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Abstract

We investigate the exploration of an unknown environment when no reward function
is provided. Building on the incremental exploration setting introduced by Lim and
Auer [1], we define the objective of learning the set of c-optimal goal-conditioned
policies attaining all states that are incrementally reachable within L steps (in
expectation) from a reference state sq. In this paper, we introduce a novel model-
based approach that interleaves discovering new states from sy and improving the
accuracy of a model estimate that is used to compute goal-conditioned policies to
reach newly discovered states. The resulting algorithm, DisCo, achieves a sample

complexity scaling as O(L°Sy.I'r . Ae~?2), where A is the number of actions,
SL+e is the number of states that are incrementally reachable from sg in L + ¢
steps, and I'f ;. is the branching factor of the dynamics over such states. This
improves over the algorithm proposed in [1] in both € and L at the cost of an extra
I'1 4 factor, which is small in most environments of interest. Furthermore, DisCo
is the first algorithm that can return an & /¢y, -optimal policy for any cost-sensitive
shortest-path problem defined on the L-reachable states with minimum cost ¢y, .
Finally, we report preliminary empirical results confirming our theoretical findings.

1 Introduction

In cases where the reward signal is not informative enough — e.g., too sparse, time-varying or
even absent — a reinforcement learning (RL) agent needs to explore the environment driven by
objectives other than reward maximization, see [e.g., 2, 3, 4, 5, 6]. This can be performed by designing
intrinsic rewards to drive the learning process, for instance via state visitation counts [7, 8], novelty
or prediction errors [9, 10, 11]. Other recent methods perform information-theoretic skill discovery
to learn a set of diverse and task-agnostic behaviors [12, 13, 14]. Alternatively, goal-conditioned
policies learned by carefully designing the sequence of goals during the learning process are often
used to solve sparse reward problems [15] and a variety of goal-reaching tasks [16, 17, 18, 19].

While the approaches reviewed above effectively leverage deep RL techniques and are able to
achieve impressive results in complex domains (e.g., Montezuma’s Revenge [15] or real-world
robotic manipulation tasks [19]), they often lack substantial theoretical understanding and guarantees.
Recently, some unsupervised RL objectives were analyzed rigorously. Some of them quantify how
well the agent visits the states under a sought-after frequency, e.g., to induce a maximally entropic
state distribution [20, 21, 22, 23]. While such strategies provably mimic their desired behavior via
a Frank-Wolfe algorithmic scheme, they may not learn how to effectively reach any state of the
environment and thus may not be sufficient to efficiently solve downstream tasks. Another relevant
take is the reward-free RL paradigm of [24]: following its exploration phase, the agent is able to
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compute a near-optimal policy for any reward function at test time. While this framework yields
strong end-to-end guarantees, it is limited to the finite-horizon setting and the agent is thus unable to
tackle tasks beyond finite-horizon, e.g., goal-conditioned tasks.

In this paper, we build on and refine the setting of incremental exploration of [1]: the agent starts at
an initial state sg in an unknown, possibly large environment, and it is provided with a RESET action
to restart at sg. At a high level, in this setting the agent should explore the environment and stop
when it has identified the tasks within its reach and learned to master each of them sufficiently well.
More specifically, the objective of the agent is to learn a goal-conditioned policy for any state that
can be reached from sg within L steps in expectation; such a state is said to be L-controllable. Lim
and Auer [1] address this setting with the UcbExplore method for which they bound the number of
exploration steps that are required to identify in an incremental way all L-controllable states (i.e.,
the algorithm needs to define a suitable stopping condition) and to return a set of policies that are
able to reach each of them in at most L + € steps. A key aspect of UcbExplore is to first focus on
simple states (i.e., states that can be reached within a few steps), learn policies to efficiently reach
them, and leverage them to identify and tackle states that are increasingly more difficult to reach.
This approach aims to avoid wasting exploration in the attempt of reaching states that are further
than L steps from s or that are too difficult to reach given the limited knowledge available at earlier
stages of the exploration process. Our main contributions are:

* We strengthen the objective of incremental exploration and require the agent to learn e-optimal
goal-conditioned policies for any L-controllable state. Formally, let V*(s) be the length of the
shortest path from sg to s, then the agent needs to learn a policy to navigate from sg to s in at
most V*(s) + ¢ steps, while in [1] any policy reaching s in at most L + ¢ steps is acceptable.

* We design DisCo, a novel algorithm for incremental exploration. DisCo relies on an estimate of
the transition model to compute goal-conditioned policies to the states observed so far and then
use those policies to improve the accuracy of the model and incrementally discover new states.

* We derive a sample complexity bound for DisCo scaling as' O(L?Sr,.I'; . Ac™2), where A
is the number of actions, Sy . is the number of states that are incrementally controllable from
sp in L + € steps, and I'z . is the branching factor of the dynamics over such incrementally
controllable states. Not only is this sample complexity obtained for a more challenging objective
than UcbExplore, but it also improves in both € and L at the cost of an extra 'y, . factor, which
is small in most environments of interest.

* Leveraging the model-based nature of DisCo, we can also readily compute an € /¢y, -optimal
policy for any cost-sensitive shortest-path problem defined on the L-controllable states with
minimum cost ¢p;,. This result serves as a goal-conditioned counterpart to the reward-free
exploration framework defined by Jin et al. [24] for the finite-horizon setting.

2 Incremental Exploration to Discover and Control
In this section we expand [1], with a more challenging objective for autonomous exploration.

2.1 L-Controllable States

We consider a reward-free Markov decision process [25, Sect. 8.3] M := hS, A, p, sgi. We assume a
finite action space A with A = jA] actions, and a finite, possibly large state space S for which an
upper bound S on its cardinality is known, i.e., jSj  S.” Each state-action pair (s,a) 2 S Ais
characterized by an unknown transition probability distribution p( js, a) over next states. We denote
by T'so := maxses0 o KFp(s'js, a)gs0es0Ko the largest branching factor of the dynamics over states in
any subset S’ S. The environment has no extrinsic reward, and so 2 S is a designated initial state.

A deterministic stationary policy 7 : S ¥ A is a mapping between states to actions and we denote
by II the set of all possible policies. Since in environments with arbitrary dynamics the learner may
get stuck in a state without being able to return to sy, we introduce the following assumption.”

'We say that (") = @(" ) if there are constants a, b, such that F(") a " log® ™ .

Lim and Auer [1] originally considered a countable, possibly infinite state space; however this leads to a
technical issue in the analysis of UcbExplore (acknowledged by the authors via personal communication and
explained in App. E.3), which disappears by considering only finite state spaces.

3This assumption should be contrasted with the finite-horizon setting, where each policy resets automatically
after H steps, or assumptions on the MDP dynamics such as ergodicity or bounded diameter, which guarantee
that it is always possible to find a policy navigating between any two states.
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Assumption 1. The action space contains a RESET action s.t. p(sojs, RESET) = 1 forany s 2 S.

We make explicit the states where a policy 7 takes action RESET in the following definition.

Definition 1 (Policy restricted on a subset). For any S’ S, a policy = is restricted on S’ if
m(s) = RESET for any s 2 S’. We denote by TI(S') the set of policies restricted on S'.

We measure the performance of a policy in navigating the MDP as follows.

Definition 2. For any policy 7 and a pair of states (s,s') 2 S2, let 7,(s ¥ §') be the (random)
number of steps it takes to reach s' starting from s when executing policy 7, i.e., T-(s ¥ §') :=
infft  0: sgp1 = §'js1 = s,m9. We also set vz(s ¥ ') := E[r:(s ¥ &)] as the expected
traveling time, which corresponds to the value function of policy m in a stochastic shortest-path
setting (SSP, [26, Sect. 3]) with initial state s, goal state s' and unit cost function. Note that we have
vr(s ¥ s') = 4+ when the policy 7 does not reach s’ from s with probability 1. Furthermore, for
any subset S’ S and any state s, we denote by

Vé(so ¥ s):= TreI{l_[i(Iéo)Uﬂ(So LN

the length of the shortest path to s, restricted to policies resetting to s from any state outside S’.

The objective of the learning agent is to control efficiently the environment in the vicinity of so. We
say that a state s is controlled if the agent can reliably navigate to it from sg, that is, there exists an
effective goal-conditioned policy — i.e., a shortest-path policy — from sg to s.

Definition 3 (L-controllable states). Given a reference state sg, we say that a state s is L-controllable
if there exists a policy m such that v:(so ¥ s) L. The set of L-controllable states is then

S, =1s2S :miﬁlvﬁ(SO 1) Lg (D
TE

We illustrate the concept of controllable states in Fig. | for L = 3. Interestingly, in the right figure,
the black states are not L-controllable. In fact, there is no policy that can directly choose which one
of the black states to reach. On the other hand, the red state, despite being in some sense further
from s than the black states, does belong to Sy.. In general, there is a crucial difference between the
existence of a random realization where a state s is reached from s in less than L steps (i.e., black
states) and the notion of L-controllability, which means that there exists a policy that consistently
reaches the state in a number of steps less or equal than L on average (i.e., red state). This explains
the choice of the term controllable over reachable, since a state s is often said to be reachable if there
is a policy 7 with a non-zero probability to eventually reach it, which is a weaker requirement.

Unfortunately, Lim and Auer [1] showed that in order to discover all the states in Sy, the learner may
require a number of exploration steps that is exponential in L or jSy j. Intuitively, this negative result
is due to the fact that the minimum in Eq. | is over the set of all possible policies, including those that
may traverse states that are not in Sy,.* Hence, we similarly constrain the learner to focus on the set
of incrementally controllable states.

Definition 4 (Incrementally controllable states S;”). Let  be some partial order on S. The set
S} of states controllable in L steps w.rt.  is defined inductively as follows. The initial state s

*We refer the reader to [1, Sect. 2.1] for a more formal and complete characterization of this negative result.



belongs to S;° by definition and if there exists a policy w restricted on s’ 2 S;* : s’ sg with

ve(so @ s) L, thens 2 S;. The set S;’ of incrementally L-controllable states is defined as
Sy’ := [<S}, where the union is over all possible partial orders.

By way of illustration, in Fig. | for L = 3, it holds that S;” = S in the left figure, whereas
S;7 = fsog 6 S, in the right figure. Indeed, while the red state is L-controllable, it requires
traversing the black states, which are not L-controllable.

