
Improved Sample Complexity for Incremental
Autonomous Exploration in MDPs

Jean Tarbouriech
Facebook AI Research Paris & Inria Lille

jean.tarbouriech@gmail.com

Matteo Pirotta
Facebook AI Research Paris

pirotta@fb.com

Michal Valko
DeepMind Paris

valkom@deepmind.com

Alessandro Lazaric
Facebook AI Research Paris

lazaric@fb.com

Abstract

We investigate the exploration of an unknown environment when no reward function
is provided. Building on the incremental exploration setting introduced by Lim and
Auer [1], we define the objective of learning the set of "-optimal goal-conditioned
policies attaining all states that are incrementally reachable within L steps (in
expectation) from a reference state s0. In this paper, we introduce a novel model-
based approach that interleaves discovering new states from s0 and improving the
accuracy of a model estimate that is used to compute goal-conditioned policies to
reach newly discovered states. The resulting algorithm, DisCo, achieves a sample
complexity scaling as eO(L5SL+"�L+"A "�2), where A is the number of actions,
SL+" is the number of states that are incrementally reachable from s0 in L + "
steps, and �L+" is the branching factor of the dynamics over such states. This
improves over the algorithm proposed in [1] in both " and L at the cost of an extra
�L+" factor, which is small in most environments of interest. Furthermore, DisCo
is the first algorithm that can return an "/cmin-optimal policy for any cost-sensitive
shortest-path problem defined on the L-reachable states with minimum cost cmin.
Finally, we report preliminary empirical results confirming our theoretical findings.

1 Introduction

In cases where the reward signal is not informative enough — e.g., too sparse, time-varying or
even absent — a reinforcement learning (RL) agent needs to explore the environment driven by
objectives other than reward maximization, see [e.g., 2, 3, 4, 5, 6]. This can be performed by designing
intrinsic rewards to drive the learning process, for instance via state visitation counts [7, 8], novelty
or prediction errors [9, 10, 11]. Other recent methods perform information-theoretic skill discovery
to learn a set of diverse and task-agnostic behaviors [12, 13, 14]. Alternatively, goal-conditioned
policies learned by carefully designing the sequence of goals during the learning process are often
used to solve sparse reward problems [15] and a variety of goal-reaching tasks [16, 17, 18, 19].

While the approaches reviewed above effectively leverage deep RL techniques and are able to
achieve impressive results in complex domains (e.g., Montezuma’s Revenge [15] or real-world
robotic manipulation tasks [19]), they often lack substantial theoretical understanding and guarantees.
Recently, some unsupervised RL objectives were analyzed rigorously. Some of them quantify how
well the agent visits the states under a sought-after frequency, e.g., to induce a maximally entropic
state distribution [20, 21, 22, 23]. While such strategies provably mimic their desired behavior via
a Frank-Wolfe algorithmic scheme, they may not learn how to effectively reach any state of the
environment and thus may not be sufficient to efficiently solve downstream tasks. Another relevant
take is the reward-free RL paradigm of [24]: following its exploration phase, the agent is able to

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

compute a near-optimal policy for any reward function at test time. While this framework yields
strong end-to-end guarantees, it is limited to the finite-horizon setting and the agent is thus unable to
tackle tasks beyond finite-horizon, e.g., goal-conditioned tasks.

In this paper, we build on and refine the setting of incremental exploration of [1]: the agent starts at
an initial state s0 in an unknown, possibly large environment, and it is provided with a RESET action
to restart at s0. At a high level, in this setting the agent should explore the environment and stop
when it has identified the tasks within its reach and learned to master each of them sufficiently well.
More specifically, the objective of the agent is to learn a goal-conditioned policy for any state that
can be reached from s0 within L steps in expectation; such a state is said to be L-controllable. Lim
and Auer [1] address this setting with the UcbExplore method for which they bound the number of
exploration steps that are required to identify in an incremental way all L-controllable states (i.e.,
the algorithm needs to define a suitable stopping condition) and to return a set of policies that are
able to reach each of them in at most L+ " steps. A key aspect of UcbExplore is to first focus on
simple states (i.e., states that can be reached within a few steps), learn policies to efficiently reach
them, and leverage them to identify and tackle states that are increasingly more difficult to reach.
This approach aims to avoid wasting exploration in the attempt of reaching states that are further
than L steps from s0 or that are too difficult to reach given the limited knowledge available at earlier
stages of the exploration process. Our main contributions are:

