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Abstract

In recent years, artificial neural networks have achieved state-of-the-art perfor-
mance for predicting the responses of neurons in the visual cortex to natural stimuli.
However, they require a time consuming parameter optimization process for accu-
rately modeling the tuning function of newly observed neurons, which prohibits
many applications including real-time, closed-loop experiments. We overcome
this limitation by formulating the problem as K-shot prediction to directly infer a
neuron’s tuning function from a small set of stimulus-response pairs using a Neural
Process. This required us to developed a Factorized Neural Process, which embeds
the observed set into a latent space partitioned into the receptive field location and
the tuning function properties. We show on simulated responses that the predictions
and reconstructed receptive fields from the Factorized Neural Process approach
ground truth with increasing number of trials. Critically, the latent representation
that summarizes the tuning function of a neuron is inferred in a quick, single
forward pass through the network. Finally, we validate this approach on real neural
data from visual cortex and find that the predictive accuracy is comparable to —
and for small K even greater than — optimization based approaches, while being
substantially faster. We believe this novel deep learning systems identification
framework will facilitate better real-time integration of artificial neural network
modeling into neuroscience experiments.

1 Introduction

There is a long and rich history of modeling the response of visual cortex neurons to stimuli extending
back to the work of Hubel and Wiesel on simple and complex cells [1]. In recent years, artificial
neural networks (ANNs) have achieved state-of-the-art performance predicting neural responses to
natural stimuli [2–11]. These models are accurate enough that the stimuli that maximally excite a
neuron can be computed in silico, and when tested in vivo indeed drive neurons effectively [11, 12].
However, these approaches place the computational burden of optimizing network parameters after
extensive data from a neuron has been collected, which prohibits their use in real-time closed-loop
experiments. To avoid this optimization step, we wanted a model that can predict the response
of a novel neuron to any stimulus, conditioned on a set of K observed stimulus-response pairs –
essentially performing K-Shot prediction on neural responses.
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Garnelo et al. [13] aptly describe how Neural Processes (NPs) can help solve this problem: “Meta-
learning models share the fundamental motivations of NPs as they shift workload from training
time to test time. NPs can therefore be described as meta-learning algorithms for few-shot function
regression”. NPs achieve this by embedding input and output measurements into a latent space that
maps to a space of functions, essentially learning the distribution over functions and a method to infer
the posterior over functions given limited samples [13–15].

A significant advance in modeling visual responses with ANNs was using convolutional neural
networks with a factorized readout between the tuning function’s location and properties [4, 7].
We found that NPs struggle to learn the space of tuning functions from stimulus-response samples
without such a factorized representation. Thus, we developed a Factorized Neural Process (FNP),
which is composed of stacking multiple NPs. A key insight for this was that by passing the latent
variable computed by early layers to deeper layers, in addition to the observations, we could obtain a
factorized latent space while retaining the representational power and efficiency of NPs. We used
a two-layer FNP applied to visual responses, where the first NP produces a latent variable for the
tuning function’s location that the second NP uses to infer the tuning function’s properties. We found
that a FNP trained on simulated data generalizes to new neurons, successfully inferring the tuning
function’s location and properties and predicting the responses to unseen stimuli. An FNP trained on
neural responses from the mouse primary visual cortex made predictions with comparable accuracy
to state-of-the-art approaches, and made these predictions almost 100 times faster.

In short, our contributions in this work include: 1 We reformulate the problem of predicting the
response of neurons to visual stimuli as a K-shot regression problem, removing the time consuming
step of optimizing network parameters for each newly acquired neuron. 2 We develop a Factorized
Neural Process that embeds the observed stimuli-response pairs into a latent space representing the
tuning function that is partitioned into location and tuning function properties. 3 We train this
Factorized Neural Process for Neural Processes end-to-end on simulated data and show it approaches
the ground truth predictions as the size of the observation set increases. 4 We found that this
approach performs comparably to state-of-the-art predictive models on responses from mouse visual
cortex neurons while improving estimation speed by multiple orders of magnitude. The code is
available at https://github.com/peabody124/fnp_neurips2020.

2 Neural Processes for Neural Processes

The core steps that allow a NP to efficiently meta-learn a K-shot regression model are (1) encoding
each element from a set of observed input-output observations into a representation space, (2) aggre-
gating the elements in that representation space (typically by taking the mean) to produce a sufficient
statistic of the observed set, (3) a conditional decoder that maps the aggregated representation to a
function used for prediction of new observations, and (4) training this over many different sets of
observations from different sample functions, i.e. meta-learning the distribution over tuning functions
[14]. Our approach is largely based on Garnelo et al. [13], which expanded on Garnelo et al. [14]
by introducing a stochastic variable used by the conditional decoder. NPs were further extended to
include attention in Kim et al. [15], which we do not use in this work.

