statistics in module fi(zi−1n).

• Return h with adapted statistics.

Using this scheme, we get source statistics µs and Σs for each layer and µt and Σt for each layer
and corruption. In total, we get 96 different collections of statistics across network layers (for IN
and the 95 conditions in IN-C). For simplicity, we will not further index the statistics. Note that all
covariance matrices considered here are diagonal, which is a further simplification. We expect that
our domain shift estimates could be improved by considering the full covariance matrices.

In the following, we will introduce three possible distances and divergences which can be applied
between source and target statistics to quantify the effect of common corruptions induced covariate
shift. We consider the Wasserstein distance, a normalized version of the Wasserstein distance, and
the Jeffrey divergence.

A.1 The Wasserstein distance

Given a baseline ResNet-50 model with source statistics µs,Σs on IN, the Wasserstein distance (cf.
58) between the train and test distribution with statistics µt,Σt is given as

W2(ps, pt)
2 = ‖µs − µt‖22 + tr

(
Σs + Σt − 2

(
Σ

1/2
t ΣsΣ

1/2
t

)1/2)
. (4)

A.2 The source-normalized Wasserstein distance

When estimated for multiple layers across the network, the Wasserstein distance between source
and target depends on the overall magnitude of the statistics. Practically, this means the metric is
dominated by features with large magnitude (e.g. in the first layer of a neural network, which receives
larger inputs).

To mitigate this issue, we normalize both statistics with the source statistics and define the normalized
Wasserstein distance as

W̃ 2
2 = W 2

2

(
Σ−1/2s µs, I,Σ

−1/2
s µt,Σ

−1
s Σt

)
(5)

= Tr
(
I + ΣtΣ

−1
s − 2Σ

1/2
t Σ−1/2s

)
+ (µt − µs)

TΣ−1s (µt − µs). (6)

In the uni-variate case, the normalized Wasserstein distance W̃ 2
2 is equal to the Wasserstein distance

W 2
2 between source and target statistics divided by σ2

s :

W̃ 2
2 = W 2

2

(
µs
σs
, 1,

µt
σs
,
σ2
t

σ2
s

)
= 1 +

σ2
t

σ2
s

− 2
σt
σs

+
(µt − µs)2

σ2
s

=
1

σ2
s

W 2
2 (µs, σ

2
s , µt, σ

2
t). (7)

4Note that for simplicity, we do not reset the statistics of the remaining (bi − i) BN layers. This could
potentially be adapted in future work.

15

A.3 The Jeffrey divergence

The Jeffrey divergence J(ps, pt) between source distribution ps and target distribution pt is the
symmetrized version of the Kullback-Leibler divergence DKL:

J(ps, pt) =
1

2
(DKL(ps‖pt) +DKL(pt‖ps)) (8)

The Kullback-Leibler divergence between the D-dimensional multivariate normal source and target
distributions is defined as

DKL(Nt‖Ns) =
1

2

(
Tr
(
Σ−1s Σt

)
+ (µs − µt)

>Σ−1s (µs − µt)−D + ln

(
det Σs

det Σt

))
. (9)

The Jeffrey divergence between theD-dimensional multivariate normal source and target distributions
then follows as

J(Nt,Ns) =
1

4

(
Tr
(
Σ−1s Σt

)
+ Tr

(
Σ−1t Σs

)
+ (µs − µt)

> (Σ−1s + Σ−1t
)

(µs − µt)− 2D
)
.

(10)

A.4 Summary statistics and quantification of covariate shift between different IN-C
conditions

Given the 95 distances/divergences between the baseline (IN) statistics and 95 IN-C conditions,
we first perform a layer-wise analysis of the statistics and depict the results in Figure 6. The
unnormalized Wasserstein distance is sensitive to the magnitude of the source statistics and hence
differs qualitatively from the results on the normalized Wasserstein distance and Jeffrey Divergence.
We appreciate that the most notable difference between source and target domains is visible in the
ResNet-50 downsampling layers. All three metrics suggest that the shift is mainly present in the first
and final layers of the network, supporting the hypothesis that within the common corruption dataset,
we have both superficial covariate shift which can be corrected by simple means (such as brightness
or contrast variations) in the first layers, and also more “high-level” domain shifts which can only be
corrected in the later layers of the network.

In Figure 7, we more closely analyze this relationship for different common corruptions. We can
generally appreciate the increased measures as the corruption severity increases.

16

1.
0.

bn
1

1.
0.

bn
2

1.
0.

bn
3

1.
0

1.
1.

bn
1

1.
1.

bn
2

1.
1.

bn
3

1.
2.

bn
1

1.
2.

bn
2

1.
2.

bn
3

2.
0.

bn
1

2.
0.

bn
2

2.
0.

bn
3

2.
0

2.
1.

bn
1

2.
1.

bn
2

2.
1.

bn
3

2.
2.

bn
1

2.
2.

bn
2

2.
2.

bn
3

2.
3.

bn
1

2.
3.

bn
2

2.
3.

bn
3

3.
0.

bn
1

3.
0.

bn
2

3.
0.

bn
3

3.
0

3.
1.

bn
1

3.
1.

bn
2

3.
1.

bn
3

3.
2.

bn
1

3.
2.

bn
2

3.
2.

bn
3

3.
3.

bn
1

3.
3.

bn
2

3.
3.

bn
3

3.
4.

bn
1

3.
4.

bn
2

3.
4.

bn
3

3.
5.

bn
1

3.
5.

bn
2

3.
5.

bn
3

4.
0.

bn
1

4.
0.

bn
2

4.
0.

bn
3

4.
0

4.
1.

bn
1

4.
1.

bn
2

4.
1.

bn
3

4.
2.

bn
1

4.
2.

bn
2

4.
2.

bn
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Wasserstein Distance

downsample
bottleneck 0
bottleneck 1
bottleneck 2

1.
0.

bn
1

1.
0.

bn
2

1.
0.

bn
3

1.
0

1.
1.

bn
1

1.
1.

bn
2

1.
1.

bn
3

1.
2.

bn
1

1.
2.

bn
2

1.
2.

bn
3

2.
0.

bn
1

2.
0.

bn
2

2.
0.

bn
3

2.
0

2.
1.

bn
1

2.
1.

bn
2

2.
1.

bn
3

2.
2.

bn
1

2.
2.

bn
2

2.
2.

bn
3

2.
3.

bn
1

2.
3.

bn
2

2.
3.

bn
3

3.
0.

bn
1

3.
0.

bn
2

3.
0.

bn
3

3.
0

3.
1.

bn
1

3.
1.

bn
2

3.
1.

bn
3

3.
2.

bn
1

3.
2.

bn
2

3.
2.

bn
3

3.
3.

bn
1

3.
3.

bn
2

3.
3.

bn
3

3.
4.

bn
1

3.
4.

bn
2

3.
4.

bn
3

3.
5.

bn
1

3.
5.

bn
2

3.
5.

bn
3

4.
0.

bn
1

4.
0.

bn
2

4.
0.

bn
3

4.
0

4.
1.

bn
1

4.
1.

bn
2

4.
1.

bn
3

4.
2.

bn
1

4.
2.

bn
2

4.
2.

bn
3

0

1

2

3

4

5

Wasserstein Distance (normalized)

downsample
bottleneck 0
bottleneck 1
bottleneck 2

1.
0.

bn
1

1.
0.

bn
2

1.
0.

bn
3

1.
0

1.
1.

bn
1

1.
1.

bn
2

1.
1.

bn
3

1.
2.

bn
1

1.
2.

bn
2

1.
2.

bn
3

2.
0.

bn
1

2.
0.

bn
2

2.
0.