• We strengthen the objective of incremental exploration and require the agent to learn "-optimal
goal-conditioned policies for any L-controllable state. Formally, let V ?(s) be the length of the
shortest path from s0 to s, then the agent needs to learn a policy to navigate from s0 to s in at
most V ?(s) + " steps, while in [1] any policy reaching s in at most L+ " steps is acceptable.

• We design DisCo, a novel algorithm for incremental exploration. DisCo relies on an estimate of
the transition model to compute goal-conditioned policies to the states observed so far and then
use those policies to improve the accuracy of the model and incrementally discover new states.

• We derive a sample complexity bound for DisCo scaling as1 eO(L5SL+"�L+"A "�2), where A
is the number of actions, SL+" is the number of states that are incrementally controllable from
s0 in L + " steps, and �L+" is the branching factor of the dynamics over such incrementally
controllable states. Not only is this sample complexity obtained for a more challenging objective
than UcbExplore, but it also improves in both " and L at the cost of an extra �L+" factor, which
is small in most environments of interest.

• Leveraging the model-based nature of DisCo, we can also readily compute an "/cmin-optimal
policy for any cost-sensitive shortest-path problem defined on the L-controllable states with
minimum cost cmin. This result serves as a goal-conditioned counterpart to the reward-free
exploration framework defined by Jin et al. [24] for the finite-horizon setting.

2 Incremental Exploration to Discover and Control

In this section we expand [1], with a more challenging objective for autonomous exploration.

2.1 L-Controllable States

We consider a reward-free Markov decision process [25, Sect. 8.3] M := hS,A, p, s0i. We assume a
finite action space A with A = |A| actions, and a finite, possibly large state space S for which an
upper bound S on its cardinality is known, i.e., |S| S.2 Each state-action pair (s, a) 2 S ⇥A is
characterized by an unknown transition probability distribution p(·|s, a) over next states. We denote
by �S0 := maxs2S0,ak{p(s0|s, a)}s02S0k0 the largest branching factor of the dynamics over states in
any subset S 0 ✓ S . The environment has no extrinsic reward, and s0 2 S is a designated initial state.

A deterministic stationary policy ⇡ : S ! A is a mapping between states to actions and we denote
by ⇧ the set of all possible policies. Since in environments with arbitrary dynamics the learner may
get stuck in a state without being able to return to s0, we introduce the following assumption.3

1We say that f(") = eO("↵) if there are constants a, b, such that f(") a · "↵ logb
�
"
�
.

2Lim and Auer [1] originally considered a countable, possibly infinite state space; however this leads to a
technical issue in the analysis of UcbExplore (acknowledged by the authors via personal communication and
explained in App. E.3), which disappears by considering only finite state spaces.

3This assumption should be contrasted with the finite-horizon setting, where each policy resets automatically
after H steps, or assumptions on the MDP dynamics such as ergodicity or bounded diameter, which guarantee
that it is always possible to find a policy navigating between any two states.

2

Figure 1: Two environments where the starting
state s0 is in white. Left: Each transition be-
tween states is deterministic and depicted with
an edge. Right: Each transition from s0 to the
first layer is equiprobable and the transitions
in the successive layers are deterministic. If
we set L = 3, then the states belonging to SL

are colored in red. As the right figure illus-
trates, L-controllability is not necessarily linked
to a notion of distance between states and an L-
controllable state may be achieved by traversing
states that are not L-controllable themselves.

Assumption 1. The action space contains a RESET action s.t. p(s0|s, RESET) = 1 for any s 2 S .