First, we describe the data generation process we seek to model: Let F : X → Y be the space of all
tuning functions that map from images to neural responses. An individual neuron corresponds to a
sample function, f ∈ F , from which we getK observationsOK = {(xi, yi)}i<Ki=0 where yi ∼ f(xi),
x ∈ X and y ∈ Y . The model should maximize the likelihood of a new input-output observation,
called the target: pθ(yt|xt, OK) with yt ∼ f(xt), i.e. K-shot prediction.

Following the formulation of stochastic NPs [13], this predictions is split into encoding the set
of observations into a posterior distribution over a latent space, pθ(z|OK) with z ∈ RD, and
conditionally decoding it with a predictive distribution conditioned on the latent variable and target
input, pθ(yt|xt, z):

pθ(yt|xt, OK) =

∫
pθ(yt|xt, z) pθ(z|OK) dz (1)

The encoder computes the distribution over z using a learned embedding of individual observations
that are aggregated into a sufficient statistic: sK = 1

K

∑
i<K hθ(xi, yi), with hθ : X × Y → RD2

implemented as a neural network. The dimensionality of this statistic, D2, does not need to match
the dimensionality of the latent variable, D, but it is used to parameterize a distribution for the
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Figure 1: Overview of K-shot neural prediction using a Factorized Neural Process.

latent variable, such as Gaussian: pθ(z|OK) ∼ N (µθ(sK), σθ(sK)). The decoder function is
also implemented as a distribution that is parameterized by the output of a neural network, in our
case determining the mean rate of a Poisson distribution λθ : X × RD → R and pθ(yt|xt, z) ∼
Poisson[λθ(xt, z)].

Our formulation differs from [14, 15] in a few details. First, they used a variational approximation to
train the encoder. Because of our approach to efficient K-Shot training, described below in Section 2.7,
that involves predicting single samples we can directly optimize Eq. 1 with samples of z. Second,
and more critically, for NPs applied to image completion, individual observations are pixels with
X ∈ R2 and hθ was implemented with an MLP [13–15]. To apply this to direct regression of neural
responses, hθ must embed entire stimulus-response associations where the domain of X are images
Rwidth×height.

We attempted to apply a NP to predicting visual neuron response by including a convolutional neural
network (CNN) in hθ to extract the relative stimulus features and optimizing Eq. 1. However, we
could not achieve good predictive performance despite trying numerous architecture alterations. This
motivated us to develop the Factorized Neural Process.

2.1 Factorized Neural Process

Prior work using neural networks to model visual responses has demonstrated the importance of
identifying the location of a receptive field before trying to model the exact properties. For example,
early work used a two stage approach which first computed a spike-triggered average to localize the
receptive fields and then stimuli were cropped and centered on this location to build predictive models
[6]. In Section 2.4 we make a link between a spike-triggered average and our position encoder. When
using CNNs to predict neural responses, Klindt et al. [4] showed it is helpful to factorize the tuning
function into a location and the tuning properties within that location. We used a similar approach to
factor our latent space into visual location and response properties.

Aggregation in NPs should be invariant to permutation of the order of elements in the set, because
changing the order inputs are presented to the function should not change the representation of that
function (at least under the generative model of our data stated above). Aggregation using the mean,
such as used in the NPs above, is one aggregation operation with this property. Zaheer et al. [16]
demonstrated that it applies to a class of deeper network architectures, which they termed Deep Sets.
These assure permutation invariance when composing multiple operations, provided each operation
(layer) transforms and passes individual elements from a set along with the result of an invariant
aggregation operation (such as mean). This insight encouraged us to develop a FNP by composing
multiple NPs.