2.2 AX Objectives

We are now ready to formalize two alternative objectives for Autonomous eXploration (AX) in MDPs.

Definition 5 (AX sample complexity). Fix any length L 1, error threshold € > 0 and confidence
level 6 2 (0,1). The sample complexities Cax, (A, L,,0) and Cax> (A, L, €,5) are defined as the
number of time steps required by a learning algorithm A to identify a set K S;” such that with
probability at least 1 0, it has learned a set of policies ¥r;Qscxc that respectively verifies the
following AX requirement

(AXL) 8s2K,vr (so ¥'s) L+e
(AX?) 852K, ur(so ¥s) Vie(so ¥ s)+e.

Designing agents satisfying the objectives defined above introduces critical difficulties w.r.t. standard
goal-directed learning in RL. First, the agent has to find accurate policies for a set of goals (i.e.,
all incrementally L-controllable states) and not just for one specific goal. On top of this, the set
of desired goals itself (i.e., the set S;7) is unknown in advance and has to be estimated online.
Specifically, AXy is the original objective introduced in [1] and it requires the agent to discover all
the incrementally L-controllable states as fast as possible.” At the end of the learning process, for
each state s 2 S;” the agent should return a policy that can reach s from s in at most L steps (in
expectation). Unfortunately, this may correspond to a rather poor performance in practice. Consider a
state s 2 S;” such that V i (so ¥ s) L,i.e., the shortest path between s to s following policies

restricted on S;” is much smaller than L. Satisfying AX;. only guarantees that a policy reaching s
in L steps is found. On the other hand, objective AX” is more demanding, as it requires learning
a near-optimal shortest-path policy for each state in S;”. Since V& b (so ¥ s) L and the gap

between the two quantities may be arbitrarily large, especially for states close to sg and far from the
fringe of S;7, AX” is a significantly tighter objective than AX;. and it is thus preferable in practice.

We say that an exploration algorithm solves the AX problem if its sample complexity Cax (A, L, €, §)
in Def. 5 is polynomial in jKj, 4, L, ¢! and log(S). Notice that requiring a logarithmic dependency
on the size of S is crucial but nontrivial, since the overall state space may be large and we do not
want the agent to waste time trying to reach states that are not L-controllable. The dependency
on the (algorithmic-dependent and random) set K can be always replaced using the upper bound
jKi S’ .. which is implied with high probability by both AX. and AX? conditions. Finally,
notice that the error threshold € > 0 has a two-fold impact on the performance of the algorithm. First,
¢ defines the largest set Sy’ _ that could be returned by the algorithm: the larger ¢, the bigger the
set. Second, as ¢ increases, the quality (in terms of controllability and navigational precision) of the
output policies worsens w.r.t. the shortest-path policy restricted on S;”.

3 The DisCo Algorithm

The algorithm DisCo — for Discover and Control — is detailed in Alg. I. It maintains a set K
of “controllable” states and a set U of states that are considered “uncontrollable” so far. A state s
is tagged as controllable when a policy to reach s in at most L + ¢ steps (in expectation from sg)
has been found with high confidence, and we denote by 7, such policy. The states in U are states
that have been discovered as potential members of S;”, but the algorithm has yet to produce a policy
to control any of them in less than L + ¢ steps. The algorithm stores an estimate of the transition
model and it proceeds through rounds, which are indexed by k and incremented whenever a state in
U gets transferred to the set K, i.e., when the transition model reaches a level of accuracy sufficient

>Note that we translated in the condition in [1] of a relative error of L™ to an absolute error of ™, to align it
with the common formulation of sample complexity in RL.
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Algorithm 1: Algorithm DisCo

Input: Actions A, initial state So, confidence parameter 2 (0; 1), error threshold " > 0,L 1 and
(possibly adaptive) allocation function : P(S) ¥ N (where P(S) denotes the power set of S).

Initialize k := 0, Ko := fsog, Up := fg and a restricted policy s, 2 (Ko).

Set " := minf"; 1g and continue := True.

while continue do

Setk +=1. //new round

// < Sample collection on K

For each (s;a) 2 Kk A, execute policy s until the total number of visits Nk (S; a) to (S; @) satisfies
Nk(s;a) nk:= (Kg).Foreach(s;a) 2 Kk A,adds’ p(js;a)toUgifs®2 K.

// > Restriction of candidate states u

Compute transitions px (s’js; @) and Wi := ' 2 Uk : 9(s;a) 2 Kk~ A; pe(sjs; a) L I'_'ZZ

(o]

if Wi is empty then
L Set continue := False. //condition STOP1
else
// fi Computation of the optimistic policies on K
for each state s° 2 Wy do .
L Compute (Bs0; €50) := OVIssp(Ki; A; s% Ny 50 ) see Alg.3in App. D.1.
Let s¥ 1= arg ming,y, 8s(So) and & := By (So).
if 8 > L then
L Set continue := False. //condition STOP2
else
// fl State transfer from U to K
Set Kk+1 := Kk [ Y9, Uks1 :=Uknfs’gand o = egy.

// Policy consolidation: computation on the final set K
Set K := k.
for each state S 2 Kk do

| Compute (8Bs; €s) := OVIssp(Kk; A;S; Nk 1)

Output: the states S in Kk and their corresponding policy s := €s.

to compute a policy to control one of the states encountered before. We denote by Ky, (resp. Ug) the
set of controllable (resp. uncontrollable) states at the beginning of round k. DisCo stops at a round K
when it can confidently claim that all the remaining states outside of Kx cannot be L-controllable.

At each round, the algorithm uses all samples observed so far to build an estimate of the transition
model denoted by p(s'js,a) = N(s,a,s’)/N(s,a), where N(s,a) and N (s, a,s’) are counters for
state-action and state-action-next state visitations. Each round is divided into two phases. The first is
a sample collection phase. At the beginning of round k, the agent collects additional samples until
nk := ¢(Ky) samples are available at each state-action pair in K, A (step <). A key challenge lies
in the careful (and adaptive) choice of the allocation function ¢, which we report in the statement of
Thm. 1 (see Eq. 19 in App. D.4 for its exact definition). Importantly, the incremental construction of
K. entails that sampling at each state s 2 Ky, can be done efficiently. In fact, for all s 2 Kj, the agent
has already confidently learned a policy 7, to reach s in at most L + ¢ steps on average (see how such
policy is computed in the second phase). The generation of transitions (s, a, s’) for (s,a) 2 K A
achieves two objectives at once. First, it serves as a discovery step, since all observed next states s’
not in Uy, are added to it — in particular this guarantees sufficient exploration at the fringe (or border)
of the set Kj. Second, it improves the accuracy of the model p in the states in Ky, which is essential
in computing near-optimal policies and thus fulfilling the AX” condition.

The second phase does not require interacting with the environment and it focuses on the computation
of optimistic policies. The agent begins by significantly restricting the set of candidate states in each
round to alleviate the computational complexity of the algorithm. Namely, among all the states in Uy,
it discards those that do not have a high probability of belonging to S;” by considering a restricted
set Wy Uy (step >). In fact, if the estimated probability pj, of reaching a state s 2 Uy from any of
the controllable states in K, is lower than (1~ &/2)/L, then no shortest-path policy restricted on
Ky could get to s from sg in less than L + ¢ steps on average. Then for each state s’ in Wy, DisCo
computes an optimistic policy restricted on K, to reach s’. Formally, for any candidate state s’ 2 W/,
we define the induced stochastic shortest path (SSP) MDP M, with goal state s” as follows.
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Definition 6. We define the SSP-MDP M, := hS, A (), ¢}, pj, i with goal state s', where the action
space is such that A} (s) = A for all s 2 K, and A (s) = TRESETQ otherwise (i.e., we focus on
policies restricted on Ky,). The cost function is such that for all a 2 A, ¢;.(s',a) = 0, and for any
s €& ', ¢.(s,a) = 1. The transition model is p},(s'js’,a) = 1 and p).( js,a) = p( js, a) otherwise.®

The solution of Mj, is the shortest-path policy from s to s’ restricted on Kj,. Since pj, is unknown,
DisCo cannot compute the exact solution of M, but instead, it executes optimistic value iteration
(OVIssp) for SSP [27, 28] to obtain a value function u s and its associated greedy policy 7 restricted
on Ky, (see App. D.1 for more details).

The agent then chooses a candidate goal state s’ for which the value u' := % (s0) is the smallest.
This step can be interpreted as selecting the optimistically most promising new state to control.
Two cases are possible. If at L, then s' is added to K, (step fl), since the accuracy of the
model estimate on the state-action space K A guarantees that the policy 7,y is able to reach
the state s in less than L + ¢ steps in expectation with high probability (i.e., s' is incrementally
(L + €)-controllable). Otherwise, we can guarantee that S;> K, with high probability. In the
latter case, the algorithm terminates and, using the current estimates of the model, it recomputes an
optimistic shortest-path policy 7, restricted on the final set K for each state s 2 Kg (step ). This
policy consolidation step is essential to identify near-optimal policies restricted on the final set Kx
(and thus on S;7): indeed the expansion of the set of the so far controllable states may alter and refine
the optimal goal-reaching policies restricted on it (see App. A).

Computational Complexity. Note that algorithmically, we do not need to define M, (Def. 6) over
the whole state space S as we can limit it to Ki [ fs’g, i.e., the candidate state s’ and the set K, of so
far controllable states. As shown in Thm. 1, this set can be significantly smaller than S. In particular
this implies that the computational complexity of the value iteration algorithm used to compute the
optimistic policies is independent from S (see App. D.9 for more details).

4 Sample Complexity Analysis of DisCo

We now present our main result: a sample complexity guarantee for DisCo for the AX? objective,
which directly implies that AX is also satisfied.

Theorem 1. There exists an absolute constant o > 0 such that for any L 1, ¢ 2 (0,1], and
d 2 (0,1), if we set the allocation function ¢ as

4A 2. -
p: X ¥« (L (;)Q(X)log2(LSA>+Li_XJ log(LSA>>, 2)

€d 15

with ©(X) = max (s ayexxa (Sgoer VD(is, a) (1 p(s]s, a)))2, then the algorithm DisCo
(Alg. 1) satisfies the following sample complexity bound for AX?

~ <L5FL+€SL+€A + LBS%+8A>

Cax?(DisCo, L,e,8) = O 5 3)
€ €

where St =Sy, j and

Trie = ma; kfp(s'js,a)gs0cs: Ko Srpie
b (s,a)esi)j—--x_/l p(s'ls,a)g B bt

is the maximal support of the transition probabilities p( js, a) restricted to the set ST’ ..