We make explicit the states where a policy ⇡ takes action RESET in the following definition.
Definition 1 (Policy restricted on a subset). For any S 0 ✓ S, a policy ⇡ is restricted on S 0

if

⇡(s) = RESET for any s /2 S 0
. We denote by ⇧(S 0) the set of policies restricted on S 0

.

We measure the performance of a policy in navigating the MDP as follows.
Definition 2. For any policy ⇡ and a pair of states (s, s0) 2 S2

, let ⌧⇡(s ! s0) be the (random)

number of steps it takes to reach s0 starting from s when executing policy ⇡, i.e., ⌧⇡(s ! s0) :=
inf{t � 0 : st+1 = s0 | s1 = s,⇡}. We also set v⇡(s ! s0) := E[⌧⇡(s ! s0)] as the expected

traveling time, which corresponds to the value function of policy ⇡ in a stochastic shortest-path

setting (SSP, [26, Sect. 3]) with initial state s, goal state s0 and unit cost function. Note that we have

v⇡(s ! s0) = +1 when the policy ⇡ does not reach s0 from s with probability 1. Furthermore, for

any subset S 0 ✓ S and any state s, we denote by

V ?

S0(s0 ! s) := min
⇡2⇧(S0)

v⇡(s0 ! s),

the length of the shortest path to s, restricted to policies resetting to s0 from any state outside S 0
.

The objective of the learning agent is to control efficiently the environment in the vicinity of s0. We
say that a state s is controlled if the agent can reliably navigate to it from s0, that is, there exists an
effective goal-conditioned policy — i.e., a shortest-path policy — from s0 to s.
Definition 3 (L-controllable states). Given a reference state s0, we say that a state s is L-controllable

if there exists a policy ⇡ such that v⇡(s0 ! s) L. The set of L-controllable states is then

SL := {s 2 S : min
⇡2⇧

v⇡(s0 ! s) L}. (1)

We illustrate the concept of controllable states in Fig. 1 for L = 3. Interestingly, in the right figure,
the black states are not L-controllable. In fact, there is no policy that can directly choose which one
of the black states to reach. On the other hand, the red state, despite being in some sense further

from s0 than the black states, does belong to SL. In general, there is a crucial difference between the
existence of a random realization where a state s is reached from s0 in less than L steps (i.e., black
states) and the notion of L-controllability, which means that there exists a policy that consistently
reaches the state in a number of steps less or equal than L on average (i.e., red state). This explains
the choice of the term controllable over reachable, since a state s is often said to be reachable if there
is a policy ⇡ with a non-zero probability to eventually reach it, which is a weaker requirement.

Unfortunately, Lim and Auer [1] showed that in order to discover all the states in SL, the learner may
require a number of exploration steps that is exponential in L or |SL|. Intuitively, this negative result
is due to the fact that the minimum in Eq. 1 is over the set of all possible policies, including those that
may traverse states that are not in SL.4 Hence, we similarly constrain the learner to focus on the set
of incrementally controllable states.
Definition 4 (Incrementally controllable states S!

L
). Let � be some partial order on S. The set

S�
L

of states controllable in L steps w.r.t. � is defined inductively as follows. The initial state s0

4We refer the reader to [1, Sect. 2.1] for a more formal and complete characterization of this negative result.

3

belongs to S�
L

by definition and if there exists a policy ⇡ restricted on {s0 2 S�
L

: s0 � s} with

v⇡(s0 ! s) L, then s 2 S�
L

. The set S!
L

of incrementally L-controllable states is defined as

S!
L

:= [�S�
L

, where the union is over all possible partial orders.

By way of illustration, in Fig. 1 for L = 3, it holds that S!
L

= SL in the left figure, whereas
S!
L

= {s0} 6= SL in the right figure. Indeed, while the red state is L-controllable, it requires
traversing the black states, which are not L-controllable.