In a FNP, the encoder, hlθ, for each layer l receives both observed samples and the latent variable
samples from lower layers, zl (which is an empty set for the first layer):

slK :=
1

K

∑
i<K

hlθ(xi, yi,
{
zjK

}j<l
), zlK ∼ plθ

(
zlK |slK

)
(2)

The decoder receives all the latent variables, which can be marginalized out to give the predictive
model for a L layer FNP:

pθ(yt|xt, OK) =

∫
z

pθ

(
yt|xt,

{
zjK

}) l<L∏
l=0

plθ
(
zl|slK

)
dz0K ...dz

L−1
K (3)
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2.2 FNP Model for Visual Responses

Following the motivation above, we use a two-layer FNP to partition the latent space into the tuning
function position, zpK , and the tuning function properties within that location, zwK (Figure 1). The
factorized probability (following Eq. 3) is thus:

pθ(yt|xt, OK) =

∫
zp
K ,z

w
K

pθ (yt|xt, zwK , z
p
K) pθ (zwK |swK) pθ (zpK |s

p
K) dzpKdzwK (4)

The latent space acquires this factorization from the inductive bias in the architecture of the conditional
decoder (Section 2.6), which uses a similar factorization between tuning position and properties as
Klindt et al. [4]. With this conditional decoder, we empirically found certain architectures helped the
encoders learn an appropriate embedding for these latent variables, which we describe in Sections
2.4 and 2.5. All components use a common Group Convolutional Neural Network to compute the
relevant features space from the stimuli, which we will describe next.

2.3 Group Convolutional Network

One of the most striking features of V1 neurons are their sensitivity to stimulus orientation [1],
so CNN-based models expend a great deal of capacity representing the same feature at different
orientations. Cohen and Welling [17, 18] developed Group Convolutional Neural Networks (G-
CNNs), which are rotationally equivariant network that reuse parameters across orientations, similarly
to how CNNs reuse parameters across space. G-CNNs have improved performance on a number
of image classifications tasks [19–21] including the modeling of visual cortex neurons [22, 23].
They have also been combined with a DenseNet [24] architecture when modeling histology images
[25]. Our stimuli were grayscale images, X ∈ RHx×Wx that were transformed to a reduced spatial
dimension with multiple feature maps: gθ : RHx×Wx → RH×W×C .

Our G-CNN Dense Blocks followed the bottleneck DenseBlock architecture of [24] (other than using
group convolutions) of 1) Batch Normalization [26], 2) non-linearity, 3) 1×1 group convolution, 3)
Batch Normalization, 4) non-linearity, 5) spatial group convolution, 6) concatenating this output to
the inputs. Specific architectural parameters are described in the experiments. Following Bekkers
et al. [20] and Veeling et al. [25], images were passed through an initial layer that lifted them into
a group representation, followed by the G-CNN Dense Blocks, and a subsequent projection from
the group representation (i.e. a tensor with an additional dimension representing orientation) down
to a representation over image space by flattening the group and channel dimensions together. An
additional 1×1 convolution [27, 28] reduce this to the final channel depth. We found using the
G-CNN DenseNet architecture resulted in faster and more reliable training than a standard CNN,
although we did not perform exhaustive searches over architectures.

2.4 Tuning function position encoder

The first layer is designed to produce a distribution for a latent variable centered at the location of the
tuning function, zpK . The latent has two dimensions corresponding to horizontal and vertical position.
To compute this, we found it was important to preserve spatial structure from gθ(x) when performing
the set aggregation, which we did by averaging the embedded observations into an image analogous
to a trainable, non-linear, spike-triggered average:

spK =
1

K

∑
i<K

hpθ ([gθ(xi), yigθ(xi), yi]) , spK ∈ RH×W

Where [·, ·] concatenates on the channel dimension (and tiles non-spatial values, such as yi, along
the spatial dimension) and hpθ is a series of 1×1 convolutions that outputs a single channel; the first
two 1×1 retain the same channel depth as gθ followed by an ELU activation [29]. We interpret
softmax(spK) as a spatial distribution over the receptive field location of a given neuron. In order
to sample a single spatial readout point, we separately computed the marginal means µ(spK) and
standard deviations σ(spK) of softmax(spK), and used them to parameterize a truncated normal
distribution N|, cut at the same height and width as the output of the G-CNN (H ×W ):

zpK ∼ N| (µ(spK),σ(spK)) , zpK ,µ(spK),σ(spK) ∈ R2.

We also experimented with learning an MLP to transform spK → (µ,σ). While this worked, it was
much slower to train than the Gaussian approximation of softmax(spK) we used.
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2.5 Tuning function properties encoder

The second layer of the FNP computes the tuning function’s properties at the location determined by
the first layer:

swK =
1

K

∑
i<K

hwθ ([T (gθ(xi) , z
p
K), yi]) , (5)

where T : RH×W×C × R2 → RC is a differentiable operator that performs interpolation on the
image features at a particular location to preserve differentiability with respect to the spatial location.
We use a spatial transformer layer for that [30]. Essentially, (5) selects the features computed by
the G-CNN at a given location, concatenates them with the response, and passes them through a
two-layer MLP, hwθ .