bn
3

2.
0

2.
1.

bn
1

2.
1.

bn
2

2.
1.

bn
3

2.
2.

bn
1

2.
2.

bn
2

2.
2.

bn
3

2.
3.

bn
1

2.
3.

bn
2

2.
3.

bn
3

3.
0.

bn
1

3.
0.

bn
2

3.
0.

bn
3

3.
0

3.
1.

bn
1

3.
1.

bn
2

3.
1.

bn
3

3.
2.

bn
1

3.
2.

bn
2

3.
2.

bn
3

3.
3.

bn
1

3.
3.

bn
2

3.
3.

bn
3

3.
4.

bn
1

3.
4.

bn
2

3.
4.

bn
3

3.
5.

bn
1

3.
5.

bn
2

3.
5.

bn
3

4.
0.

bn
1

4.
0.

bn
2

4.
0.

bn
3

4.
0

4.
1.

bn
1

4.
1.

bn
2

4.
1.

bn
3

4.
2.

bn
1

4.
2.

bn
2

4.
2.

bn
3

0

10

20

30

40

50

60

Jeffrey Divergence

downsample
bottleneck 0
bottleneck 1
bottleneck 2

Figure 6: Wasserstein distance, normalized Wasserstein distance and Jeffrey divergence estimated among source
and target statistics between different network layers. We report the respective metric w.r.t. to the difference
between baseline (IN) and target (IN-C) statistics and show the value averaged across all corruptions. We note
that for a ResNet-50 model, downsampling layers contribute most to the overall error.

17

br
igh

tn
es

s
co

nt
ra

st
de

foc
us

blu
r

ela
sti

c
tra

ns
for

m fog fro
st

ga
us

sia
n

blu
r

ga
us

sia
n

no
ise gla

ss
blu

r
im

pu
lse

no
ise

jpe
g

co
mpr

es
sio

n
mot

ion
blu

r
pix

ela
te

sa
tu

ra
te

sh
ot

no
ise sn
ow

sp
at

te
r

sp
ec

kle
no

ise zo
om

blu
r

1.0.bn1
1.0.bn2
1.0.bn3

1.0
1.1.bn1
1.1.bn2
1.1.bn3
1.2.bn1
1.2.bn2
1.2.bn3
2.0.bn1
2.0.bn2
2.0.bn3

2.0
2.1.bn1
2.1.bn2
2.1.bn3
2.2.bn1
2.2.bn2
2.2.bn3
2.3.bn1
2.3.bn2
2.3.bn3
3.0.bn1
3.0.bn2
3.0.bn3

3.0
3.1.bn1
3.1.bn2
3.1.bn3
3.2.bn1
3.2.bn2
3.2.bn3
3.3.bn1
3.3.bn2
3.3.bn3
3.4.bn1
3.4.bn2
3.4.bn3
3.5.bn1
3.5.bn2
3.5.bn3
4.0.bn1
4.0.bn2
4.0.bn3

4.0
4.1.bn1
4.1.bn2
4.1.bn3
4.2.bn1
4.2.bn2
4.2.bn3

Wasserstein Distance (normalized), across layers and corruptions

0
2
4
6
8
10
12

br
igh

tn
es

s
co

nt
ra

st
de

foc
us

blu
r

ela
sti

c
tra

ns
for

m fog fro
st

ga
us

sia
n

blu
r

ga
us

sia
n

no
ise gla

ss
blu

r
im

pu
lse

no
ise

jpe
g

co
mpr

es
sio

n
mot

ion
blu

r
pix

ela
te

sa
tu

ra
te

sh
ot

no
ise sn
ow

sp
at

te
r

sp
ec

kle
no

ise zo
om

blu
r

1.0.bn1
1.0.bn2
1.0.bn3

1.0
1.1.bn1
1.1.bn2
1.1.bn3
1.2.bn1
1.2.bn2
1.2.bn3
2.0.bn1
2.0.bn2
2.0.bn3

2.0
2.1.bn1
2.1.bn2
2.1.bn3
2.2.bn1
2.2.bn2
2.2.bn3
2.3.bn1
2.3.bn2
2.3.bn3
3.0.bn1
3.0.bn2
3.0.bn3

3.0
3.1.bn1
3.1.bn2
3.1.bn3
3.2.bn1
3.2.bn2
3.2.bn3
3.3.bn1
3.3.bn2
3.3.bn3
3.4.bn1
3.4.bn2
3.4.bn3
3.5.bn1
3.5.bn2
3.5.bn3
4.0.bn1
4.0.bn2
4.0.bn3

4.0
4.1.bn1
4.1.bn2
4.1.bn3
4.2.bn1
4.2.bn2
4.2.bn3

Jeffrey Divergence, across layers and corruptions

0

100

200

300

Figure 7: Normalized Wasserstein distance and Jeffrey divergence across corruptions and layers in a ResNet-50.

18

B Notes on the experimental setup

B.1 Practical considerations for implementing the method

Our method is conceptually very easy to implement. We generally recommend to first explore the
easier variant of the algorithm where N = 0, i.e., no source statistics are used. As shown in our
experiments, this setting works well if 100 or more target samples are available.

In this case, implementing the method boils down to enabling the training mode for all BN layers
across the network. We will discuss this option along with two variants important for application to
practical problems: Using exponential moving averaging (EMA) to collect target statistics across
multiple batches, and using the source statistics as a prior.

Example implementation in PyTorch and caveats We encourage authors of robust models to
always evaluate their models, and in particular baseline algorithms on both the train and test set
statistics. Implementation in both PyTorch, Tensorflow and other machine learning libraries is
straightforward and adds only minimal overhead. For PyTorch, adaptation is possible by simply
adding

def use_test_statistics(module):
if isisinstance(module, nn._BatchNorm):

module.train()
model.eval()
model.apply(use_test_statistics)

before starting a model evaluation. For the adaptation to a full dataset, we provide a reference
implementation with the source code release of this paper. Also, in contrast to the convention of not
shuffling examples during test time, make sure to enable dataset shuffling also during test time in
order to compute the correct statistics marginalized over class assignment.

Exponential moving averaging In practice, it might be beneficial to keep track of samples already
encountered and use a running mean and variance on the test set to normalize new samples. We can
confirm that this technique closely matches the full-dataset adaptation case even when evaluating with
batch size 1 and is well suited for settings with less powerful hardware, or in general settings where
access to the full batch of samples is not possible. Variants of this technique include the adaptation of
the decay factor to discard statistics of samples encountered in the past (e.g. when the data domain
slowly drifts over time).

B.2 Notes on models

Note that we only re-evaluate existing model checkpoints, and hence do not perform any hyperpa-
rameter tuning or adaptations to model training except for selecting the pseudo batchsize N for the
source domain. Depending on the batch size and the architecture, model evaluations are done on one
to eight Nvidia RTX 2080 GPUs (i.e., using 12 to 96 GB of memory) or up to four Nvidia V100
GPUs (128 GB of memory). Since we merely re-evaluate trained models, it is also possible to work
on less powerful hardware with less memory. In these cases, the aggregation of batch normalization
statistics has to be done across several batches using a variant of EMA.

B.3 Hyperparameter tuning

Our method is generally parameter-free if only target statistics should be considered for normalization.
This approach is generally preferred for larger batch sizes n and should also be adapted in practice
when a sufficient amount of samples is available. For tuning N , we consider the pre-defined holdout
corruptions in IN-C, including speckle noise, saturation, Gaussian blur and spatter using a grid search
across different values for N .