Given the definition of AX?, Thm. | implies that DisCo 1) terminates after Cox?(DisCo, L, €, §)
time steps, 2) discovers a set of states K S;” with jKj  Sp.., 3) and for each s 2 K outputs a
policy 7, which is e-optimal w.r.t. policies restricted on S;7, i.e., v (so ¥ s) VS*L! (so ¥ s)+e.
Note that Eq. 3 displays only a logarithmic dependency on S, the total number of states. This property
on the sample complexity of DisCo, along with its S-independent computational complexity, is
significant when the state space S grows large w.r.t. the unknown set of interest S;”.

°In words, all actions at states in K behave exactly as in M and suffer a unit cost, in all states outside K
only the reset action to So is available with a unit cost, and all actions at the goal s° induce a zero-cost self-loop.



4.1 Proof Sketch of Theorem 1
While the complete proof is reported in App. D, we now provide the main intuition behind the result.

State Transfer from U to K (step fl). Let us focus on a round & and a state s 2 U, that gets
added to K. For clarity we remove in the notation the round k, goal state s’ and starting state s.
We denote by v and v the value functions of the candidate policy 7 in the true and optimistic model
respectively, and by © the quantity w.r.t. which 7 is optimistically greedy. We aim to prove that
st 2 S17. . (with high probability). The main chain of inequalities underpinning the argument is
a b c
oo Fi4T 4 Sha+s g “)
2 2 2

where (c) is guaranteed by algorithmic construction and (b) stems from the chosen level of value
iteration accuracy. Inequality (a) has the flavor of a simulation lemma for SSP, by relating the
shortest-path value function of a same policy between two models (the true one and the optimistic
one). Importantly, when restricted to K these two models are close in virtue of the algorithmic design
which enforces the collection of a minimum amount of samples at each state-action pair of K =~ A,
denoted by n. Specifically, we obtain that

. .. ~¢ [LT LZjKj . e
ju vJ:O( n’C +¥)7 with T'x:= max Akfp(s']s,a)gsoe,gko jK].

n (s,a)eL X

Note that I'ic is the branching factor restricted to the set K. Our choice of n (given in Eq. 2) is then
dictated to upper bound the above quantity by £/2 in order to satisfy inequality (a). Let us point
out that, interestingly yet unfortunately, the structure of the problem does not appear to allow for
technical variance-aware improvements seeking to lower the value of n prescribed above (indeed the
AX framework requires to analytically encompass the uncontrollable states U into a single meta state
with higher transitional uncertainty, see App. D for details).

Termination of the Algorithm. Since S;” is unknown, we have to ensure that none of the states in
S;’ are “missed”. As such, we prove that with overwhelming probability, we have S;”  Kx when
the algorithm terminates at a round denoted by K. There remains to justify the final near-optimal
guarantee w.r.t. the set of policies II(S;”). Leveraging that step  recomputes the policies (7s)sefc
on the final set K, we establish the following chain of inequalities

@ g b g - g (

. ~ ~ ) (d)
v BT S+T g tutg Vi e Vir +e, (5)

where (a) and (b) are as in Eq. 4, (c) leverages optimism and (d) stems from the inclusion S;> K.

Sample Complexity Bound. The choice of allocation function ¢ in Eq.2 bounds nx which is
the total number of samples required at each state-action pair in Kz A. We then compute a
high-probability bound v on the time steps needed to collect a given sample, and show that it scales
as O(L). Since the sample complexity is solely induced by the sample collection phase (step <), it
can be bounded by the quantity v nxjKxjA. Putting everything together yields the bound of Thm. 1.

4.2 Comparison with UcbExplore [1]

We start recalling the critical distinction that DisCo succeeds in tackling problem AX?, while
UcbExplore [1] fails to do so (see App. A for details on the AX objectives). Nonetheless, in the
following we show that even if we restrict our attention to AXy, for which UcbExplore is designed,
DisCo yields a better sample complexity in most of the cases. From [1], UcbExplore verifies’

~(L%Sp, . A
Cax, (UcbExplore, L,¢,d) = O(L;> (6)
€
Eq. 6 shows that the sample complexity of UcbExplore is linear in Sy., while for DisCo the

dependency is somewhat worse. In the main-order term 6(1 /€?) of Eq. 3, the bound depends linearly
on Sy, . but also grows with the branching factor I'f,; ., which is not the “global” branching factor

"Note that if we replace the error of ** for AX;. with an error of L™ as in [1], we recover the sample complexity
of ® L3S +~A=" stated in [I, Thm. 8].



but denotes the number of possible next states in Sy, _ starting from S;7, . While in general we only
have I'ry.  Spi.,in many practical domains (e.g., robotics, user modeling), each state can only
transition to a small number of states, i.e., we often have ', ;. = O(1) as long as the dynamics is
not too “chaotic”. While DisCo does suffer from a quadratic dependency on Sy . in the second

term of order O(1/¢), we notice that for any S;,. L3¢ ~2 the bound of DisCo is still preferable.
Furthermore, since fore ¥ 0, Sp. tends to Sy, the condition is always verified for small enough ¢.

Compared to DisCo, the sample complexity of UcbExplore is worse in both € and L. As stressed in
Sect. 2.2, the better dependency on ¢ both improves the quality of the output goal-reaching policies as
well as reduces the number of incrementally (L + ¢)-controllable states returned by the algorithm. It

is interesting to investigate why the bound of [1] (Eq. 6) inherits a O(s~3) dependency. As reviewed
in App. E, UcbExplore alternates between two phases of state discovery and policy evaluation.
The optimistic policies computed by UcbExplore solve a finite-horizon problem (with horizon
set to Hycg). However, minimizing the expected time to reach a target state is intrinsically an
SSP problem, which is exactly what DisCo leverages. By computing policies that solve a finite-
horizon problem (note that UcbExplore resets every Hycg time steps), [1] sets the horizon to
Huycp = dL + L?c~'e, which leads to a policy-evaluation phase with sample complexity scaling

as O(Hycse2) = O(¢~). Since the rollout budget of O(¢~3) is hard-coded into the algorithm,
the dependency on € of UcbExplore’s sample complexity cannot be improved by a more refined
analysis; instead a different algorithmic approach is required such as the one employed by DisCo.

4.3 Goal-Free Cost-Free Exploration on S;” with DisCo

A compelling advantage of DisCo is that it achieves an accurate estimation of the environment’s
dynamics restricted to the unknown subset of interest S;”. In contrast to UcbExplore which needs
to restart its sample collection from scratch whenever L, € or some transition costs change, DisCo
can thus be robust to changes in such problem parameters. At the end of its exploration phase in
Alg. 1, DisCo is able to perform zero-shot planning to solve other tasks restricted on S;”, such
as cost-sensitive ones. Indeed in the following we show how the DisCo agent is able to compute
an € /cmin-optimal policy for any stochastic shortest-path problem on S;” with goal state s 2 S}’
(i.e., s is absorbing and zero-cost) and cost function lower bounded by cp,i, > 0.

Corollary 1. There exists an absolute constant 3 > 0 such that for any L 1, ¢ 2 (0,1] and
Cmin 2 (0,1] verifyinge S (L cmin), with probability at least 1§, for whatever goal state
s 2 S;7 and whatever cost function ¢ in [cyin, 1], DisCo can compute (after its exploration phase,
without additional environment interaction) a policy Ts . whose SSP value function V. verifies

Voue(s0 ¥ 8)  Vir(so ¥ s)+——,

Cmin
where Vi (sg ¥ s) :=E [Z;(lsoﬁs) c(se,m(se)) | s1 = so} is the SSP value function of a policy
and Vgl_! (SQ

s) == mingcn(s®) Vr(so ¥ s) is the optimal SSP value function restricted on St

It is interesting to compare Cor. | with the reward-free exploration framework recently introduced by
Jin et al. [24] in finite-horizon. At a high level, the result in Cor. | can be seen as a counterpart of [24]
beyond finite-horizon problems, specifically in the goal-conditioned setting. While the parameter L
defines the horizon of interest for DisCo, resetting after every L steps (as in finite-horizon) would
prevent the agent to identify L-controllable states and lead to poor performance. This explains the
distinct technical tools used: while [24] executes finite-horizon no-regret algorithms, DisCo deploys
SSP policies restricted on the set of states that it “controls” so far. Algorithmically, both approaches
seek to build accurate estimates of the transitions on a specific (unknown) state space of interest: the
so-called “significant” states within H steps for [24], and the incrementally L-controllable states ST~
for DisCo. Bound-wise, the cost-sensitive AX? problem inherits the critical role of the minimum cost
Cmin 10 SSP problems (see App. C and e.g., [27, 28, 29]), which is reflected in the accuracy of Cor. |
scaling inversely with ¢,i,. Another interesting element of comparison is the dependency on the size
of the state space. While the algorithm introduced in [24] is robust w.r.t. states that can be reached
with very low probability, it still displays a polynomial dependency on the total number of states S.
On the other hand, DisCo has only a logarithmic dependency on S, while it directly depends on
the number of (L + ¢)-controllable states, which shows that DisCo effectively adapts to the state
space of interest and it ignores all other states. This result is significant since not only Sy, . can be
arbitrarily smaller than S, but also because the set S’, _ itself is initially unknown to the algorithm.



Figure 2: Proportion of the incrementally-controllable states identi ed bpisCo andUcbExplore
in a confusing chain domain fdr = 4:5and" 2 f 0:1; 0:4; 0:8g. Values are averaged ove0runs.

5 Numerical Simulation

In this section, we provide the rst evaluation of algorithms in the incremental autonomous exploration
setting. In the implementation of boisCo and UcbExplore, we remove the logarithmic and
constant terms for simplicity. We also boost the empirical performantiebExplore in various
ways, for example by considering con dence intervals derived from the empirical Bernstein inequality
(see B(]) as opposed to Hoeffding as done ifj.[We refer the reader to App. F for details on the
algorithmic con gurations and on the environments considered.