We split swK = (µwK ,Σ
w
K) into a mean and covariance (more specifically the vectorized lower

triangular component of the covariance) and use it to parameterize the distribution over the D-
dimension latent variable for tuning function’s properties within that location:

zwK ∼ N (µwK ,Σ
w
K), zwK ,µK ∈ RD.

2.6 Conditional Decoder

The latent variables for tuning function position and tuning function properties, zpK , zwK , summarize
the observed set of stimulus-response pairs, OK . They define a K-shot regression tuning function
that we use them to predict the response to new target stimuli, xt.

λ(xt, z
p
K , z

w
K) := ELU ([T (gθ (xt) , z

p
K) , 1] · uθ (zwK)) + 1

Similar to prior work [4, 5, 7, 11, 22], our response predictor uses a linear weighting of the features
from the convolutional network selected at the neuron’s tuning function’s location. Because we
sometimes used a different dimensional representation for tuning function’s properties than the
feature map, we used an additional two-layer MLP, uθ to match the dimensions. We also found this
additional transformation of the latent improved performance, although did not experiment with this
extensively. The predictive response probabilities for yt are modeled as a Poisson distribution with
mean rate λ:

pθ(yt|xt, zpK , z
w
K) ∼ Poisson[λ(xt, z

p
K , z

w
K)] (6)

2.7 Efficient K-Shot Training

Each training sample for this model consists of a set of K stimuli and responses with an additional
target pair and it must be trained over many sets. If implemented naïvely and sampling a range of set
sizes, training is computationally prohibitive as it requires passing thousands of images through the
G-CNN per sample. Additionally, in this case the loss is determined by the prediction of a single
sample, thus the gradient is fairly noisy. To greatly accelerate training we used two techniques.

The first technique was including the responses of multiple neurons to the same stimuli in a minibatch.
This allowed the computation of gθ(x) to be reused across the neurons, at the expense of GPU memory.
This memory is proportional to the number of stimuli × the number of neurons, because Eq. 5 is
computed in parallel for all neurons and must be stored during each step to allow backpropagation
through the G-CNN.

The second technique was for a set of T trials, we computed the K-shot prediction for every set size
up to T − 1 by predicting the response on the next trial. Because aggregation involved computing the
mean outputs along the set dimension, this could be efficiently implemented with a cumulative sum
that excluded the current element divided by the set size. This allowed us to test T − 1 predictions
rather than 1 for each training set with almost no increase in computation. Thus the per-neuron loss
function we minimized was:

L(θ) = −
T−1∑
k=0

log p(yk+1|xk+1, Ok)

With the likelihood approximated by the FNP described in Eq. 4. We do not compute the full
marginalization in Eq. 4 but estimate it using Monte Carlo samples from zwk and zpk drawn for each
value of k. The distribution parameters are optimized using the reparameterization trick [31].
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Figure 2: Predictive accuracy versus ground truth. Legend indicates the maximum observation set
used during training. See Predictive Accuracy versus observation set size for the definition of ∆LL.

In prior work with NPs (that had much less computationally expensive inputs), the full T trials were
randomly partitioned into the observation and target set to learn generalization over set size [13–15].
We leave it to future work to determine if this can be efficiently done with our model, for example
generating multiple splits for the encoded values in a single batch, and if it improves training speed
or final performance.

3 Experiments with Simulated Neural Responses

We first validated that using our approach, a trained FNP could infer the ground truth tuning function
from simulated simple and complex visual neurons. Experiments using different architectures and
hyperparameters were managed using DataJoint [32]. Please see the Appendix for the architecture
details used in the presented results.

3.1 Simulated responses

Simulated neurons had a linear component to their receptive field that was generated using a Gabor
kernel, kφ, with parameters φ including x and y location, orientation, frequency, width, phase offset
and scale. Cells could either be simple or complex. Responses for simple cells were generated with
the inner product between the receptive field kernel and the stimuli, followed by a ReLU non-linearity.
Complex cells used an energy-based model which involved a second kernel, kφ+, with the same
parameters as the first but with the phase offset by π/2. Responses were then sampled from a Poisson
distribution for a given cell.

λφ(x) =

{
ReLU (x · kφ) , if φ simple√

(x · kφ)
2

+ (x · kφ+)
2 , if φ complex.