B.4 Notes on datasets

In the main paper, we have used several datasets and provide more relevant information here:

19

ImageNet-C (IN-C) For the evaluation on IN-C, we use the JPEG compressed images from
github.com/hendrycks/robustness as is advised by the authors to ensure reproducibility. We note
that Ford et al. [44] report a decrease in performance when the compressed JPEG files are used as
opposed to applying the corruptions directly in memory without compression artefacts.

ObjectNet (ON) We find that there are 9 classes with multiple possible mappings from ON to IN
(see the list in Table 6); we discard these classes in our evaluation. Models trained on IN experience a
large performance drop on the order of 40–45% when tested on ON. ON is an interesting test case for
unsupervised domain adaptation since IN and ON are likely sampled from different distributions. ON
intentionally shows objects from new viewpoints on new backgrounds.

ImageNet-V2 (IN-V2) There are three test sets in IN-V2 that differ in selection frequencies of the
MTurk workers. The selection frequency is given by the fraction of MTurk workers who selected an
image for its target class. For the “MatchedFrequency” dataset, images were sampled according to the
estimated selection frequency of sampling of the original IN validation dataset. For the “Threshold0.7”
variant of IN-V2, images were sampled with a selection frequency of at least 0.7. The “TopImages”
was sampled from images with the highest selection frequency. Although all three test sets were
sampled from the same Flickr candidate pool and were labeled correctly and selected by more than
70% of MTurk workers, the model accuracies on these datasets vary by 14%. The authors observe
a systematic accuracy drop when comparing model performance on the original IN validation set
and IN-V2 and attribute it to the distribution gap between their datasets and the original IN dataset.
They quantify the distribution gap by how much the change from the original distribution to the new
distribution affects the considered model. Engstrom et al. analyze the creation process of IN-V2
and identify statistical bias resulting from noisy readings of the selection frequency statistic as a
main source of dropping performance [59]. After correcting the bias, [59] find that the accuracy drop
between IN and IN-V2 measures only 3.6% ± 1.5% of the original 11.7% ± 1.0%.

ON class IN classes

wheel wheel; paddlewheel, paddle wheel
helmet football helmet; crash helmet
chair barber chair; folding chair; rocking chair, rocker
still_camera Polaroid camera, Polaroid Land camera; reflex camera
alarm_clock analog clock; digital clock
tie bow tie, bow-tie, bowtie; Windsor tie
pen ballpoint, ballpoint pen, ballpen, Biro; quill, quill pen; fountain pen
bicycle mountain bike, all-terrain bike, off-roader; bicycle-built-for-two, tandem bicycle, tandem
skirt hoopskirt, crinoline; miniskirt, mini; overskirt

Table 6: Mapping between 9 ambiguous ON classes and the possible correspondences in IN. Different IN classes
are separated with a semicolon.

B.5 Overview of models in torchvision

In Table 7, we provide a list of the models we evaluate in the main paper, along with numbers of
trainable parameters and BN parameters. Note that the fraction of BN parameters is at most at 1%
compared to all trainable parameters in all considered models.

B.6 Baseline corruption errors

In Table 8, we report the scores used for converting top-1 error into the mean corruption error (mCE)
metric proposed by Hendrycks and Dietterich [2].

B.7 Software stack

We use various open source software packages for our experiments, most notably Docker [60], scipy
and numpy [61], GNU parallel [62], Tensorflow [63], PyTorch [10] and torchvision [25].

20

https://github.com/hendrycks/robustness

Model Parameter Count BN Parameters Fraction (%)

densenet121 7.98× 106 8.36× 104 0.010
densenet161 2.87× 107 2.20× 105 0.008
densenet169 1.41× 107 1.58× 105 0.011
densenet201 2.00× 107 2.29× 105 0.011
googlenet 1.30× 107 1.51× 104 0.001
inception-v3 2.72× 107 3.62× 104 0.001
mnasnet0-5 2.22× 106 2.06× 104 0.009
mnasnet0-75 3.17× 106 2.98× 104 0.009
mnasnet1-0 4.38× 106 3.79× 104 0.009
mnasnet1-3 6.28× 106 4.88× 104 0.008
mobilenet-v2 3.50× 106 3.41× 104 0.010
resnet101 4.45× 107 1.05× 105 0.002
resnet152 6.02× 107 1.51× 105 0.003
resnet18 1.17× 107 9.60× 103 0.001
resnet34 2.18× 107 1.70× 104 0.001
resnet50 2.56× 107 5.31× 104 0.002
resnext101-32x8d 8.88× 107 2.03× 105 0.002
shufflenet-v2-x0-5 1.37× 106 7.95× 103 0.006
shufflenet-v2-x1-0 2.28× 106 1.62× 104 0.007
shufflenet-v2-x1-5 3.50× 106 2.34× 104 0.007
shufflenet-v2-x2-0 7.39× 106 3.37× 104 0.005
vgg11-bn 1.33× 108 5.50× 103 4.142× 10−5

vgg13-bn 1.33× 108 5.89× 103 4.425× 10−5

vgg16-bn 1.38× 108 8.45× 103 6.106× 10−5

vgg19-bn 1.44× 108 1.10× 104 7.662× 10−5

wide-resnet101-2 1.27× 108 1.38× 105 0.001
wide-resnet50-2 6.89× 107 6.82× 104 0.001

Table 7: Overview of different models with parameter counts. We show the total number of BN parameters,
which is a sum of affine parameters.

Category Corruption top1 error

Noise
Gaussian Noise 0.886428
Shot Noise 0.894468
Impulse Noise 0.922640

Blur

Defocus Blur 0.819880
Glass Blur 0.826268
Motion Blur 0.785948
Zoom Blur 0.798360

Weather

Snow 0.866816
Frost 0.826572
Fog 0.819324
Brightness 0.564592
Contrast 0.853204

Digital

Elastic Transform 0.646056
Pixelate 0.717840
JPEG Compression 0.606500

Hold-out Noise Speckle Noise 0.845388
Hold-out Digital Saturate 0.658248
Hold-out Blur Gaussian Blur 0.787108
Hold-out Weather Spatter 0.717512

Table 8: AlexNet top1 errors on ImageNet-C

21

Table 9: After converting the checkpoints
from TensorFlow to Pytorch, we notice a
slight degradation in performance on the
IN val set.

IN val top-1 accuracy in %.

Model TF PyTorch

SimCLRv2 ResNet50 76.3 75.6
SimCLRv2 ResNet101 78.2 77.5
SimCLRv2 ResNet152 79.3 78.6

Table 10: Adaptation improves the perfor-
mance of the ResNet50 and the ResNet101
model but hurts the performance of the
ResNet152 model.

ImageNet-C (n=4096), mCE.

Model, adaptation: base adapt ∆

SimCLRv2 ResNet50 72.4 68.0 -4.2
SimCLRv2 ResNet101 66.6 65.1 -0.9
SimCLRv2 ResNet152 63.7 64.2 +0.5

107 108

50.0

60.0

70.0

80.0

90.0

100.0

Parameter Count

IN
-C

m
C

E

DenseNet

GoogLeNet

Inception

MNASnet

Mobilenet

ResNet

ResNext

ShuffleNet

VGG

WRN

Figure 8: Adaptation (•) improves baseline (◦) mCE across all 25 model architectures in the torchvision
library, often on the order of 10% points. Best viewed in color.

C Additional results

C.1 Performance of SimCLRv2 models

We evaluate the performance of 3 models from the SimCLRv2 framework with and without batchnorm
adaptation. We test a ResNet50, a ResNet101 and a ResNet152, finetuned on 100% of IN training
data. Since our code-base is in PyTorch, we use the Pytorch-SimCLR-Converter [64] to convert the
provided checkpoints from Tensorflow to PyTorch. We notice a slight decline in performance when
comparing the top-1 accuracy on the IN validation set, see Table 9. For preprocessing, we disable
the usual PyTorch normalization and use the PIL.Image.BICUBIC interpolation for resizing because
this interpolation is used in the TensorFlow code (instead of the default PIL.Image.BILINEAR in
PyTorch).