We compare the sample complexity empirically achieve®®sCo andUcbExplore. Fig. 2 depicts

the time needed to identify all the incrementdllycontrollable states when = 4:5 for different
values of", on a confusing chain domain. Note that the sample complexity is achieved soon
after, when the algorithm can con dently discard all the remaining states as non-controllable (it
is reported in Tab. 2 of App. F). We observe tiasCo outperformsUcbExplore for any value

of ". In particular, the gap in performance increase’s dscreases, which matches the theoretical

improvement in sample complexity fro@(" 2) for UcbExplore to &(" ?) for DisCo. On a
second environment — the combination lock problem introducedih{ we notice thaDisCo
again outperform&JcbExplore, as shown in App. F.

Another important feature ddisCois that it targets the tighter objectivex?, whereadJcbExplore

is only able to ful Il objective AX . and may therefore elect suboptimal policies. In App. F we show
empirically that, as expected theoretically, this directly translates into higher-quality goal-reaching
policies recovered bpisCo.

6 Conclusion and Extensions

Connections to existing deep-RL methodsWhile we primarily focus the analysis @fisCoin the

tabular case, we believe that the formal de nition2of problems and the general structurdp$Co

may also serve as a theoretical grounding of many recent approaches to unsupervised exploration.
For instance, it is interesting to draw a parallel betwBé&Co and the ideas behind Go-Explori&].
Go-Explore similarly exploits the following principles: (1) remember states that have previously been
visited, (2) rst return to a promising state (without exploration), (3) then explore from it. Go-Explore
assumes that the world is deterministic and resettable, meaning that one can reset the state of the
simulator to a previous visit to that cell. Veery recentiyr], the same authors proposed a way to relax

this requirement by training goal-conditioned policies to reliably return to cells in the archive during
the exploration phase. In this paper, we investigated the theoretical dimension of this direction, by
provably learning such goal-conditioned policies for the set of incrementally controllable states.

Future work. Interesting directions for future investigation includgDeriving a lower bound for the

AX problems;2) IntegratingDisCo into the meta-algorithnNM [33] which deals with incremental
exploration forAX_ in non-stationary environment3) Extending the problem to continuous state
space and function approximatiof); Relaxing the de nition of incrementally controllable states and
relaxing the performance de nition towards allowing the agent to have a non-zero but limited sample
complexity of learning a shortest-path policy for any state at test time.



Broader Impact

This paper makes contributions to the fundamentals of online learning (RL) and due to its theoretical
nature, we see no ethical or immediate societal consequence of our work.
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Appendix

A Autonomous Exploration Objectives

We recall the twoAX objectives stated in Def.5: for any length 1, error threshold > 0
and con dence level 2 (0; 1), the sample complexitieSAXL(A; L;"; ) andGax2(A;L;"; ) are
de ned as the number of time steps required by a learning algothmidentify a seK S |
such that with probability at leadt , it has learned a set of policiéssgsok that respectively
veri es the following AX requirement

(AXL) 8s2K;v (sp! s) L+,
(AX?) 8s2K;v (so! S) VS?L (so! s)+ ™

As we explain in Sect.4,DisCo (Alg.1) succeeds in tackling conditiomx®, whereas
UcbExplore [1], which is designed to tackle conditigxX , is unable to tackléXx?. Note that the
algorithmic design otUJcbExplore entails that it computes policies whose value function implicitly
targetsVy’,, with K, the current set of controllable states. Whne(- is always smaller thah,
Uchprore cannot provide any tightness guarantees \Mf t.since it has no guarantee that the tran-
sition dynamics are estimated well enoughtan An additional challenge with whicbicbExplore

fails to cope is the fact that the d€t increases over time and thus unlocks new states and paths,
which may be useful to improve its shortest-path policies for previously discovered states.

To better understand this phenomenon, let us introduce an alternative comd(ﬁentighter than
AX, but looser thaiX?— which stems from the challenge of not knowip in advance. We
de ne Ax°as follows for any state in S| , the objective is to nd a pohcy that can reaslrom s
in at mostL%+ " steps on average, whetd:=minfl L :s2S| g, ie.,

(AX) 8s2K;v (so! s) L% ",whereL®:=minfl L:s2S/ g

As mentioned in I, Corollary 9], it is possible to run separate instancesJobExplore with
increasing_, =1+ n" fromn =0 tod-te(i.e., untiinsatisesL, 1 L Ly). Thisveries
the conditionax® at the cost of a Worsened dependency on BahdL as follows

7
Caxo(UcbExplore;L;" )= @ #
While AX®is tighter thanAX , it may be arbitrarily loose compared A ?, which illustrates the
intrinsic limitations inUcbExplore design.UcbExplore incrementally expands a set of “control-
lable” stateK: starting withKg = f spg, at timet a states is added tK; whenevelUcbExplore
can con dently assess that it managed to learn a policy reachindess tharL steps. Since at
time t UcbExplore can only consider policies restricted to the controllable stiteseven the
shortest-path policy computed to reacht timet may not be'-optimal w.r.t. to thevholesetS|
Indeed, every time a state is addedtpothis state may unlock new paths which may, for previously
controllable states, allow for better shortest-path policies restricted on the updaitégl 3 illustrates
this behavior, where the stagaunlocks a fast path from to x which should be taken ip instead of
resetting tasp. Consequently, if the agent seeks to tackle conditigri, it must have the faculty to
backtracki.e., continuously update both its belief of the viciniy)(and its notion of optimality on
the vicinity (V,¢). Unfortunately,UcbExplore can only compute policies targetivgf with K the
currentset of controllable states, but it fails to be accurate enougévisesuch policies as the set of

o >0 - >0 >0 Figure 3:LetX := fspg[f xgandY := X [f yg. For any
| 1, suppose that frorg, the agent reachesin | steps with
probability 1=2, or reachey in | + 1 steps with probability
e 1=2. If the goal state i, constraining an agent to use policies
restricted taX (i.e., that reset tgp outside ofX ) is detrimental
S sincex can actually be reached in 1 step frgmmFormally, we
o >® can easily prove thaty (so ! x) W (so! x)= I+1,
which grows arbitrarily as increases.
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AX | UcbExplore [1] DisCo (Alg. 1)

LS, +-A
el A

Table 1: Comparison be-
tween the sample complexity
L5 ,..S ..A L3S2..A of UcbExplore and DisCo,
a0 | @ L'S+rA 1@ g L depending on the condition
" AX_, AX°or AX”.

AX. | ®

AX? Unable

controllable stateK is expanded over time. In contrast, in virtue of its allocation functig&qg. 2)
which enables to track the number of collected samplés m&reasesDisCois able to improve its
candidate shortest-path policies during the consolidation°stejhen the nal setK is considered.

The following general and simple statement captures how the expansion of the state space of interest
may alter and re ne the optimal policy restricted on it.

Lemma 1. For any two setX Y and any statex 2 X, we have,’(so ! x) W (so! X).
Moreover, the gap between the two quantities may be arbitrarily large.

Proof. The inequality is immediate from Asm. 1. Fig. 3 shows the gap may be arbitrarily lafge.

Finally, we summarize all the sample complexity results in Tab. 1.

B Ef cient Computation of Optimistic SSP Policy

In this section we recall from[7, 28] how to ef ciently compute an optimistic stochastic shortest-path
(SSP) policy.

B.1 Computation of Optimal Policy in Known SSP

This section details the procedure to ef ciently compute an (arbitrarily near-) optimal politya
knownSSP instance with positive costs and which admits at least one proper policy. Recall that a
proper policyis a policy whose execution starting from any non-goal state eventually reaches the
goal state with probability one [26].

De nition 7 (SSP-MDP) An SSP-MDP is an MDRM = (SY; A;¢; p; ¢) whereSY is the set of
non-goal states witf5Yj = SY, A is the set of actionqy is the transition function andis the cost
function. The goal stats¥ 2 SV is zero-cost and absorbing, i.@(s¥js’;a) =1 andc¢(s¥;a) =0
foranya2 A.

The (possibly unboundedialue function(also called expected cost-to-go) of any policy?2
starting from state, is de ned as

K1 (s¢! s¥)

V (so))=E  cs; (s1)) so =E c(st; (st)) o :

t=1 t=1
Assumption 2. We restrict the attention to SSP-MIDWP (see Def. 7) such that, for arfg; a) 2
SY A ,c(s;a) 2 [Cmin; 1] with cmin > 0. (Note that having positive costs ensures that for any
non-proper policy there exists a statewithV (s) =+ 1 .) Moreover, we assume that there exists
at least one proper policy (i.e., that reaches the goal sséteith probability one starting from any
state inSY).

The procedur&sspconsiders the following inputs: a gosll, non-goal stateSY, a known model
p and a known cost functiogy with (non-goal) costs lower bounded byj, > 0. VIsspoutputs a
vectoru (of sizejSYj) and a policy which is greedy w.r.t. the vectar.

The optimal Bellman operator is de ned as follows for any vect@nd any non-goal state2 SY
n 0

Lu(s) :=min  ¢(s;a) + p(sYs; a)u(s? :
s02Sy
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Algorithm 2: Vlssp

Input: Non-goal state§Y, action seA, transitiongp, costsc and accuracy
Output: Value vectoru apd greedy policy o
DenelLu(s):=minan C(S;a)+ gy P(SYs;A)u(s9
Setup = Ogy andj =0
u; = Lug
while kUj +1 Uj ky, > do

L Uj +1 = LUJ' n

P [0}
Setu:= uj and (s) 2 argmin,,n C(S;A)+ sy P(SYs;A)U(SY) foranys 2 SY[f s¥g

Note that by de nition,V (8¥) = 0 for any . We perform a value iterationv() scheme over
this operator as explained in [e.§9, 34, 27]. Namely, we consider initial vectary := 0 and set
iterativelyu;+1 := Lu; (see Alg. 2). For a prede nedl precision > 0, the stopping condition is
reached for the rstiteratiop such thakuj.;  uj kg . The policy is then selected to be the
greedy policy w.r.t. the vectar := u;, i.e.,
n X o}
8s2SY[f ¢g; (s)2 argmin c(s;a) + p(sys; a)u(s? : (7)
a2A 5025 ¥
Importantly, whileu is not the value function of , both quantities can be related according to the
following lemma.
Lemma 2. Consider an SSP-MDM = (SY; A;sY;p;c) de ned as in Def. 7 and satisfying Asm. 2.
Let(u; )= VissSY;A;p; c, ) be the solution computed bt ssp. Denote by  the true value

function of and byV? =V ' = LV? the optimal value function. The following component-wise
inequalities hold

eu V? V.