, ri ∼ Poisson[λφ(xi)]

To simulate the finite data available in real experiments, we used a fixed set of 5000 neuron parameters
and 10,000 stimuli in the training data and a different set in the validation data. Stimuli were sampled
from ImageNet downsampled to 16× 16 or 32× 32 [33, 34]. Each sample used a random stimulus
order with a fixed number of trials.

3.2 Predictive Accuracy versus observation set size

To quantify the predictive performance of this model for different numbers of observations, we
computed the difference between the negative log-likelihood of the response under the K-shot
predictive distribution to the ground truth model. This was averaged across many neurons:

∆LLk = 〈− log pθ (yk+1|xk+1, Ok) + log p (yk+1|λφ (xk+1))〉

We found that as as the size of the observation set increased, the predictive accuracy improved up to
several hundred observations and then began to saturate. We also found that increasing the maximum
set size used during training had a slight benefit in the asymptotic performance when increasing
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from 512 to 1024 trials, but with little benefit beyond this (Fig. 2). These were averaged over three
different seeds, with each fit producing similar performance.

Despite trying a number of architecture variations, we could not get the asymptotic performance
to quite reach ground truth. However, it performed well, with a ∆LL of 0.4 corresponding to a
correlation coefficient between the ground truth mean response, λφ (x), and the model prediction
mean, λK=1024(x), of 0.8.

3.3 Latent variables accurately capture the tuning function

We confirmed the information about the tuning function was correctly factorized by computing the
correlation coefficient between the latent variable for location, zpk, and the ground truth location of
the kernel, kφ. We found that with only 64 observations there was a correlation of 0.8, and it reached
nearly 1.0 with 256 observations (Fig. 3a).

We then asked if the latent variables (zpK , z
w
K) from 1024 observations were sufficient to reconstruct

the receptive field. First, we computed receptive fields as the gradient of the tuning function
conditioned on the latent variables:

RFK∇ = ∇x ([T (gθ(x), zpK) , 1] · uθ(zwK))

For simple cells the gradient showed a good correspondence to the kernel used to generate the
responses, kφ (Fig. 3b). For complex cells it was in the correct location, but did not show the same
structure as the kernel. This is expected as complex cells are not well described by a single kernel.
We then computed the maximally exciting images (MEIs) for a neuron similarly to Walker et al. [11]
by maximizing the predicted response, conditioned on the latent variables sampled after an increasing
number of observations:

MEIK = arg max
x

([T (gθ(x), zpK) , 1] · uθ(zwK))− κ‖x‖

With κ = 0.01 to regularize the images. As desired, MEIs computed with more observations
converged towards the ground truth kernels, with complex cells having an anticipated random phase
offset.

Figure 3: a) the correlation between the location latent variable, zpk , and the ground truth for increasing
observations. b) Reconstruction of receptive fields (RF). Each row corresponds to a different cell
with the bottom half being complex cells. The first column shows the ground truth kernels, the
second column is the RF reconstructed by the gradient method, and the remaining block shows the
maximally exciting images computed using increasing numbers of observations. Ground truth kernels
of complex cells use pseudocolor to reflect the two phases in the energy model and any reconstruction
of this energy model with the same orientation and location is equally valid, regardless of the phase.
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Figure 4: Left: The difference between the predictive log likelihood and ground truth as the dimension
of the tuning function properties latent variable increases. Each line reflects an increasingly complex
RF space. Right: The correlation between the ground truth mean firing rate and the predicted mean
firing rate for the same data.

3.4 Latent dimensionality and stimulus complexity

We also studied how important the tuning function property’s latent dimension D, with zwK ∈ RD,
was to the predictive performance by increasing it from 2 to 64 (all experiments above used 64).
We did this with different complexities of the simulated receptive fields by reducing the number of
parameters in φ that were randomized. In all experiments the orientation and location of the tuning
function was randomized (φ ∈ R3). We increased the tuning function dimensions by then additionally
randomizing (in order): frequency, width, phase offset, simple only versus simple and complex cells,
and scale. Because this analysis involved refitting many models, we performed it with 16×16 stimuli.
We found the performance improved with greater model capacity (tuning function properties latent
dimension) and this impact was much more pronounced for more complex (higher dimensional)
tuning functions (Fig. 4). Randomizing the phase offset produced the greatest reduction in predictive
accuracy, although performance still remained quite good with high correlations between the model
predictions and ground truth. Encouragingly, including complex cells did not produce a significant
change in performance.