The BN adaptation results for the converted models are shown in Table 10. Adaptation improves the
performance of the ResNet50 and the ResNet101 model, but hurts the performance of the ResNet152
model.

C.2 Relationship between parameter count and IN-C improvements

In addition to Fig. 3 in the main paper, we show the relationship between parameter count and IN-C
mCE. In general, we see that the parameter counts correlates with corruption robustness since larger
models have smaller mCE values.

C.3 Per-corruption results on IN-C

We provide more detailed results on the individual corruptions of IN-C for the most important models
considered in our study in Fig. 9. The results are shown for models where the BN parameters are

22

adapted on the full test sets. The adaptation consistently improves the error rates on all corruptions
for both vanilla and AugMix.

bri
gh

tne
ss

co
ntr

ast

de
foc

us
-bl

ur

ela
sti

c-t
ran

sfo
rmfog fro

st

ga
us

sia
n-b

lur

ga
us

sia
n-n

ois
e

gla
ss-

blu
r

im
pu

lse
-no

ise

jpe
g-c

om
pre

ssi
on

moti
on

-bl
ur

pix
ela

te

sat
ura

te

sh
ot-

no
ise sn

ow
sp

att
er

sp
ec

kle
-no

ise

zo
om

-bl
ur

0

20

40

60

80

32

61 61
55 54

62 58

71 73 76

47

61
55

38

73
67

51

65 64

29

46

61

41 39

54 57 57
62 59

41
51

38
31

59
54

42
51 49

to
p-

1
er

ro
r

Vanilla Resnet-50

Baseline

Adapted

bri
gh

tne
ss

co
ntr

ast

de
foc

us
-bl

ur

ela
sti

c-t
ran

sfo
rmfog fro

st

ga
us

sia
n-b

lur

ga
us

sia
n-n

ois
e

gla
ss-

blu
r

im
pu

lse
-no

ise

jpe
g-c

om
pre

ssi
on

moti
on

-bl
ur

pix
ela

te

sat
ura

te

sh
ot-

no
ise sn

ow
sp

att
er

sp
ec

kle
-no

ise

zo
om

-bl
ur

0

20

40

60

80

31

49 52 48
53 56

50
59

65 62

40
46 43

36

59 60

44 48 51

26

39
48

35 36
45 46 46 48 48

35 37
32 28

47 44
36

41 37

to
p-

1
er

ro
r

Augmix

Baseline

Adapted

Figure 9: Results on the individual corruptions of IN-C for the vanilla trained ResNet-50 and the AugMix model
with and without adaptation. Adaptation reduces the error on all corruptions.

C.4 Qualitative analysis of similarities between common corruptions

In this analysis, we compute a t-SNE embedding of the Wasserstein distances between the adapted
models and the non-adapted model from Section 5, Fig. 4(i) of the main paper. The results are
displayed in Fig. 10. We observe that the different corruption categories indicated by the different
colors are grouped together except for the ’digital’ category (pink). This visualization shows that
corruption categories mostly induce similar shifts in the BN parameters. This might be an explanation
why training a model on Gaussian noise generalizes so well to other noise types as has been observed
by Rusak et al. [29]: By training on Gaussian noise, the BN statistics are adapted to the Gaussian
noise corruption and from Fig. 10, we observe that these statistics are similar to the BN statistics of
other noises.

−8 −7 −6

−6

−4

−2

0

t-SNE embedding

gaussian-noise shot-noise

impulse-noise speckle-noise

defocus-blur glass-blur

motion-blur zoom-blur
snow frost

fog brightness

contrast elastic-transform

pixelate

Figure 10: t-SNE embeddings of the Wasserstein distances between BN statistics adapted on the different
corruptions. This plot shows evidence on the similarities between different corruption types.

23

C.5 Error prediction based on the Wasserstein distance

In Section 5, Fig. 4(i), we observe that the relationship between the Wasserstein distance and the
top-1 error on IN-C is strikingly linear in the considered range of the Wasserstein distance. Similar
corruptions and corruption types (indicated by color) exhibit similar slope, allowing to approximate
the expected top-1 error rate without any information about the test domain itself. Using the split of
the 19 corruptions into 15 test and 4 holdout corruptions [2], we compute a linear regression model
on the five data points we get for each of the holdout corruptions (corresponding to the five severity
levels), and use this model to predict the expected top-1 error rates for the remaining corruptions
within the corruption family. This scheme works particularly for the “well defined” corruption types
such as noise and digital (4.1% points absolute mean deviation from the real error. The full results
are depicted in Table 11.

test error holdout (train) error model
true pred |∆| true pred |∆| coef intercept

Fig. 3 (i)
blur 64.89 54.53 11.04 58.13 58.13 3.24 37.59 -0.70
digital 54.37 51.96 6.97 38.08 38.08 0.60 37.20 6.39
noise 73.29 69.68 5.84 64.51 64.51 0.65 24.66 1.68
weather 53.87 42.92 11.21 50.84 50.84 5.48 25.80 6.33

Fig. 3 (ii)
blur 55.68 53.28 5.65 57.38 57.38 4.01 42.74 -9.51
digital 41.53 39.80 4.14 31.05 31.05 0.34 23.44 11.09
noise 58.43 55.04 4.14 51.24 51.24 1.01 18.13 5.06
weather 43.84 36.16 7.80 41.63 41.63 4.32 17.80 10.91

Fig. 3 (iii)
blur 57.10 69.84 13.43 74.01 74.01 3.96 43.50 5.93
digital 46.16 38.06 12.97 36.22 36.22 10.52 4.94 32.01
noise 93.60 85.84 13.08 81.10 81.10 3.52 22.56 23.65
weather 43.74 36.90 8.98 44.05 44.05 6.20 23.29 3.87

Table 11: Estimating top-1 error of unseen corruptions within the different corruption classes. We note that
especially for well defined corruptions (like noise or digital corruptions), the estimation scheme works well. We
follow the categorization originally proposed by Hendrycks and Dietterich [2].

C.6 Training details on the models trained with Fixup initialization and GroupNorm

In Section 5 of the main paper, we consider IN models trained with GroupNorm and Fixup ini-
tialization. For these models, we consider the original reference implementations provided by the
authors. We train ResNet-50, ResNet-101 and ResNet-152 models with stochastic gradient descent
with momentum (learning rate 0.1, momentum 0.9), with batch size 256 and weight decay 1× 10−4

for 100 epochs.

C.7 Effect of Pseudo Batchsize

We show the full results for considering different choices of N for ResNet-50, Augmix, ANT,
ANT+SIN and SIN models and display the result in Fig. 12. We observe a characteristic shape which
we believe can be attributed to the way statistics are estimated. We provide evidence for this view by
proposing an analytical model which we discuss in §D.

24

1 8 64 512

50

60

70

Batch size

m
C

E

Performance for optimal N

ResNet AugMix ANT
ANT+SIN SIN

1 8 64 512

8

64

512

Batch size

Ps
eu

do
B

at
ch

Si
ze

Best Pseudo Batchsize N

Figure 11: Left: Performance for all the considered ResNet-50 variants based on the sample batch size. The
optimal N is chosen according to the mCE on the holdout corruptions. Right: Best choice for N depending on
the input batchsize n. Note that in general for high values n, the model is generally more robust to the choice of
N .