2.2 AX Objectives

We are now ready to formalize two alternative objectives for Autonomous eXploration (AX) in MDPs.
Definition 5 (AX sample complexity). Fix any length L � 1, error threshold " > 0 and confidence

level � 2 (0, 1). The sample complexities CAXL
(A, L, ", �) and CAX?(A, L, ", �) are defined as the

number of time steps required by a learning algorithm A to identify a set K ◆ S!
L

such that with

probability at least 1 � �, it has learned a set of policies {⇡s}s2K that respectively verifies the

following AX requirement

(AXL) 8s 2 K, v⇡s
(s0 ! s) L+ ",

(AX?) 8s 2 K, v⇡s
(s0 ! s) V ?

S!
L

(s0 ! s) + ".

Designing agents satisfying the objectives defined above introduces critical difficulties w.r.t. standard
goal-directed learning in RL. First, the agent has to find accurate policies for a set of goals (i.e.,
all incrementally L-controllable states) and not just for one specific goal. On top of this, the set
of desired goals itself (i.e., the set S!

L
) is unknown in advance and has to be estimated online.

Specifically, AXL is the original objective introduced in [1] and it requires the agent to discover all
the incrementally L-controllable states as fast as possible.5 At the end of the learning process, for
each state s 2 S!

L
the agent should return a policy that can reach s from s0 in at most L steps (in

expectation). Unfortunately, this may correspond to a rather poor performance in practice. Consider a
state s 2 S!

L
such that V ?

S!
L

(s0 ! s) ⌧ L, i.e., the shortest path between s0 to s following policies
restricted on S!

L
is much smaller than L. Satisfying AXL only guarantees that a policy reaching s

in L steps is found. On the other hand, objective AX? is more demanding, as it requires learning
a near-optimal shortest-path policy for each state in S!

L
. Since V ?

S!
L

(s0 ! s) L and the gap
between the two quantities may be arbitrarily large, especially for states close to s0 and far from the
fringe of S!

L
, AX? is a significantly tighter objective than AXL and it is thus preferable in practice.

We say that an exploration algorithm solves the AX problem if its sample complexity CAX(A, L, ", �)
in Def. 5 is polynomial in |K|, A, L, "�1 and log(S). Notice that requiring a logarithmic dependency
on the size of S is crucial but nontrivial, since the overall state space may be large and we do not
want the agent to waste time trying to reach states that are not L-controllable. The dependency
on the (algorithmic-dependent and random) set K can be always replaced using the upper bound
|K| |S!

L+"
|, which is implied with high probability by both AXL and AX? conditions. Finally,

notice that the error threshold " > 0 has a two-fold impact on the performance of the algorithm. First,
" defines the largest set S!

L+"
that could be returned by the algorithm: the larger ", the bigger the

set. Second, as " increases, the quality (in terms of controllability and navigational precision) of the
output policies worsens w.r.t. the shortest-path policy restricted on S!

L
.

3 The DisCo Algorithm

The algorithm DisCo — for Discover and Control — is detailed in Alg. 1. It maintains a set K
of “controllable” states and a set U of states that are considered “uncontrollable” so far. A state s
is tagged as controllable when a policy to reach s in at most L + " steps (in expectation from s0)
has been found with high confidence, and we denote by ⇡s such policy. The states in U are states
that have been discovered as potential members of S!

L
, but the algorithm has yet to produce a policy

to control any of them in less than L + " steps. The algorithm stores an estimate of the transition
model and it proceeds through rounds, which are indexed by k and incremented whenever a state in
U gets transferred to the set K, i.e., when the transition model reaches a level of accuracy sufficient

5Note that we translated in the condition in [1] of a relative error of L" to an absolute error of ", to align it
with the common formulation of sample complexity in RL.

4

Algorithm 1: Algorithm DisCo

Input: Actions A, initial state s0, confidence parameter � 2 (0, 1), error threshold " > 0, L � 1 and
(possibly adaptive) allocation function � : P(S) ! N (where P(S) denotes the power set of S).

