
We thank all reviewers for their comments and feedback. In what follows we try to address the main concerns, we encourage1

reviewers to read all our responses as some are related.2

R1: We thank R1 for appreciating our results and efforts put in our work. • Our theory does not make any assump-3

tion on the underlying graph except that it is connected. Thus, Theorem 1 holds for grids of different sizes or graphs4

other than grids. In the next figure, we sampled an Erdős-Rényi graph (used in analysis of social networks, e.g., “Ran-5

dom graph models of social networks” by Newman et al. (2002)) of 100 nodes with edge probability of 0.1382 (3 logn/n).6
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The rest of the setting follows that of Section 4.2.7

As discussed in Section 4.1, we have that ∆ > 08

with high probability, and we can observe in the9

left plot how the addition of a single constraint10

boosts the probability of exact recovery. The right11

plot shows the sampled graph with red and blue12

nodes indicating the true −1 and +1 labels re-13

spectively. • One intuitive way to understand the14

improvement is by looking at eq.(7) in page 5.15

Without the constraint, the problem is equivalent16

to that of [8]. However, when the linear constraint17

is added, in the dual problem of the SDP relax-18

ation, it appears a new term N that is a PSD19

matrix, hence, it cannot lower the value of λ2(E[M ]). We will add a line in the manuscript explaining this.20

R2: • The only part we borrowed from [8] is the lower bound on λ2(E[M ]) and the setting of the dual variable V from [1] and21

[8]. The remaining part of our work (Lemma 1, adaption of Lemma 1 into Theorem 1, Corollary 1, Discussion on connections to22

eigenvalue gap in the Laplacian matrix and Fiedler vector, and Empirical evidence) is novel as noted by R1, R3. •We disagree that23

the overall content is difficult to follow. R1, R3 and R4 stated that the presentation was mostly clear. • Regarding the meaning of the24

constraint, let us provide an example how it can be interpreted as imposing demographic parity at inference time. Let the nodes in the25

graph represent individuals, where the label indicates the community a person belongs to. Then, let a be a vector of some resources26

that ideally should be split equally to both communities. The constraint can be interpreted as forcing a labeling to create two27

communities where the sum of resources is equal for each community. Finally, we also argue that even if the constraint is seen as side28

information, it does not imply that the combinatorial problem is easier, in fact, as discussed in Remark 1, it is still NP-hard in general.29

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Nodes: 36

SDP

SDP + 1F

SDP + 2F

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Nodes: 256

SDP

SDP + 1F

SDP + 2F

We can empirically corroborate that in some sce-30

narios the addition of a single constraint does not31

improve the probability of exact recovery. In the32

next figure, we follow a same setting to that of33

Section 4.2, where now the graphs are grids of34

6x6 (left) and 16x16 (right). We observe how35

the addition of a single constraint does not help36

exact recovery as suggested by our discussion on37

∆ = 0 for square grids, however, the addition38

of two constraints can help square grids to be39

recovered exactly.40

R3: • Regarding the major concern, we confirm that ρ was set to be an arbitrary finite number, in this case −n. Consider for a41

moment that we leave ρ unset, then in eq.(7) the goal would be to find a lower bound to λ2(E[M ]− ρN). Given that E[M ] andN42

are PSD matrices, then intuitively the optimal setting for ρ would be −∞ as it would maximize the increase in λ2(E[M ]− ρN).43

However, computationally speaking, one can note that such assignment will never happen. Instead, the SDP solver will try to set ρ a44

finite value as low as possible as to observe λ2(Λ) > 0. This would be equivalent to fix ρ and let the Fiedler vector π2 scale as to45

maximize ε1. For example, let the Fiedler vector have a norm of
√
n, then in such case ε1 will tend to∞ as n goes to∞. This short46

discussion will be added to the manuscript for further clarity. •We remark that even if the ground truth is fair, it does not imply47

that the outcome will be fair as it is known in the fairness literature that the choice of model or algorithm has an effect in the final48

outcome. Thus, while the “relaxed” setting proposed by R3 is interesting and appealing as future work, we believe our work is a49

first step in the line of considering fairness constraints even in the scenario of having fair data. • Note that while square grids have50

∆ = 0, this only implies that a single constraint is not sufficient to observe improvement in exact recovery. However, given that the51

multiplicity of the algebraic connectivity in square grids is 2, two constraints can help exact recovery, as shown in the figures above52

(please see bullet 3 for R2). •We thank R3 for his thorough review and feedback. We plan to incorporate the small suggestions to53

improve the paper presentation. Finally, regarding the KKT conditions, complementary slackness is an optimality condition that is54

fulfilled by Y and hence used to derive the sufficient condition on uniqueness.55

R4: • As noted by R4, the constraint can have interpretations other than fairness and would be interesting, as future work, to study56

other fairness notions or interpretations. However, our results would still apply whenever one has linear equality constraints. •57

We disagree that the results are very close to that of non-fairness version. R1 and R3 note that we provide important connections58

between linear constraints and the eigenvalue gap of the Laplacian (∆) along with the Fiedler vector π2, which to the best of our59

knowledge was unknown before. • Pure theoretical work has historically been welcomed to NeurIPS, which can be noted in the60

conference website. In addition, our work was submitted to the Statistical Learning Theory category as our main contribution is in61

the understanding of the effect of fairness constraints at inference time.62