* Ifthe VI precision level veries -, thenV 1+ Cfmn u.
Proof. The result can be obtained by adaptiag,[Lem. 4 & App. E]. For the rst inequality, given
that we consider the initial vectoy = 0, we know thaD  V? with V? = LV? by de nition. By
monotonicity of the operatdr [25, 26], we obtainu;  V? V. As for the second inequality, we
introduce the following Bellman operators of a deterministic polidpr any vectoru and states,

X
c(s; (s)+ p(sds; (s)u(sy;
s02S

ps )+ pTs (9)us):
0

s02S

L u(s):

T u(s):

>

Note that the SSP problem de ned by the operdtorsatis es Asm. 2 since i) it has positive costs
due to the condition ~ “2r- and ii) the fact thaM satis es Asm. 2 guarantees the existence of at
least one proper policy in the model We can write component-wise

(b)

T u =1Ly ‘—Q)Luj uj;
where (a) uses thatis the greedy policy w.r.jj and (b) stems from the chosen stopping condition
which yieldsL u; uj + . By monotonicity of the operatof , we have for allm > 0,

(T )™u; ;. The asymptotic convergence of the operator in an SSP problem satisfying Asm. 2
(see e.g.,46, Prop. 2.2.1]) guarantees that taking the limit  +1 vyieldsW u;, whereW is
de ned as the value function of policy in the modelp with  subtracted to all the costs, i.e.,
2 3
X(s)
W (s):= E4  (c(s; (3) Disi=sP=V () E[ (9);
t=1
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Figure 4: Optimistic Value Iteration for SSPYIssp).

where (s) denotes the (random) hitting time of policyto reach the goal starting from state
Moreover, we havenin E[ (S)] V (S) cmaxE[ (8)]. Putting everything together, we thus get

1 &V uj. Since 2, we ultimately obtain
1
\ u; 1+ uj;
Cm\n ln
where the last inequality uses the fact thd 1+ 2x holdsforany0 x 3. O

B.2 Computation of Optimistic Model in Unknown SSP

Consider an SSP problem de ned as in Asm. 2. Consider that, at any given stage of the learning
process, the agent is equipped witlfs; a) samples at each state-action pair. A method to compute
an optimistic modep is provided in [28], which we recall below.

Denote byp the current empirical average of transitiorf%sfs;a) = N(s;a;s)=N(s;a), and
setb?(sYs;a) := p(sYs;a)(l p(sYs;a)) as well asN* (s;a) := maxf1;N(s;a)g. For any
(s;a;8) 2 SY A S Y, the empirical Bernstein inequality}, 36] is leveraged to select the
following con dence intervals (with probability at least ) on the transition probabilities

S + .
2 ) . 6Iog 2SAN 7 (s;a)
b2(sYs; a) log 2SAN* (s; a) .

(s;a;8) :=2 N (s a) N*(s;a)

P
and (s;a;9) = gy (s;a;sY). The selection of the optimistic modglis as follows: the
probability of reaching the goal is maximized at every state-action pair, which implies minimizing
the probability of reaching all other states and setting them at the lowest value of their con dence
range. Formally, we set for gl5;a;s) 2SY A S Y,
n o}
g(sys;a) :=max p(sYs;a) (s;a;sY); O ;

P
andp(s¥js;a) := 1 <oos v B(sYs; ).
B.3 Combining the two: Optimistic Value Iteration for SSP (OVI ssp)
OVlssp rst computes an optimistic modg leveraging App. B.2, and it then runs thiéssp procedure
of App. B.1 inthe modep, i.e.,(8; €) = Viss{SY;A;sY; p; 0). This outputs an optimistic pafe; e)

composed of th&/| vectore and the policye that is greedy w.r.i in the modelp. The OVlssp
scheme is recapped in Fig. 4.

C Useful Result: Simulation Lemma for SSP

Consider a stochastic shortest-path (SSP) instance (see Def. 7) that satis es Asm. 2. We denote by
A = jAj the number of action§ = jSj the number of non-goal states2 S the (zero-cost and
absorbing) goal stat@ the unknown transitions andthe known cost function. We assume that
O<c(s;a) 1forall(s;a)2S A ,andsetmn :=Mmin g, c(s;a) > 0. We also se8®:= S[f gg.
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Recall that the goal state is zero-cost (icég; @) = 0) and absorbing (i.ep(gjg; @ = 1), and that
the value function of a policy amounts to the expected cumulative costs following this policy until
reaching the goal.

De nition 8. For any modep and > 0, we introduce the set of models closete.r.t. the™ ;-norm
on the non-goal states as follows

n
PP = pP2RS" A 5" g(s;a)2s A ;pYjs;a)2 ( SY; p(gigid) = 1;
0
ip(yis;a)  pyis; a)j
y2S
Lemma 3 (Simulation Lemma for SSP)Consider any modgd andp®2 P (P) such that, for each

model, there exists at least one proper policy w.r.t. the goal gfatonsider any policy thatis
proper inp®, with value function denoted BY°, such that the following condition is veri ed

kV%:  2Cmin: (8)
Then is proper inp (i.e., its value function verie¥ < +1 component-wise), and we have
2 kv%
8s6 g; V (s) 1+ 22070 v,
Crmin
and conversely,
0
8s6 g; VY(s) 1+ KV k1 V (s):
Crmin
Combining the two inequalities above yields
7 kv%?

kv V%,

in

Proof. The proof of Lem. 3 requires a result &ff] recalled in Lem. 4 and can be seen as a general-
ization of [28, Lem. B.4]. First, let us assume thais proper in the model®. This implies that its
value function, denoted by, is bounded component-wise. Moreover, for any non-goal stat§,

the Bellman equation holds as follows

X
Vs)=cfs; (N+  plyisi (HVAY)

e X
c(s; () + plyis; (VI +  (Avisi (8))  plyisi (NVAY):  (9)
y2S y2S

By successively using &lder's inequality and the facts thg? 2 P (P) andc(s; (S))  Cmin, We get

VI ol () K+ pGs G)TVO ds () 1 AT s 9 ve

n

1
Let us now introduce the vectt®:= 1 <Y1 "0 Then foralls 2 S,

Cmin
VAs)  ofs; (s)+ plis; (s)” V™

Hence, from Lem. 4, is properinp (i.e.,V < +1 ), and we have
KV %,

Cmin

vV v 1+2 ve (10)

where the last inequality stems from conditi@) and the fact thagl—x 1 + 2x holds for any

0 x % Conversely, analyzing Eg. 9 from the other side, we get
KV %,

in

VYs) cs; (s) 1+ + p(js; (s))”V°
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1
Let us now introduce the vectf®:= 1+ <Y ki "0 Then

VRs) (s (9)+ plis; (9)7 V2

We then obtain in the same vein as Lem. 4 (by leveraging the monotonicity of the Bellman operator
L U(s):= c(s; (s)+ p(js; (s))”U)thatv® V, and therefore

KV %,

vo 1+ V: (11)
Cmin
Combining Eg. 10 and 11 yields component-wise
2
kv V% 2 KVl kv + kv s kVk, 7 kv ;
in Cmin Cmin

where the last inequality uses tht k; 5kV%; which stems from plugging conditig®) into
Eqg. 10.

Note that hergp andp® play symmetric roles; we can perform the same reasoning in the case where
is proper in the modgd and it would yield an equivalent result by switching the dependenci&s on
andVv?® O

Lemma 4 ([37], Lem. 1) In an SSP-MDP satisfying Asm. 2, lebe anproIicy, then
* Ifthere existsavectdd : S! RsuchthatU(s) c(s; (s))+ oo p(sYs; (s))U(sY)
forall s 2 S, then is proper, andV the value function of is upper bounded by
component-wise, i.eV, (s) U(s)foralls2S.
 If is proper, then its value functiod is the unique solution to the Bellman equations
V ()= c(s; (S))+  cops P(SYs; (s)V (sYforalls2S.

D Proof of Theorem 1 (Sample Complexity Analysis oDisCo)

D.1 Computation of the Optimistic Policies

At each round, for each goal statg 2 W, DisCo computes an optimistic goal-oriented policy
associated to the MDM lf’(sy) constructed as in Def. 6. This MDP is de ned over the entire state
spaceS and restricts the action to the only actiBESEToutsideKy. We can build an equivalent
MDP by restricting the focus oK. To this end, we de ne the following SSP-MDP.

De nition 9. Dene M)(s¥) := hg;AL();c;pli whereS] = K [f &¥;xgandS] = S} =

jKkj + 2. Statex is a meta-state that encapsulates all the states that have been observed so far
and are not inKx. The action spacé\{( ) is such tha’rA{(s) = A for all statess 2 K¢ and
Al(s) = fRESETfors 2 f s¥;xg. The cost function is}(x;a) = 0 for anya 2 A} (x) and
c/(s;a) = 1 everywhere else. The transition function is de neg&s’js’; a) = py(sojx;a) = 1

for 2y a, . (yis;a) = p(yjs;a) for any(s;a;y) 2 Ky A (K [f s¥0) andp}(x]s;a) =
1y, svg PR(YISI@).

Note that solvingv} yields a policy effectively restricted to the €t insofar as we can interpret

the meta-stat& asS n fK [f s¥gg. Sincep is unknown, we cannot construbt)(s¥). Let
Nk be the state-action counts accumulated up until now. We dengte the “global” empirical
estimates, i.ep (yjs; @) = Nk (s; a;y)=Nk(s;a). Given them, we de ne the “restricted” empirical

estimate{y, as fBIIows:p{(yjs;a) = p(yjs;a) forany(s;a;y) 2 Ky A (K¢ [f $¥g) and
b (xjs;a) =1 y2K  [f svg BL(YiS; @). DenotingN ' (s;a) := max f 1; Ni(s; a)g, we then de ne
the following bonuses for anfs; a;y) 2 Kx A (Kk [T $Y0),

C hOSA0 hisa) . 2SAN; (g | Slog S
e e yJS; a yJS; & Kk \S: & )
k(s;ay) =2 N;(s;a) log + le'(s;a) 7 (12)
k(s;a;x) := k(s;a;y): (13)
y2K ¢[f s¥g
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[y

Algorithm 3: OVlssp

Input: Kg,A,s¥,Ny, > 0

Output: Value vecto¥ and policyeY

Estimate transitions probabilitigg usingNy

Compute the optimistic SSP-MDR®! as detailed in Def. 10
Compute(ey; el) = Viss{S!; AL cLiBL; ) (see Alg. 2)

Moreover, we set the uncertainty about the MDP at the metasstatel at the goal stat to 0 by
construction (since their outgoing transitions are deterministic, respectivejyaiodsY).