1 Initialize k := 0, K0 := {s0}, U0 := {} and a restricted policy ⇡s0 2 ⇧(K0).
2 Set " := min{", 1} and continue := True.
3 while continue do
4 Set k += 1. //new round

// ¨ Sample collection on K
5 For each (s, a) 2 Kk ⇥A, execute policy ⇡s until the total number of visits Nk(s, a) to (s, a) satisfies

Nk(s, a) � nk := �(Kk). For each (s, a) 2 Kk ⇥A, add s0 ⇠ p(·|s, a) to Uk if s0 /2 Kk.
// ≠ Restriction of candidate states U

6 Compute transitions bpk(s0|s, a) and Wk :=
n
s0 2 Uk : 9(s, a) 2 Kk ⇥A, bpk(s0|s, a) � 1�"/2

L

o
·

7 if Wk is empty then
8 Set continue := False. //condition STOP1

9 else
// Æ Computation of the optimistic policies on K

10 for each state s0 2 Wk do
11 Compute (eus0 , e⇡s0) := OVISSP(Kk,A, s0, Nk, "

6L), see Alg. 3 in App. D.1.

12 Let s† := argmins2Wk
eus(s0) and eu† := eus†(s0).

13 if eu† > L then
14 Set continue := False. //condition STOP2

15 else
// Ø State transfer from U to K

16 Set Kk+1 := Kk [{s†}, Uk+1 := Uk \ {s†} and ⇡s† := e⇡s† .

// ∞ Policy consolidation: computation on the final set K
17 Set K := k.
18 for each state s 2 KK do
19 Compute (eus, e⇡s) := OVISSP(KK ,A, s,NK , "

6L).
20 Output: the states s in KK and their corresponding policy ⇡s := e⇡s.

to compute a policy to control one of the states encountered before. We denote by Kk (resp.Uk) the
set of controllable (resp. uncontrollable) states at the beginning of round k. DisCo stops at a round K
when it can confidently claim that all the remaining states outside of KK cannot be L-controllable.

At each round, the algorithm uses all samples observed so far to build an estimate of the transition
model denoted by bp(s0|s, a) = N(s, a, s0)/N(s, a), where N(s, a) and N(s, a, s0) are counters for
state-action and state-action-next state visitations. Each round is divided into two phases. The first is
a sample collection phase. At the beginning of round k, the agent collects additional samples until
nk := �(Kk) samples are available at each state-action pair in Kk ⇥A (step ¨). A key challenge lies
in the careful (and adaptive) choice of the allocation function �, which we report in the statement of
Thm. 1 (see Eq. 19 in App. D.4 for its exact definition). Importantly, the incremental construction of
Kk entails that sampling at each state s 2 Kk can be done efficiently. In fact, for all s 2 Kk the agent
has already confidently learned a policy ⇡s to reach s in at most L+ " steps on average (see how such
policy is computed in the second phase). The generation of transitions (s, a, s0) for (s, a) 2 Kk ⇥A
achieves two objectives at once. First, it serves as a discovery step, since all observed next states s0
not in Uk are added to it — in particular this guarantees sufficient exploration at the fringe (or border)
of the set Kk. Second, it improves the accuracy of the model p in the states in Kk, which is essential
in computing near-optimal policies and thus fulfilling the AX? condition.

The second phase does not require interacting with the environment and it focuses on the computation

of optimistic policies. The agent begins by significantly restricting the set of candidate states in each
round to alleviate the computational complexity of the algorithm. Namely, among all the states in Uk,
it discards those that do not have a high probability of belonging to S!

L
by considering a restricted

set Wk ✓ Uk (step ≠). In fact, if the estimated probability bpk of reaching a state s 2 Uk from any of
the controllable states in Kk is lower than (1 � "/2)/L, then no shortest-path policy restricted on
Kk could get to s from s0 in less than L+ " steps on average. Then for each state s0 in Wk, DisCo
computes an optimistic policy restricted on Kk to reach s0. Formally, for any candidate state s0 2 Wk,
we define the induced stochastic shortest path (SSP) MDP M 0

k
with goal state s0 as follows.