1 8 64 512

50

60

70

80

90

100

Batch size

m
C

E

resnet N

1
2
4
8

16
32
64

128
256

1 8 64 512

50

60

70

80

90

100

Batch size

m
C

E

augmix

1 8 64 512

50

60

70

80

90

100

Batch size

m
C

E

sin

1 8 64 512

50

60

70

80

90

100

Batch size

m
C

E

ant

1 8 64 512

50

60

70

80

90

100

Batch size

m
C

E

antsin

Figure 12: Effects of batch size n and pseudo batch size N for the various considered models. We report mCE
averaged across 15 test corruptions.

25

ResNet-50 1 2 4 8 16 32 64 128 256

1 117.76 98.78 81.06 72.80 71.39 72.72 74.28 75.36 75.99
2 98.11 89.92 80.13 72.36 69.63 70.39 72.39 74.16 75.32
4 81.10 78.45 74.70 70.27 67.48 67.69 69.77 72.19 74.10
8 71.56 70.74 69.44 67.56 65.60 65.02 66.70 69.41 72.07
16 66.82 66.52 66.06 65.32 64.29 63.32 63.81 66.19 69.24
32 64.51 64.39 64.19 63.87 63.38 62.72 62.21 63.22 65.94
64 63.33 63.28 63.19 63.05 62.81 62.43 61.95 61.68 62.90
128 62.78 62.75 62.69 62.62 62.50 62.29 62.00 61.56 61.42
256 62.51 62.49 62.44 62.41 62.32 62.22 62.01 61.73 61.35
512 62.36 62.36 62.33 62.29 62.26 62.17 62.06 61.90 61.62

AugMix 1 2 4 8 16 32 64 128 256

1 122.56 99.72 76.23 65.46 62.08 61.78 62.70 63.75 64.47
2 100.39 88.69 75.16 64.86 60.93 60.51 61.28 62.52 63.67
4 78.55 74.41 68.69 62.52 58.58 58.30 59.53 60.94 62.39
8 65.02 63.81 61.86 59.21 56.39 55.40 56.87 59.00 60.77
16 58.02 57.55 56.96 56.02 54.69 53.44 53.78 56.15 58.71
32 54.37 54.20 53.99 53.68 53.21 52.50 51.99 53.01 55.78
64 52.55 52.50 52.38 52.24 52.07 51.83 51.39 51.25 52.59
128 51.64 51.60 51.54 51.47 51.38 51.26 51.10 50.88 50.89
256 51.18 51.17 51.12 51.08 51.02 50.95 50.86 50.76 50.60
512 50.96 50.95 50.93 50.90 50.86 50.80 50.72 50.65 50.61

ANT 1 2 4 8 16 32 64 128 256

1 116.10 93.58 72.31 62.28 60.07 60.73 61.75 62.48 62.90
2 93.88 83.74 72.01 62.69 58.97 59.10 60.44 61.67 62.44
4 74.51 71.06 66.34 61.15 57.55 57.03 58.51 60.29 61.64
8 63.65 62.50 60.74 58.43 56.04 55.02 56.10 58.22 60.20
16 58.37 57.87 57.14 56.11 54.77 53.67 53.76 55.61 58.06
32 55.78 55.54 55.20 54.66 53.91 53.06 52.50 53.18 55.35
64 54.51 54.41 54.21 53.88 53.42 52.84 52.23 51.94 52.87
128 53.92 53.85 53.71 53.53 53.28 52.85 52.29 51.80 51.65
256 53.66 53.61 53.50 53.37 53.20 52.96 52.54 52.04 51.60
512 53.53 53.49 53.41 53.33 53.21 53.02 52.78 52.38 51.90

ANT+SIN 1 2 4 8 16 32 64 128 256

1 108.24 84.75 67.42 59.91 58.15 58.49 59.24 59.85 60.23
2 87.60 78.40 68.32 60.63 57.54 57.47 58.33 59.23 59.87
4 71.12 68.32 64.31 59.78 56.63 56.06 57.01 58.24 59.23
8 62.23 61.38 59.98 57.93 55.69 54.59 55.30 56.79 58.21
16 57.83 57.51 57.00 56.17 54.96 53.76 53.61 54.92 56.68
32 55.62 55.51 55.33 54.96 54.38 53.55 52.80 53.13 54.73
64 54.57 54.49 54.40 54.25 53.98 53.51 52.84 52.36 52.89
128 54.02 53.98 53.95 53.85 53.72 53.49 53.07 52.53 52.12
256 53.76 53.74 53.71 53.67 53.59 53.47 53.23 52.85 52.33
512 53.64 53.63 53.60 53.57 53.51 53.45 53.35 53.12 52.75

SIN 1 2 4 8 16 32 64 128 256

1 119.11 94.43 74.93 67.03 65.43 66.08 67.16 68.04 68.62
2 98.85 88.62 76.99 67.88 64.23 64.42 65.72 67.02 67.99
4 81.35 78.10 73.38 67.84 63.49 62.47 63.76 65.48 66.94
8 70.92 69.94 68.38 66.02 63.14 61.09 61.45 63.35 65.35
16 65.29 64.97 64.48 63.68 62.39 60.78 59.90 60.92 63.16
32 62.34 62.25 62.08 61.80 61.36 60.55 59.55 59.26 60.65
64 60.84 60.80 60.74 60.61 60.47 60.15 59.67 58.96 58.93
128 60.07 60.04 60.02 59.96 59.87 59.77 59.57 59.18 58.64
256 59.68 59.66 59.64 59.62 59.59 59.53 59.43 59.27 58.97
512 59.48 59.47 59.46 59.44 59.42 59.40 59.33 59.26 59.11

DeepAugment 1 2 4 8 16 32 64 128 256

8 65.37 63.87 61.37 58.11 54.48 52.17 52.33 54.18 56.36

DeepAugment+AugMix 1 2 4 8 16 32 64 128 256

8 52.59 51.98 51.05 49.83 48.5 47.81 48.36 49.72 51.12

ResNex+DeepAugment+Augmix 1 2 4 8 16 32 64 128 256

8 42.09 41.74 41.29 40.67 39.96 39.69 40.35 41.55 42.69

Table 12: Test mCE for various batch sizes (rows) vs. pseudo batch sizes (columns)

26

D Analytical error model

We consider a univariate model in §D.1–D.3 and discuss a simple extension to the multivariate
diagonal case in §D.4. As highlighted in the main text, the model qualitatively explains the overall
characteristics of our experimental data. Note that we assume a linear relationship between the
Wasserstein distance and the error under domain shift, as suggested by our empirical findings.

Univariate model. We denote the source statistics as µs, σ2
s , the true target statistics as µt, σ2

t and
the estimated target statistics as µ̂t, σ̂2

t . For normalization, we take a convex combination of the
source statistics and estimated target statistics:

µ̄ =
N

N + n
µs +

n

N + n
µ̂t, σ̄

2 =
N

N + n
σ2
s +

n

N + n
σ̂2
t . (11)

We now analyze the trade-off between using an estimate closer to the source or closer to the estimated
target statistics. In the former case, the model will suffer under the covariate shift present between
target and source distribution. In the latter case, small batch sizes n will yield unreliable estimates
for the true target statistics, which might hurt the performance even more than the source-target
mismatch. Hence, we aim to gain understanding in the trade-off between both options, and potential
optimal choices of N for a given sample size n.

As a metric of domain shift with good properties for our following derivation, we leverage the
Wasserstein distance. In §5 and §C.5, we already established an empirical link between domain shift
measured in terms of the top-1 performance vs. the Wasserstein distance between model statistics
and observed a linear relationship for case of common corruptions.