We now leverage the optimistic construction mentioned in App. B.1.

De nition 10. We denote b1 ’(s¥) = hg/; A)();c; gli the optimistic MDP associated i (s)
de ned in Def. 9. Theng(s;a) 2Ky A

B (yis; @) := maxfhfyjsia)  «(siay) Ogi 8y 2Ky [T xg (14)

B (¢js;a) == 1 B (yis; a); (15)
y2K [f xg

B.(s¥js”;a) = Bl (sojx;a) = 1: (16)

Given this MDP, we can compute the optimistic value veepand policye} using value iteration

for SSP:(a);e)) = Viss{S};AY;cl; B 3-)- We summarize the construction of the optimistic
model and the computation of value function and policy in AlgO¥ (ssp).

Remark. Note that the structure of the problem does not appear to allow for variance-aware
improvements in the analysis of Thm. 1 (speci cally, when the analysis will apply an SSP simulation
lemma argument). Indeed, given the possibly large number of states in the total envir@)rient
computation of the optimistic policies requires the construction of the metaxsthtt encapsulates

all the states irts nfK [f sYgg, wheresY is the candidate goal state considered at rdunéls a

result, the uncertainty on the transitions reachingeeds to be summed over multiple states, as shown

in Eg. 13. This extra uncertainty at a single state in the induced MDP has the effect of canceling out
Bernstein techniques seeking to lower the prescribed requirement of the state-action samples that the
algorithm should collect. In turn this implies that such variance-aware techniques would not lead to
any improvement in the nal sample complexity bound.

D.2 High-Probability Event

Lemma 5. It holds with probability atleast ~ that for any time step 1 and for any state-action
pair (s; a) and next stats®,

S 2SAN [ (s;a)
b2(sYs; a) o 2SAN{ (sia) 6log =———=

ib(sYsia)  p(sis;a)j 2 N (5:2) N (5 2)

;A7)

whereN;" (s; a) := max f 1; N¢(s; a)g and whereb? are the population variance of transitions, i.e.,

bf(ss;a) = p(sis;a)1  Mm(ss;a)).

Proof. The con dence intervals in Eq. 17 are constructed using the empirical Bernstein inequality,
which guarantees that the considered event holds with probability atlleast see e.g., [38]. O

De ne the set of plausible transition probabilities as

\
Cl = C)(s; a);
(s;@)2s8) A
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where
Ci(s;a):= fp2Cjp(j9a) = 19 R(ixa) = 1s;jp(sisia) t(sisia)i  «(siais)g;
with CtheSﬁ(’-dimensionaI simplex anpk the empirical average of transitions.
+1

T T
Lemma 6. Introduce the event:= 5 o,y fPL 2 Clg. ThenP() 1 5.

Proof. We have with probability at leasi 3 that, for anyy 6 x, ipL(yis; @)

b (yjs; a)j k(s;a;y) from the empirical Bernstein inequality (see Eq.17), and moreover
J'PhZ(st;a) pr(xis;a)] = 1 ok ogPROYISI®) 1 ok i e BR(YISI @)
2K o wolP(YiSid)  Blyisia)  k(siax). O

Lemma 7. Under the event , for any roundk and any goal state¥ 2 W, the optimistic modeg,
constructed in Def. 10 veri ep{ 2P (f{), with ¢ :=4 ((s;a;x) where  isde nedin Eq. 13.

Proof. Combining the construction in Def. 10, the proof of Lem. 6 and the triangle inequality yields
X
iBc(yisia)  py(yis; a)i B (yis;a)  be(yisia)i + jb(yisia)  py(yis; a)i
y2K «[f xg yZK)é[f xg
kK(S;ay)+2 k(s;a;x)
y2K «[f xg
4 k(s;a;x):

Throughout the remainder of the proof, we assume that the eveotds.

D.3 Properties of the Optimistic Policies and Value Vectors

We recall notation. Let us x any rounkl and any goal stat8’ 2 W . We denote by} the greedy
policy w.rt.e/( ! <) inthe optimistic modep). Lete/(s! s’) be the value function of policy

e’k’ starting from states in the modeb{. We can apply Lem. 2 given that the conditions of Asm. 2
hold (indeed, we haveni, =1 > 0and there exists at least one proper policy to reach the goal state

s¥ since it belongs tWy). Moreover, we have thzﬁK'-’k (so! &) VK'-’k (so! &) given the way

the optimistic modeg), is computed (i.e., by maximizing the probability of transitioning to the goal
at any state-action pair), see [28, Lem. B.12]. Hence we get the two following important properties.

Lemma 8. For any roundk, goal states¥ 2 W and states 2 K [f xg, we have under the event,
B(s! &) V. (s! 9):
Lemma 9. For any roundk, goal states¥ 2 W and states 2 K [f Xxg, we have

e(s! &) (1+2)el(s! ¢):

D.4 State Transfer fromU to K (step )

We x any roundk and any goal stat8’ 2 W that is added to the set of “controllable” statési.e.,
forwhiche)(so! &) L.
Lemma 10. Under the event , we have both following inequalities

V(so! &) L+

Vi(so! ¢¥) V. (so! )+ ™

In particular, the rst inequality entails thas¥ 2 S|, ., which justi es the validity of the state
transfer fromU to K.
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Proof. We have
8 (b)
< "
L+ 3
(c) 8 (18)

@
e(so! ) : (1+2 )el(so! &) V! )
? (so! )+ =
Kk 3

where inequality (a) comes from Lem. 9, inequality (b) combines the algorithmic condﬁ(@a !

s¥) L and thevi precision level = ﬁ and nally inequality (c) combines Lem. 8 and thé
precision level. Moreover, for any stateh,

@ RO " "

g(s! &) @ (s! )+ 3 8 (so! )+1+ 3 e (so! )+1+ 3
where (a) comes from Lem. 8 and (b) stems from the presence &fB&Taction (Asm. 1).
We now provide the exact choice of allocation functiom Alg. 1. We introduce

-—_— 2" .
T2 +1+ )L+ 5)

(Note that = O("=L?).) We set the following requirement of samples for each state-action pair
(s;a) at roundk,

2 " p__ %, 13
57X 2 8eXy 2SA 24iSYj 24iSYiSA
ne= ()= B log T « Bliog HEER 7. o)
where we de ne X q
Xk := max bZ(sYs; a);
(s;a)2s ) A <025 Y
k

with bZ(s9s; a) = pi(sYs;a)(1 P (sYs;a)) the estimated variance of the transition fr¢sna)
to s°. Leveraging the empirical Bernstein inequality (Lem.5) and perfoming simple algebraic
manipulations (see e.g39, Lem. 8 and 9)) yields that (s; a; x) . From Lem. 7, this implies

thatp{ 2P (P with =4 . We can then apply Lem. 3 (whose condition 8 is veri ed), which gives
Vi(so! &) 1+ kel(! ki e(so! &) (20)

1+ (L+1+ ")el(so! &)

e(so! &)+ 3

where the last inequality uses thqt. + 1+ ")(L + 3) = % by de nition of . Plugging in Eq. 18
yields the sought-after inequalities.

O

D.5 Termination of the Algorithm

Lemma 11 (Variant of Lem. 17 of []). Suppose that for every stase2 S, each actioma 2 A

is executedd d L log 35 etimes. LetS2, be the set of all next states visited during the

executions ofs; a). Denote by the complementary of the event
1
9(s®s;a) 252 A :p(sis;a) = SPEIR

ThenP() 1 5.

Lemma 12. Under the event \ |, for any roundk, eitherS!L K «, or there exists a state

s 2 S!L n Ky such thats¥ 2 Wy and isL -controllable with a policy restricted t&. Moreover,
IWkj  2LAJK].
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Proof of Lem. 12.Consider a roundt such thatS] n Ky is non-empty. Due to the incremental
construction of the s&3]  (Def. 4), there exists a stag¥ 2 S| and a policy restricted t that can
reachs’ in at mostL steps (in expectation). Hence there exists a state-actioigpar2 K A

such thap(s¥js; a) Li Since (Ky) d Llog 2AS- esamples are available at each state-action

pair, according to Lem. 11, we get that, under the ever®® is found during the sample collection
procedure for the state-action pésr; a) (step— ), which implies that¥ 2 Uy.

Moreover, the choice of allocation functionguarantees in particular that there are more than

( % log(2$A-)) samples available at each state-action (&ia) 2 K, A . From the empirical

Bernstein inequality of Eq. 17, we thus have tjt’js;a) bk (8js; a)j Z under the event .
Consequently we have

1
b(isa ¢ ipisa hEisal

which implies thas¥ 2 W . Furthermore, we can decompdak the following way

[
Wy = Yi(s; a);
(s;a)2K A

where we introduce the subset

Yi(s:a):= s°2 Uy : p(sYs; a) 1 s

We then have

X X 1 =
1= p(sYs;a) pe(sTs; @) 2jYk(s: a)j:

L
s02S s02Y  (s;a)

We conclude the proof by writing that

X
Wi iYk(s:a)j ~AjKk]  2LAJK;
(s;@)2K ¢ A 2
where the last inequality uses that 1 (from line 2 of Alg. 1). O

Lemma 13. Under the event \ , when either conditiolSTOP1or STOP2is triggered (at a round
indexed byK ), we haveS] K .