5

Definition 6. We define the SSP-MDP M 0
k
:= hS,A0

k
(·), c0

k
, p0

k
i with goal state s0, where the action

space is such that A0
k
(s) = A for all s 2 Kk and A0

k
(s) = {RESET} otherwise (i.e., we focus on

policies restricted on Kk). The cost function is such that for all a 2 A, c0
k
(s0, a) = 0, and for any

s 6= s0, c0
k
(s, a) = 1. The transition model is p0

k
(s0|s0, a) = 1 and p0

k
(·|s, a) = p(·|s, a) otherwise.

6

The solution of M 0
k

is the shortest-path policy from s0 to s0 restricted on Kk. Since p0
k

is unknown,
DisCo cannot compute the exact solution of M 0

k
, but instead, it executes optimistic value iteration

(OVISSP) for SSP [27, 28] to obtain a value function eus0 and its associated greedy policy e⇡s0 restricted
on Kk (see App. D.1 for more details).

The agent then chooses a candidate goal state s† for which the value eu† := eus†(s0) is the smallest.
This step can be interpreted as selecting the optimistically most promising new state to control.
Two cases are possible. If eu† L, then s† is added to Kk (step Ø), since the accuracy of the
model estimate on the state-action space Kk ⇥ A guarantees that the policy e⇡s† is able to reach
the state s† in less than L + " steps in expectation with high probability (i.e., s† is incrementally
(L + ")-controllable). Otherwise, we can guarantee that S!

L
✓ Kk with high probability. In the

latter case, the algorithm terminates and, using the current estimates of the model, it recomputes an
optimistic shortest-path policy ⇡s restricted on the final set KK for each state s 2 KK (step ∞). This
policy consolidation step is essential to identify near-optimal policies restricted on the final set KK

(and thus on S!
L

): indeed the expansion of the set of the so far controllable states may alter and refine
the optimal goal-reaching policies restricted on it (see App. A).

Computational Complexity. Note that algorithmically, we do not need to define M 0
k

(Def. 6) over
the whole state space S as we can limit it to Kk [{s0}, i.e., the candidate state s0 and the set Kk of so
far controllable states. As shown in Thm. 1, this set can be significantly smaller than S . In particular
this implies that the computational complexity of the value iteration algorithm used to compute the
optimistic policies is independent from S (see App. D.9 for more details).

4 Sample Complexity Analysis of DisCo

We now present our main result: a sample complexity guarantee for DisCo for the AX? objective,
which directly implies that AXL is also satisfied.
Theorem 1. There exists an absolute constant ↵ > 0 such that for any L � 1, " 2 (0, 1], and

� 2 (0, 1), if we set the allocation function � as

� : X ! ↵ ·

L4b⇥(X)

"2
log2

✓
LSA

"�

◆
+

L2|X |
"

log

✓
LSA

"�

◆!
, (2)

with b⇥(X) := max(s,a)2X⇥A
�P

s02X
p
bp(s0|s, a)(1� bp(s0|s, a))

�2
, then the algorithm DisCo

(Alg. 1) satisfies the following sample complexity bound for AX?

CAX?(DisCo, L, ", �) = eO
✓
L5�L+"SL+"A

"2
+

L3S2
L+"

A

"

◆
, (3)

where SL+" := |S!
L+"

| and

�L+" := max
(s,a)2S!

L+"
⇥A

k{p(s0|s, a)}s02S!
L+"

k0 SL+"

is the maximal support of the transition probabilities p(·|s, a) restricted to the set S!
L+"

.

Given the definition of AX?, Thm. 1 implies that DisCo 1) terminates after CAX?(DisCo, L, ", �)
time steps, 2) discovers a set of states K ◆ S!

L
with |K| SL+", 3) and for each s 2 K outputs a

policy ⇡s which is "-optimal w.r.t. policies restricted on S!
L

, i.e., v⇡s
(s0 ! s) V ?