Proposition 1 (Bounds on the expected value of the Wasserstein distance between target and com-
bined estimated target and source statistics). We denote the source statistics as µs, σ2

s , the true target
statistics as µt, σ2

t and the biased estimates of the target statistics as µ̂t, σ̂2
t . For normalization,

we take a convex combination of the source statistics and estimated target statistics as discussed
in Eq. 11. At a confidence level 1 − α, the expectation value of the squared Wasserstein distance
W 2

2 (µ̄, σ̄, µt, σt) between ideal and estimated target statistics w.r.t. to the distribution of sample
mean µ̂t and sample variance σ̂2

t is bounded from above and below with L ≤ E[W 2
2] ≤ U , where

L =

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+
N2

(N + n)2
(µt − µs)2 +

n

(N + n)2
σ2
t

U = L+ σ5
t

(n− 1)

2(N + n)2

(
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t

)−3/2 (12)

The quantity χ2
1−α/2,n−1 denotes the left tail value of a chi square distribution with n− 1 degrees of

freedom, defined as P
(
X ≤ χ2

1−α/2,n−1

)
= α/2 for X ∼ χ2

n−1.

D.1 Proof sketch

We are interested in the expected value of the Wasserstein distance defined in (A.1) between the target
statistics µt, σ2

t and the mixed statistics µ̄, σ̄2 introduced above in equation (11), taken with respect
to the distribution of the sample moments µ̂t, σ̂2

t . The expectation value itself cannot be evaluated in
closed form because the Wasserstein distance contains a term proportional to σ̄ being the square root
of the convex combination of target and source variance.

In Lemma 3, the square root term is bounded from above and below using Jensen’s inequality and
Holder’s defect formula which is reviewed in Lemma 2. After having bounded the problematic square
root term, the proof of Proposition 1 reduces to inserting the expectation values of sample mean and
sample variance reviewed in Lemma 1.

27

D.2 Prerequisites

Lemma 1 (Mean and variance of sample moments, following [65]). The sample moments µ̂t, σ̂2
t are

random variables depending on the sample size n.

µ̂t =
1

n

n∑
j=1

xj , σ̂2
t =

1

n

n∑
j=1

(xj − µ̂t)2 with xj ∼ N
(
µt, σ

2
t

)
. (13)

For brevity, we use the shorthand E[·] for all expectation values with respect to the distribution of
p(µ̂t, σ̂

2
t |n). In particular, our computation uses mean and variance of µ̂t and σ̂2

t which are well
known for a normal target distribution:

µ̂t ∼ N
(
µt,

1

n
σ2
t

)
, E[µ̂t] = µt, V[µ̂t] =

1

n
σ2
t (14)

σ̂2
t

σ2
t /n
∼ χ2

n−1, E[σ̂2
t] =

n− 1

n
σ2
t , V[σ̂2

t] =
σ4
t

n2
V
[
σ̂2
t

σ2
t /n

]
=
σ4
t

n2
2(n− 1). (15)

The derivation of the variance V[σ̂2
t] in the last line uses the fact that the variance of a chi square

distributed variable with (n− 1) degrees of freedom is equal to 2(n− 1).
Lemma 2 (Holder’s defect formula for concave functions in probabilistic notation, following Becker
[66]). If the concave function f : [a, b]→ R is twice continuously differentiable and there are finite
bounds m and M such that

−M ≤ f ′′(x) ≤ −m ≤ 0 ∀x ∈ [a, b], (16)

then the defect between Jensen’s inequality estimate f (E[X]) for a random variable X taking values
x ∈ [a, b] and the true expectation value E[f(X)] is bounded from above by a term proportional to
the variance of X:

f (E[X])− E[f(X)] ≤ 1

2
MV[X]. (17)

Lemma 3 (Upper and lower bounds on the expectation value of σ̄). The expectation value of the
square root of the random variable σ̄2 defined as

σ̄2 =
N

N + n
σ2
s +

n

N + n
σ̂2
t , (18)

is bounded from above and below at a confidence level 1− α by√
E [σ̄2]− 1

2
MV[σ̄2] ≤ E

[√
σ̄2
]
≤
√
E [σ̄2] (19)√

E [σ̄2] =

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t , (20)

1

2
MV[σ̄2] =

(n− 1)

4(N + n)2
σ4
t

(
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t

)
. (21)

The quantity χ2
1−α/2,n−1 denotes the left tail value of a chi square distribution with n− 1 degrees of

freedom, defined as P
(
X ≤ χ2

1−α/2,n−1

)
= α/2 for X ∼ χ2

n−1.

Proof. The square root function is concave, therefore Jensen’s inequality implies the upper bound

E
[√

σ̄2
]
≤
√

E[σ̄2]. (22)

The square root of the expectation value of σ̄2 is computed using the expectation value of the sample
variance as given in Lemma 1.√

E[σ̄2] =

√
N

N + n
σ2
s +

n

N + n

n− 1

n
σ2
t =

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t . (23)

To state a lower bound, we use Holder’s defect formula in probabilistic notation stated in Lemma
2. Holder’s formula for concave functions requires that the random variable σ̄2 can take values in

28

the compact interval [a, b] and that the second derivative of the square root function f(σ̄2) =
√
σ̄2,

exists and is strictly smaller than zero in [a, b]. Regarding the interval of σ̄2, we provide probabilistic
upper and lower bounds. The ratio of sample variance and true variance divided by n follows a chi
square distribution with n− 1 degrees of freedom. At confidence level 1− α, this ratio lies between
χ2
1−α/2,n−1 and χ2

α/2,n−1 which are defined as follows:

χ2
1−α/2,n−1 ≤

σ̂2
t

σ2
t /n
≤ χ2

α/2,n−1, (24)

Pr(X ≤ χ2
1−α/2,n−1) =

α

2
, P r(X ≥ χ2

α/2,n−1) =
α

2
. (25)

Then at the same confidence level, the sample variance itself lies between the two quantiles multiplied
by σ2

t /n,

χ2
1−α/2,n−1

σ2
t

n
≤ σ̂2

t ≤ χ2
α/2,n−1

σ2
t

n
, (26)

and the random variable σ̄2 lies in the interval

σ̄2 ∈ [a, b] with a =
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t , (27)

and b =
N

N + n
σ2
s +

1

N + n
χ2
α/2,n−1σ

2
t . (28)

The variances and chi square values are all positive and therefore both a and b are positive as well,
implying that the second derivative of the square root is strictly negative in the interval [a, b].

f(σ̄2) =
√
σ̄2, f ′(σ̄2) =

1

2
(σ̄2)−1/2, f ′′(σ̄2) = −1

4
(σ̄2)−3/2 < 0 ∈ [a, b]. (29)

Consequently the second derivative is in the interval [M,m] at the given confidence level:

−M ≤ f ′′(σ̄2) ≤ −m ≤ 0 for σ̄2 ∈ [a, b] with M =
1

4
a−3/2, m =

1

4
b−3/2. (30)

The defect formula 2 states that the defect is bounded by√
E[σ̄2]− E[

√
σ̄2] ≤ 1

2
MV[σ̄2]. (31)

The constant M was computed above in (30), and the variance of σ̄2 is calculated in the next lines,
using the first and second moment of the sample variance as stated in 1.

V[σ̄2] = E[(σ̄2 − E[σ̄2])2] = E

[(
n

N + n
σ̂2
t −

n

N + n

n− 1

n
σ2
t

)2
]

=
n2

(N + n)2
E
[(
σ̂2
t − E[σ̂2

t

)2]
=

n2

(N + n)2
V
[
σ̂2
t

]
=

n2

(N + n)2
2(n− 1)

n2
σ4
t =

2(n− 1)

(N + n)2
σ4
t .