Proof. If condition STOP1is triggered, Lem. 12 immediately guarantees Bjat K ¢ under the
event . If condition STOPZ2is triggered, we have forall2 Wi ,85(sgp! s) >L . FromLem.8
this means that, under the eventfor alls 2 Wk ,VK?K (so! s)>L.Hence none of the states in
Wk can be reached in at mdststeps (in expectation) with a policy restrictedd@ . We conclude
the proof using Lem. 12. O

Lemma 14. Under the event \ , whenDisCo terminates at roundK , for any states 2 K , the
policy s computed during step veri es

vV (so! ) 2r}1i21 )v (so! s)+ ™

L

Moreover, we have th& K ¢ S |,..
Proof. Assume that the event\  holds. Then when the nal sty is considered and the new
policies are computed using all the samples, Lem. 10 yields feraK ¢ ,

vV (so! ) zTiE )v (sp! )+ ™
K

Moreover Lem. 13 entails th#tx S | . This implies from Lem. 1 that

min v (sp! s min v (sg! 9);
2 ( Kk) ( ) 2(s.) ( )

which means thax S |, .. O
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D.6 High Probability Bound on the Sample Collection Phase (step)

Denote byK the (random) index of the last round during which the algorithm terminates. We focus
on the sample collection procedure for any s&aeK k . We denote bks the index of the round
during whichs was added to the set of “controllable” statés To collect samples at stasethe
learner uses the shortest-path poligy We say that an attempt to collect a speci ¢ sample is a
rollout. We denote by := jKk jAN the total number of samples that the learner needs to collect.
As such, at mosf i rollouts must take place. Assume that the evemolds. Then from Lem. 14,
we haveKk S |, .. Hence, denotin@ .- := jS|,.j,we haveZx  Z . := S_+~A( S ,+).
The following lemma provides a high-probability upper bound on the time steps required to meet the
sampling requirements.
Lemma 15. Assume that the eventholds. Set

'=4(L + " +1)log .

and introduce the following event
n o}

T := 9onerollout (with goal stats) s.t. _(sp! S)>
We haveP(T) 5.

Proof. Assume that the event holds. Leveraging a union bound argument and applying Lem. 16 to
policy swhichveriesv (s°! s) L+ "+1 foranys®2 Ky, we get

X
P(T) 2exp
rollouts

where the last inequality comes from the choice of O

ZZL +m exp

4L +7+1) aL+"+1) 3

Lemma 16([28], Lem.B.5) Let be a proper policy such that for sorde> 0O,V (s) d for every
non-goal states. Then the probability that the cumulative cost do reach the goal state from any
states is more tharm, is at mose ™=(“9 forall m 0. Note that a cost of at most implies
that the number of steps is at mostcyn, .

D.7 Putting Everything Together: Sample Complexity Bound

The sample complexity of the algorithm is solely induced by the sample collection procedure Jstep
Recall that we denote by the index of the round at which the algorithm terminates. With probability
at leastl % Lem. 13 holds, and so does the eventHence the algorithm discovers a set of

stateKx S| . Moreover, from Lem. 14, the algorithm outputs for each K ¢ a policy s with

E[ .(so! s)] VS?!L (s)+ ". Hence we also haj& j  Si+» = jS|,+j.

We denote by = jKk jA (Kk) the total number of samples that the learner needs to collect.
From Lem. 15, with probability at leadt 5, the total sample complexity of the algorithm is at most

Z k ,where ::4(|_+"+1)|Og &

Now, from Eq. 19 there exists an absolute constant 0 such thatDisCo selects as allocation

function |

L*R X)

LSA |, L%xj  LSA
" — + ——log

(X! log? - :

where
|

X p '
B X):= max p(sis;a)(1  p(sYs; &)

s;a)2X A
(s:a) s02X

2

The total requirement is(Kk ). Note that from Cauchy-Schwarz's inequality, we have

K = kf : ko iK «i:
R Ke) « X p(s9s; @)gsozk ko JK K]
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Combining everything yields with probability at ledst

L® kjKkJA + L3jKk j2A
Il2 "

ZK:©

We nally use thatkx S |, . from Lem. 14, which implies that

I_5 |_+"S|_+"A + L3SE+--A
n2 n 1

Cax?(DisCo;L;"; )= @

where |+ = maX(sa)2s;,.a kf p(sYs; @)0se2s ! , . Ko. This concludes the proof of Thm. 1.

D.8 Proof of Corollary 1

The result given in Cor. 1 comes from retracing the analysis of Lem. 14 and therefore Lem. 10 by
considering non-uniform costs betweeni, ; 1] instead of costs all equal o Speci cally, Eq. 20

needs to account for the inverse dependencgn@n of the simulation lemma of Lem. 3. This induces

the nal "=cqin accuracy level achieved by the policies outputigCo. There remains to guarantee
that condition 8 of Lem. 3 is veri ed. In particular the condition holds{t +1+ ")  2cqin,

where is the model accuracy prescribed in the proof of Lem.10. We see that this is the case
whenever we have = O(Lcmin ) due to the fact that = ( "=L?).

D.9 Computational Complexity of DisCo

The overall computational complexity BfisCo can be expressed gs,'f:l jWgj C(OVissp, where
C(OVIssp denotes the complexity of aDVlissp procedure and where we recall thétdenotes the
(random) index of the last round during which the algorithm terminates. Note that it holds with high
probability thatk j Sj,.jandjWyj 2LAjKj 2LAjS{,.j. MoreoverC(OVissp captures
the complexity of the value iteration (VI) algorithm for SSP, which was prove@4ihtp converge in
time quadratic w.r.t. the size of the considered state space fgyandkV ’k; =Gnin . Here we have
Cmin = 1, and we can easily prove that in all the SSP instances considef@i3®y, the optimal
value functionv? veri es kV?k; = O(L?), due to the restriction of the goal stateWy (indeed
this restriction implies that there exists a state-action paitdn A that transitions to the goal state
with probability (1 =L) in the true MDP). Putting everything together giigisCo's computational
complexity. Interestingly, we notice that while it depends polynomiallySpn-, L andA, it is
independent fron$ the size of the global state space.

E The UcbExplore Algorithm [1]

E.1 Outline of the Algorithm

TheUcbExplore algorithm was introduced by Lim and Auet][to speci cally tackle conditiom X .

The algorithm maintains a skt of “controllable” states and a skt of “uncontrollable” states. It
alternates between two phasestzte discoverandpolicy evaluation In a state discovery phase,

new candidate states are discovered as potential members of the set of controllable states. Any policy
evaluation phase is calledraund and it relies on an optimistic principle: it attempts to reach an
“optimistic” states (i.e., the easiest state to reach based on information collected so far) among all the
candidate states by executing an optimistic poligyhat minimizes the optimistic expected hitting

time truncated at a horizon éf e := dL + L2" e Within the round of evaluation of policys,

the algorithm proceeds through at mosts := 6L3" 3log 16Kj? ! episodes, each of which
begins ay and ends either when; successfully reachesor whenH ¢ steps have been executed.

If the empirical performancef ¢ is poor (measured through a performance check done after each
episode), the round is said to hdeded. Otherwise, the round successfulvhich means that is
controllable and an acceptable policyk) has been discovered. A failure round leads to selecting
another candidate state-policy pair for evaluation, while a success round leads to a state discovery
phase which in turn adds more candidate states for the subsequent rounds. As explained in App. A,
UcbExplore is unable to tackle the more challenging objec#ue’.
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E.2 Minor Issue and Fix in the Analysis ofUcbExplore

The key insight olJcbExplore is to bound the number déilure roundsof the algorithm, by lower-
and upper-bounding the so-called “regret” contribution of failure rounds, where the regret of a failure
roundk is de ned as

»« h X1 i
Huee L ri 3
j:l i=0
where e ucs IS the actual number of episodes executed in rokirahd where the reward

ri 2 f0;1gis equal to 1 only if the state is the goal state. However, upper bounding the regret
contribution of failure rounds implies applying a concentration inequalitgrig speci ¢ rounds

that are chosen given thampirical performanceHence Lim and Auerl, Lem. 18] improperly use

a martingale argument to bound a sum whose summands are chosen in a non-martingale way, i.e.,
depending on their realization.

To avoid the aforementioned issue, one must upper and lower bound the cumulative regret of the
entireset of rounds and nanly the failure rounds in order to obtain a bound on the number of failure
rounds. However, this would yield a sample complexity that has a second term sca®(t 43.
Following personal communication with the authors, the xis to change the de nition of regret of a
round, making it equal to

K Hxe 1
BH,.(So! 9) ri;
ji=1 i=0

wheres is the considered goal state amg, . (So ! S) is the optimisticH ycs-step reward (where
the reward is equal to 1 only at stafe With this new de nition, it is possible to recover the sample

complexity provided in [1] scaling a8(" 3).

E.3 Issue with a Possibly In nite State Space

Lim and Auer [1] claim that their setting can cope with a countable, possibly in nite state space.
However, this leads to a technical issue, which has been acknowledged by the authors via personal
communication and as of now has not been resolved. Indeed, it occurs when a union bound over the
unknown setJ is taken to guarantee high-probability statements (e.g., the Lem. 14 or 1]j.of¢t

for each realization of the algorithm, we do not know what thd ketr equivalentlyK, looks like,

hence it is improper to perform a union bound over a set of unknown identity. Simple workarounds
to circumvent this issue are to impose a nite state space, or to assume prior knowledge over a nite
superset ofJ. In this paper we opt for the rst option. It remains an open and highly non-trivial
guestion as to how (and whether) the framework can cope with an in nite state space.

E.4 Effective Horizon of the AX Problem and its Dependency ori

UcbExplore [1] designs nite-horizon problems with horizdAycs = dL + L?" eand outputs
policies that reset evetyt ycg time steps. In the following we prove that the effective horizon of the
AX problem actually scales & log(L" )L , i.e., onlylogarithmicallyw.r.t." 1. We begin by

de ning the concept of “resetting” policies as follows.

De nition 11. Forany 2 and horizonH 0, we denote by!" the non-stationary policy that
executes the actions prescribed band performs th®@ESETaction evenH steps, i.e.,

H ooy RESET ift 0 (modH);
v (@s) = (ajs) otherwise.
We denote by IH the set of such “resetting” policies.

The following lemma captures the effective horizeg of the problem, in the sense that restricting
our attentionto M (S} ) forH  Hex does not compromise the possibility of nding policies that
achieve the performance requiredA¥’ (and thus also bpX ).
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Lemma 17. Forany"” 2 (0;1]andL 1, whenever
4L +1)

H Her:=4(L+1) log

we have forang’ 2 S| ,

min Vin(so! &) VI (sp! &)+ ™
L O i (So ) Vs (so )

Proof. Consider any goal sta® 2 S| . Set"® := m . Denote by 2 ( S} ) the
minimizer ofVS'-’zL (so ! ¢). Forany horizorH 0, we introduce the truncated value function
Vi (s! s9:= E[ (s! s9~ H]and the tail probabilitg.y (s! s9):= P( (s! s)>H).