4 Experiments with real neural responses

We next tested our approach on real visual responses recorded with the same experimental paradigm
as in Walker et al. [11], and found it had a comparable predictive performance to optimization-based
approaches. The data consists of pairs of neural population responses and grayscale visual stimuli
sampled and cropped from ImageNet, isotropically downsampled to 64× 36 px, with a resolution of
0.53 ppd (pixels per degree of visual angle). The neural responses were recorded from layer L2/3 of
the primary visual cortex (area V1) of the mouse, using a wide field two photon microscope. A single
scan contained the responses of approximately 5000–9000 neurons to up to 6000 images.

We trained an FNP on 57,533 mouse V1 neurons collected across 19 different scans and tested it on
1000 neurons from a hold-out scan (i.e. never seen during training). During testing, we assigned the
latent variables assigned to their mean values: zpK := µ(spK) and zwK := µwK , and used these in Eq. 6.
We measured the K-shot predictive accuracy for each neuron as the correlation between the predicted
mean from the conditional decoder, λ(xt, z

p
K , z

w
K), and the real responses, yt, for the remaining

trials. In agreement with synthetic data, the predictive accuracy improves rapidly with the first several
hundred trials and continues to improve with additional observations (Fig. 5). We compared the
performance of our FNP to an optimization based approach similar to Klindt et al. [4], adapted for
mouse V1, which we reference as Per Neuron Optimization (PNO). We measured the predictive
performance of PNO similarly to FNP, on the same 1000 neurons with the readout optimized with K
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Figure 5: Performance of a FNP for K-shot prediction for new neurons compared a traditional
approach with per-neuron optimization (PNO) for K up to 1000 trials

trials and used to predict the response to the remaining stimuli. Excitingly, FNP performs well and
with 1k images is almost as accurate as PNO (which is optimized for those individual cells), and even
outperforms it for smaller numbers of observations (Fig. 5). This likely arises because the FNP learns
the prior distribution over tuning functions, which has a greater influence with less data. Please see
the Appendix for details of both FNP and PNO fitting and testing.

These experiments also demonstrated the speed improvements for inferring the tuning function of
a newly recorded neurons that FNP was designed for. While fitting the FNP to the training data
took 6 days using two V100 GPUs, computing the latent variables for one thousand neurons with
K = 1000 took only 250 ms on a 1080Ti. This is in comparison to PNO which takes from 20 s to
compute the readout using a pretrained CNN (Supplementary Table 6.3). Thus an FNP is two orders
of magnitude faster, enabling real-time inference of tuning functions within the time of a single
stimulus presentation.

5 Discussion

Using a Factorized Neural Process, we are able to learn a distribution over tuning functions that
can be conditioned on a set of observed stimulus-response pairs and predict the response to novel
stimuli. We first focused on simulated data from simple and complex cells where we could compare
the inferred tuning functions to the ground truth. Importantly, the model performed equally well
when including complex cells, which is not possible for classical techniques like spike-triggered
average that similarly accumulate sufficient statistics. The fact that the asymptotic log likelihood for
predictions did not reach the ground truth also indicates there is room to increase the model capacity,
although the correlation between the ground truth and model predictions exceeded 0.8. Following
prior work [4, 7, 11, 22], we restricted ourselves to a decoder that was a factorized linear readout
on output of gθ, but learning a more powerful decoder could also improve the capacity. We then
tested our approach on data from the mouse primary visual cortex in response to natural images. We
found the trained FNP predicted the responses to test data with comparable accuracy as a model
specifically optimized for those neurons, and even exceeded the performance when conditioned on
less than 500 trials. Additionally, the FNP made these predictions orders of magnitudes more quickly
than an optimization-based approach, thus opening the door to real-time, closed-loop inference of
tuning functions updated after every stimulus presentation.

This work was motivated by real-time experimentation, but during an experiment the best way to
know how a neuron responds to a stimulus is to measure it. The real need is using the observations
to rapidly generate stimuli to test a hypothesis. We envision combining a FNP for rapid inference
with a generator network that takes the latent representations as input and is trained in silico prior
to experiments to generate stimuli to illicit a maximal responses or reduce the uncertainty in the
latent representations. We believe this general approach of training a more powerful model prior to
experiments that is capable of rapid, real-time inference will be a powerful tool for the neuroscience
community, and that this approach using FNPs will facilitate it.
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Broader Impact

We hope this approach will be useful to the Neuroscience community and that Factorized Neural
Processes may have even broader applications for modeling functions. The ability to perform real-
time, closed-loop experiments and to performances inferences with less data may reduce the amount
of time to record from animals or the number of experimental sessions. We do not believe this
methodology or the demonstrated application will disadvantage anyone.
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