(32)

Inserting V[σ̄2] computed in (32) and M defined in (30) with a as defined in (27) into the defect
formula (31) yields the lower bound:√

E[σ̄2]− 1

2
MV[σ̄2] ≤ E[

√
σ̄2]√

E[σ̄2]− 1

2
MV[σ̄2]

=
√
E[σ̄2]− 1

2
· 1

4
a−3/2

2(n− 1)

(N + n)2
σ4
t

=
√
E[σ̄2]− (n− 1)

4(N + n)2
σ4
t

(
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t

)−3/2
.

(33)

Assuming that source and target variance are of the same order of magnitude σ, the defect will be of
order of magnitude σ: The factor V[X] scales with σ4 and M with σ−3.

29

D.3 Proof of Proposition 1

Proof. For two univariate normal distributions with moments µt, σ2
t and µ̄, σ̄2, the Wasserstein

distance as defined in (A.1) reduces to

W 2
2 = σ2

t + σ̄2 − 2σ̄σt + (µ̄− µ)2. (34)

The expected value of the Wasserstein distance across many batches is given as

E[W 2
2] = σ2

t + E[σ̄2]− 2E[σ̄]σt + E[(µt − µ̄)2]

= σ2
t +

N

N + n
σ2
s +

n

N + n

n− 1

n
σ2
t − 2σtE

[√
N

N + n
σ2
s +

n

N + n
σ̂2
t

]

+ E

[(
µt −

N

N + n
µs −

n

N + n
µ̂t

)2
] (35)

which can already serve as the basis for our numerical simulations. To arrive at a closed form
analytical solution, we invoke Lemma 3 to bound the expectation value E [σ̄] in equation (35).

−2σt
√

E [σ̄2] ≤ −2σtE
[√

σ̄2
]
≤ −2σt

√
E [σ̄2]− 2σt

(
−1

2
MV[σ̄2]

)
(36)

Apart from the square root term bounded in equation (36) above, the expectation value of the
Wasserstein distance can be computed exactly. Hence the bounds on E [σ̄] multiplied by a factor
of (−2σ2

t) coming from equation (35) determine lower and upper bounds L and U on the expected
value of W 2

2 :

L ≤ E
[
W 2

2

]
≤ U = L+ σtMV[σ̄2] (37)

In the next lines, the lower bound is calculated:

L = σ2
t +

N

N + n
σ2
s +

n− 1

N + n
σ2
t − 2σt

√
E
[

N

N + n
σ2
s +

n− 1

N + n
σ2
t

]
+

(
µt −

N

N + n
µs

)2

− 2

(
µt −

N

N + n
µs

)
n

N + n
E[µ̂t] +

n2

(N + n)2

(
V[µ̂t] + (E[µ̂t])

2
)

= σ2
t +

N

N + n
σ2
s +

n− 1

N + n
σ2
t − 2σt

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

+

(
µt −

N

N + n
µs

)2

− 2

(
µt −

N

N + n
µs

)
n

N + n
µt +

n2

(N + n)2

(
1

n
σ2
t + µ2

t

)

=

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+

(
µt −

N

N + n
µs −

n

N + n
µt

)2

+
n

(N + n)2
σ2
t

=

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+
N2

(N + n)2
(µt − µs)2 +

n

(N + n)2
σ2
t

(38)
After having derived the lower bound, the upper bound is the sum of the lower bound and the defect
term as computed in Lemma 3.

E[W 2] ≥ U = L+ σtMV[σ̄2]

= L+ σt
1

4

(
N

N + n
σ2
s +

n

N + n
χ2
1−α/2,n−1

σ2
t

n

)−3/2
2(n− 1)

(N + n)2
σ4
t

= L+

(
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t

)−3/2
(n− 1)

2(N + n)2
σ5
t .

(39)

Based on choices of the model parameters, the model qualitatively matches our experimental results.
We plot different choices in Fig. 13.

30

(0.00, 0.03) (0.00, 0.05) (0.00, 0.08) (0.00, 0.10) (0.00, 0.13) (0.00, 0.15) (0.00, 0.18) (0.00, 0.20) (0.00, 0.23) (0.00, 0.25)

(0.01, 0.03) (0.01, 0.05) (0.01, 0.08) (0.01, 0.10) (0.01, 0.13) (0.01, 0.15) (0.01, 0.18) (0.01, 0.20) (0.01, 0.23) (0.01, 0.25)

(0.01, 0.03) (0.01, 0.05) (0.01, 0.08) (0.01, 0.10) (0.01, 0.13) (0.01, 0.15) (0.01, 0.18) (0.01, 0.20) (0.01, 0.23) (0.01, 0.25)

(0.02, 0.03) (0.02, 0.05) (0.02, 0.08) (0.02, 0.10) (0.02, 0.13) (0.02, 0.15) (0.02, 0.18) (0.02, 0.20) (0.02, 0.23) (0.02, 0.25)

(0.02, 0.03) (0.02, 0.05) (0.02, 0.08) (0.02, 0.10) (0.02, 0.13) (0.02, 0.15) (0.02, 0.18) (0.02, 0.20) (0.02, 0.23) (0.02, 0.25)

(0.03, 0.03) (0.03, 0.05) (0.03, 0.08) (0.03, 0.10) (0.03, 0.13) (0.03, 0.15) (0.03, 0.18) (0.03, 0.20) (0.03, 0.23) (0.03, 0.25)

(0.03, 0.03) (0.03, 0.05) (0.03, 0.08) (0.03, 0.10) (0.03, 0.13) (0.03, 0.15) (0.03, 0.18) (0.03, 0.20) (0.03, 0.23) (0.03, 0.25)

(0.04, 0.03) (0.04, 0.05) (0.04, 0.08) (0.04, 0.10) (0.04, 0.13) (0.04, 0.15) (0.04, 0.18) (0.04, 0.20) (0.04, 0.23) (0.04, 0.25)

(0.04, 0.03) (0.04, 0.05) (0.04, 0.08) (0.04, 0.10) (0.04, 0.13) (0.04, 0.15) (0.04, 0.18) (0.04, 0.20) (0.04, 0.23) (0.04, 0.25)

(0.05, 0.03) (0.05, 0.05) (0.05, 0.08) (0.05, 0.10) (0.05, 0.13) (0.05, 0.15) (0.05, 0.18) (0.05, 0.20) (0.05, 0.23) (0.05, 0.25)

Figure 13: Overview of different parametrizations of the model. We denote each plot with (µt − µs, σt/σs)

and report the lower bound
√
L on the Wasserstein distance. Parametrizations in columns four to seven

produce qualitatively similar results we observed in our experiments, assuming a linear relationship between the
Wasserstein distance and the error rate.

31

D.4 Extension to multivariate distributions.

We now derive a multivariate variant that can be fit to data from a DNN. Due to the estimation of
running statistics in the network, we have access to a diagonal approximation of the true covariance
matrix.

We denote the diagonal covariance matrices with matrix elements σ2
i as

(Σt)ii = (σ2
t)i, (Σ̂t)ii = (σ̂2

t)i, (Σs)ii = (σ2
s)i (40)

and extend our definition of the statistics used for normalization to µ̄ and Σ̄:

µ̄ =
N

N + n
µs +

n

N + n
µ̂t, Σ̄ =

N

N + n
Σs +

n

N + n
Σ̂t. (41)

The Wasserstein distance between µ̄, Σ̄ and µt,Σt is then defined as

W 2
2 = Tr Σt + Σ̄− 2Σ

1/2
t Σ̄1/2 + (µt − µ̄)T (µt − µ̄)

=
D∑
i=1

(σ2
t)i + (σ̄2)i − 2(σ̄)i(σt)i + ((µt)i − (µ̄t)i)

2
=

D∑
i=1

(W 2
2)i

(42)

Every component (W 2
2)i in the sum above is bounded by the univariate bound discussed above. The

multivariate Wasserstein distance which sums over the diagonal covariance matrix entries is then
bounded by the sums over the individual bounds Li and Ui given in (12).