Due to the presence of tlRESETaction, the value function of can be bounded for all states
s2S| nfggas

v (s! &) VS?!L (so! &)+1 L+1:

This entails that the probability of the goal-reaching time decays exponentially. More speci cally, we
have

H
am (so! 9) 2exp aC+1) "0 (21)

where the rst inequality stems from Lem. 16 and the second inequality comes from the choice
of H 4(L+1) log 4 . Furthermore, we have (s! s~ H (s! s9 and thus
E[ (s! sHO~H] E[ (s! sY]. Consequently,

Vi (So! &) Vv(so! )=V (so! 9): (22)

Now, from [1, EqQ. 4], the value function of can be related to its truncated value function and tail
probability as follows

o _ Ve tQH
V jJH — 71 q,H . (23)
Plugging Eq. 21 and 22 into Eq. 23 yields
VS (so! &)+ "0
1 "0

V ju (So ! Sy)
Notice that the inequalities  1+2x and;*; 2x hold forany0<x 3. Applying them
for x = "Oyields

Vs?lz_ (so! &)+ "0
1 "0

(1+2"9)Vg (so! &) +2""
From the inequalit;)‘/s-?L (so! &) L andthe de nition of'®, we nally obtain

V ju (So ! Sy) VS’)L (SO ! Sy)+ "

which completes the proof. O

Lem. 17 reveals that the effective horizéhs of the AX problem scales only logarithmically

and not linearly in" . This highlights that the design choice lircbExplore to tackle nite-
horizon problems with horizohl ycg unavoidably leads to a suboptimal dependency omits AX

sample complexity bound. In contrast, by designing SSP problems and thus leveraging the intrinsic
goal-oriented nature of the problemisCo can (implicitly) capture the effective horizon of the
problem. This observation is at the heart of the improvement iti thependency fron®(" 3) of

UcbExplore [1] to &(" ?) of DisCo (Thm. 1).
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F Experiments

This section complements the experimental ndings partially reported in Sect. 5. We provide details
about the algorithmic con gurations and the environments as well as additional experiments.

F.1 Algorithmic Con gurations

Experimental improvements to UcbExplore [1]. We introduce several modi cations to
UcbExplore in order to boost its practical performance. We remove all the constants and loga-
rithmic terms from the requirement for state discovery and policy evaluation (reféy Eag. 1]).
Furthermore, we remove the constants in the de nition of the acctifaey'=L used byUcbExplore

(while their original algorithm require’®® to be divided by8, we remove this constant). We also
signi cantly improve the planning phase tfcbExplore [1, Fig. 2]. Their procedure requires to
divide the samples intél := (1 + 1 ="9L disjoint sets to estimate the transition probability of
each stagé of the nite-horizon MDP. This substantially reduces the accuracy of the estimated
transition probability since for each stalg®nly N (s; a)=H are used. In our experiments, we use

all the samples to estimate a stationary MDP (pg(sYs; a) = N (s; a; s%=N(s; a)) rather than a
stage-dependent model. Estimating a stationary model instead of bucketing the data is simpler and
more ef cient since leads to a higher accuracy of the estimated model. To avoid to move too far away
from the originalUcbExplore, we decided to de ne the con dence intervals as if bucketing was
used. We thus consid&, (s; a) = Nk (s;a)=H for the construction of the con dence intervals. For
planning, we use the optimistic backward induction procedure &0jn Ve thus leverage empirical
Bernstein inequalities —which are much tighter— rather than Hoeffding inequalities as suggested
in [1]. In particular, we further approximate the bonus suggested in [30, Alg. 4] as

S
by (s: ) = V argo pk(js;.a)[vk;h +1 (891 + (H . h) :
N (s;a) _1 N (s;a) _1
For DisCo, we follow the same approach of removing constants and logarithmic terms. We
thus use the de nition of as in Thm.1 with = 1 and withqut log-terms. For plan-
ning, we use the procedure described in App. D vitls; a;s9) = pk(sojsﬁz((ls.a’)’k (9sia)) 4
W Finally, in the experiments we use a state-action dependent \khlsqm;Kk) =

sook . Px(s9s; ) pe(s9s; @) % instead of taking the maximum ovés; a).

Even though we boosted the practical performanctaiExplore w.r.t. the original algorithm
proposed inf] (e.g., the use of Bernstein), we believe it makes the comparison be®is€o and
UcbExplore as fair as possible.

F.2 Confusing Chain

The confusing chairenvironment referred to in Sect. 5 is constructed as follows. It is an MDP

we have a forward actioay that moves to the chain with probabilip¢ (p(s1jSo; a0) = pc and
p(sojSo;a0) =1 pc) and a confusing action that has uniform probability of reaching any confusing

each state of the chain, there is a forward actigthat behaves as & ((Smin( ci +1) 1Si; @) = Pc

andp(sijsi;ag) =1 pc, foranyi 2f1;:::;C 1g) and a skip actiom; that moves tan states
ahead with probabilityskip (P(Smin( c;i + m)iSi; @) = Pskip andp(sijsi;ao) =1  Pskip, for any
i2f1;:::;C 1g). Finally, p(spjsc; @) = 1 for any actiona. In our experiments, we sat = 4,

Pskip =1=3,pc=1,C=5,K =6,L =45,
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" DisCo UcbExplore-Bernstein
0:1 374263(13906) 5076688 (92643)
0:2 105569 (4 645) 636580 (13 716)

0:4 29160 (829) 108894 (2 305)
0:6 15349 (475) 40538 (805)
0:8 9891 (244) 21270 (441)

Table 2: Sample complexity ddisCo and UcbExplore-Bernstein, on the confusing chain do-
main. Values are averaged owruns and th&@5%-con dence interval of the mean is reported in
parenthesis.

UcbExplore-Bernstein
Expected hitting timer (sp ! Sj)

So S1 S S3 Sy Sg
013,02 0 1 2 3 4 4
0:4 o 1 2 3 4 494 (0:04)
06 0 1 2 336(C11) 4 453 (0:07)

0:8 0 1 2 338(C11) 407 (007) 453(0.06)
Table 3: Expected hitting time of stage of the goal-oriented policys, recovered byJcbExplore-
Bernstein, on the confusing chain domaisCo recovers the optimal goal-oriented policy in all
the runs and for all. The advantage ddisCollies in its nal policy consolidation step. Values are
averaged ovebs0runs and th&®5%-con dence interval of the mean is reported in parenthesis (it is
omitted when equal t6). This shows thatlcbExplore recovers the optimal goal-oriented policy in
every run only for* equal to0:1 and0:2.

Sample complexity. We provide in Tab. 2 the sample complexity of the algorithms for varying
values of". As mentioned in Sect. DisCo outperformsUcbExplore for any value of*, and
increasingly so wheh decreases. Fig. 7 complements Fig. 2 for additional valués of

Quality of goal-reaching policies. We now investigate the quality of the policies recovered by
DisCo andUcbExplore. In particular, we show thddisCois able to nd the incrementally near-
optimal shortest-path policies to any goal state, wbithExplore may only recover sub-optimal
policies. On the confusing chain domain, the intuition is that the set of confusing statesspakes
reachable in jus? steps but the confusing states are not in the controllable set and thus the algorithms
are not able to recover the shortest-path policgdo On the other hand, stasg is controllable
through two policies: 1) the policies, that takes always the forward actiap reachesc in 5 steps;

2) the policy , that takes the skip actiam in s; reachesc in 4 steps. We observed empirically
thatDisCo always recovers policy; (i.e., the fastest policy) whil&lcbExplore selects policy 5 in
several cases. This is highlighted in Tab. 3 where we report the expected hitting time of the policies
recovered by the algorithms. This nding is not surprising since, as we explain in Sect. 4 and App. A,
UcbExplore is designed to nd policies reaching statesatrmostL steps on average, yet it is not
able to recover incrementally near-optimal shortest-path policies, as oppd3exCim

F.3 Combination Lock

We consider the combination lock problem introduced3tj] The domain is a stochastic chain with
S = 6 states and\ = 2 actions. In each stasg, actionright (a;) is deterministic and leads to state
sk+1 , While actionleft (ag) moves to a statec | with probability proportional td=(k 1) (i.e.,
inversely proportional to the distance of the states). Formally, we have that

n(Xg; X) = ﬁ i<k and (X1]Xk; @0) =
o 0 otherwise PRk 3o

N(Xk;X1)
sN(Xk:s)’
j k
We set the initial state to be a3 of the chain, i.e., 2N=3 . The actions in the end states are

absorbing, i.e.p(sojSo;a) = 1 andp(sy 1jsn 1;a1) = 1, while the remaining actions behave
normally. See Fig. 5 for an illustration of the domain.
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Figure 5: Combination lock domain with = 6 states. Expected hitting times from the initial stage
arev (s3! s)=(2:18;1:91;1:64;0; 1; 2). ConsidelL = 3, the set of incrementalll -controllable

states i§i = fs,;83;54;S59. The goal-oriented policy to reach andss takes always the right
actionay, while the policy fors, always selects the left actiay.

Figure 6: Proportion of the incrementally-controllable states identi ed bRisCo andUcbExplore
in the combination lock domain fdr = 2:7 and" = 0:2. Values are averaged ov20 runs.

Sample complexity. We evaluate the two algorithniBisCo andUcbExplore on the combination

lock domain, for' = 0:2 andL = 2:7. We further boost the empirical performanceJabExplore

by usingN instead ofN for the construction of the con dence intervals (i.e., we do not account
for the data bucketing inl], see App. F.1). To preserve the robustness of the algorithm, we use
log(jK kj?)=("9® episodes fotJcbExplore's policy evaluation phase (indeed we noticed that the
removal of the logarithmic term here sometimes ledldbExplore to miss some states &'

in this domain). For the same reason,0isCo we use the valu& Kk) = maxsa l? s;a;Kg)
prescribed by the theoretical algorithm instead of the state-action dependent values used in the
previous experiment. We average the experiments 20euns and obtain a sample complexity of

30; 117 (2;087) for DisCo and90; 232 (2; 592 for UcbExplore. Fig. 6 reports the proportion of
incrementallyl -controllable states identi ed by the algorithms as a function of time. We notice that
once agaibisCo clearly outperform&JcbExplore.
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Figure 7: Proportion of the incrementally L-controllable states identified by DisCo and UcbExplore
on the confusing chain domain for L = 4.5 and ¢ 2 0.1,0.2,0.4,0.6,0.89. Values are averaged
over 50 runs. UcbExplore uses Bernstein confidence intervals for planning.
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