Li ≤ (W 2
2)i ≤ Ui ⇒

D∑
i=1

Li ≤W 2
2 ≤

D∑
i=1

Ui. (43)

D.5 Limits of Proposition 1

Limit n→∞ In the limit of infinite batch size n→∞, upper and lower bounds on the expected
Wasserstein distance between µ̄, σ̄2 and µt, σ2

t both go to zero.

lim
n→∞

L = lim
n→∞

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+
N2

(N + n)2
(µt − µs)2 +

n

(N + n)2
σ2
t

=(σt − σt)2 = 0

lim
n→∞

U = lim
n→∞

L+ lim
n→∞

σ5
t

(n− 1)

2(N + n)2

(
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t

)−3/2
= 0.

(44)
The intuition behind this limit is that if a large number of samples from the target domain is given, µ̂
and σ̂2 approximate the true target statistics very well. As µ̂ and σ̂2 dominate µ̄ and σ̄2 for large n,
the expected Wasserstein distance has to vanish.

Limit N → ∞ In the opposite limit N → ∞, the expected value of the Wasserstein distance
reduces to the Wasserstein distance between source and target statistics.

lim
N→∞

µ̄ = µs, lim
N→∞

σ̄2 = σ2
s , (45)

⇒ lim
N→∞

E[W 2
2] = σ2

t + σ2
s − 2σtσs + (µt − µs)2 = W 2

2

(
µs, σ

2
s , µt, σ

2
t

)
. (46)

Limiting case µt = µs and σ2
t = σ2

s When source and target domain coincide, and the statistics
σ2
s = σ2

t and µs = µt are known, then the source target mismatch is not an error source.

However, one might assume that source and target domain are different even though they actually
coincide. In this case, proceeding with our proposed strategy and using the statistics µ̄ and σ̄2,
the bounds on the expected Wasserstein distance follow from setting σ2

t to σ2
s and µt to µs in

32

Proposition 1.

µ̄ =
N

N + n
µt +

n

N + n
µ̂t, σ̄

2 =
N

N + n
σ2
t +

n

N + n
σ̂2
t , L ≤ E[W 2

2] ≤ U

L = σ2
t

(
2N2 + 4Nn−N + 2n2

(N + n)2
− 2

√
1− 1

N + n

)
,

U = L+ σ2
t

n− 1

2(N + n)2

(
N + χ2

1−α/2,n−1

N + n

)−3/2
.

(47)

It could also be the case that the equality of source and target statistics is known but the concrete
values of the statistics are unknown. In our model, this amounts to setting the number of pseudo
samples N to zero and assuming that source and target statistics are equal. Setting N = 0 in equation
(47) and keeping n finite yields

L = 2σ2
t

(
1−

√
1− 1

n

)
, U = L+ σ2

t

n− 1

2n2

(
χ2
1−α/2,n−1

n

)−3/2
. (48)

D.6 Bounds on the normalized Wasserstein distance

The Wasserstein distance (cf. §A.1) between the interpolating statistics µ̄, σ̄2 and the target statistics
can also be normalized by a factor of σ−2s . Because σ−2s is constant, the bounds on the expectation
value of the unnormalized Wasserstein distance discussed in the previous subsections just have to be
multiplied by σ−2s to obtain bounds on the normalized Wasserstein distance (cf. §A.2):

L

σ2
s

≤ W̃ 2
2 = W 2

2

(
µ̄

σs
, ,
σ̄2

σ2
s

,
µt
σs
,
σ2
t

σ2
s

)
=

1

σ2
s

W 2
2 (µ̄, σ̄2, µt, σ

2
t) ≤ U

σ2
s

. (49)

33

E Full list of models evaluated on IN

The following lists contains all models we evaluated on various datasets with references and links to
the corresponding source code.

E.1 Torchvision models trained on IN

Weights were taken from https://github.com/pytorch/vision/tree/master/
torchvision/models

1. alexnet [67]

2. densenet121 [15]

3. densenet161 [15]

4. densenet169 [15]

5. densenet201 [15]

6. densenet201 [15]

7. googlenet [16]

8. inception_v3 [17]

9. mnasnet0_5 [18]

10. mnasnet1_0 [18]

11. mobilenet_v2 [19]

12. resnet18 [20]

13. resnet34 [20]

14. resnet50 [20]

15. resnet101 [20]

16. resnet152 [20]

17. resnext50_32x4d [21]

18. resnext101_32x8d [21]

19. shufflenet_v2_x0_5 [22]

20. shufflenet_v2_x1_0 [22]

21. vgg11_bn [23]

22. vgg13_bn [23]

23. vgg16_bn [23]

24. vgg19_bn [23]

25. wide_resnet101_2 [24]

26. wide_resnet50_2 [24]

E.2 Robust ResNet50 models

1. resnet50 AugMix [30] https://github.com/google-research/augmix

2. resnet50 SIN+IN [28] https://github.com/rgeirhos/texture-vs-shape

3. resnet50 ANT [29] https://github.com/bethgelab/game-of-noise

4. resnet50 ANT+SIN [29] https://github.com/bethgelab/game-of-noise

5. resnet50 DeepAugment [36] https://github.com/hendrycks/imagenet-r

6. resnet50 DeepAugment+AugMix [36] https://github.com/hendrycks/imagenet-r

34

https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/google-research/augmix
https://github.com/rgeirhos/texture-vs-shape
https://github.com/bethgelab/game-of-noise
https://github.com/bethgelab/game-of-noise
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r

E.3 SimCLRv2 models [27]

We used the checkpoints from https://github.com/google-research/simclr and converted
them from TensorFlow to PyTorch with https://github.com/tonylins/simclr-converter,
commit ID: 139d3cb0bd0c64b5ad32aab810e0bd0a0dddaae0.

1. resnet50 FT100 SK=0 width=1

2. resnet101 FT100 SK=0 width=1

3. resnet152 FT100 SK=0 width=1

E.4 Robust ResNext models [21]

Note that the baseline resnext50_32x4d model trained on ImageNet is available as part of the
torchvision library.

1. resnext50_32x4d WSL [26] https://github.com/facebookresearch/WSL-Images/blob/
master/hubconf.py

2. resnext101_32x4d WSL [26] https://github.com/facebookresearch/WSL-Images/blob/
master/hubconf.py

3. resnext101_32x8d Deepaugment+AugMix [36] https://github.com/hendrycks/
imagenet-r

E.5 ResNet50 with Group Normalization [40]

Model weights and training code was taken from https://github.com/ppwwyyxx/
GroupNorm-reproduce

1. resnet50 GroupNorm

2. resnet101 GroupNorm

3. resnet152 GroupNorm

E.6 ResNet50 with Fixup initialization [39]

Model weights and training code was taken from https://github.com/hongyi-zhang/Fixup/
tree/master/imagenet. For training, we keep all hyperparameters at their default values and note
that in particular the batchsize of 256 is a sensitive parameter.

1. resnet50 FixUp

2. resnet101 FixUp

3. resnet152 FixUp

35

https://github.com/google-research/simclr
https://github.com/tonylins/simclr-converter
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/ppwwyyxx/GroupNorm-reproduce
https://github.com/ppwwyyxx/GroupNorm-reproduce
https://github.com/hongyi-zhang/Fixup/tree/master/imagenet
https://github.com/hongyi-zhang/Fixup/tree/master/imagenet