S!
L

(s0 ! s) + ".
Note that Eq. 3 displays only a logarithmic dependency on S, the total number of states. This property
on the sample complexity of DisCo, along with its S-independent computational complexity, is
significant when the state space S grows large w.r.t. the unknown set of interest S!

L
.

6In words, all actions at states in Kk behave exactly as in M and suffer a unit cost, in all states outside Kk

only the reset action to s0 is available with a unit cost, and all actions at the goal s0 induce a zero-cost self-loop.

6

4.1 Proof Sketch of Theorem 1

While the complete proof is reported in App. D, we now provide the main intuition behind the result.

State Transfer from U to K (step Ø). Let us focus on a round k and a state s† 2 Uk that gets
added to Kk. For clarity we remove in the notation the round k, goal state s† and starting state s0.
We denote by v and ev the value functions of the candidate policy e⇡ in the true and optimistic model
respectively, and by eu the quantity w.r.t. which e⇡ is optimistically greedy. We aim to prove that
s† 2 S!

L+"
(with high probability). The main chain of inequalities underpinning the argument is

v |v � ev|+ ev
(a)
 "

2
+ ev

(b)
 "

2
+ eu+

"

2

(c)
 L+ ", (4)

where (c) is guaranteed by algorithmic construction and (b) stems from the chosen level of value
iteration accuracy. Inequality (a) has the flavor of a simulation lemma for SSP, by relating the
shortest-path value function of a same policy between two models (the true one and the optimistic
one). Importantly, when restricted to K these two models are close in virtue of the algorithmic design
which enforces the collection of a minimum amount of samples at each state-action pair of K ⇥A,
denoted by n. Specifically, we obtain that

|v � ev| = eO
⇣rL4�K

n
+

L2|K|
n

⌘
, with �K := max

(s,a)2K⇥A
k{p(s0|s, a)}s02Kk0 |K|.

Note that �K is the branching factor restricted to the set K. Our choice of n (given in Eq. 2) is then
dictated to upper bound the above quantity by "/2 in order to satisfy inequality (a). Let us point
out that, interestingly yet unfortunately, the structure of the problem does not appear to allow for
technical variance-aware improvements seeking to lower the value of n prescribed above (indeed the
AX framework requires to analytically encompass the uncontrollable states U into a single meta state
with higher transitional uncertainty, see App. D for details).

Termination of the Algorithm. Since S!
L

is unknown, we have to ensure that none of the states in
S!
L

are “missed”. As such, we prove that with overwhelming probability, we have S!
L

✓ KK when
the algorithm terminates at a round denoted by K. There remains to justify the final near-optimal
guarantee w.r.t. the set of policies ⇧(S!

L
). Leveraging that step ∞ recomputes the policies (⇡s)s2KK

on the final set KK , we establish the following chain of inequalities

v |v � ev|+ ev
(a)
 "

2
+ ev

(b)
 "

2
+ eu+

"

2

(c)
 V ?

KK
+ "

(d)
 V ?

S!
L

+ ", (5)

where (a) and (b) are as in Eq. 4, (c) leverages optimism and (d) stems from the inclusion S!
L

✓ KK .

Sample Complexity Bound. The choice of allocation function � in Eq. 2 bounds nK which is
the total number of samples required at each state-action pair in KK ⇥ A. We then compute a
high-probability bound on the time steps needed to collect a given sample, and show that it scales
as eO(L). Since the sample complexity is solely induced by the sample collection phase (step ¨), it
can be bounded by the quantity nK |KK |A. Putting everything together yields the bound of Thm. 1.

4.2 Comparison with UcbExplore [1]

We start recalling the critical distinction that DisCo succeeds in tackling problem AX?, while
UcbExplore [1] fails to do so (see App. A for details on the AX objectives). Nonetheless, in the
following we show that even if we restrict our attention to AXL, for which UcbExplore is designed,
DisCo yields a better sample complexity in most of the cases. From [1], UcbExplore verifies7

CAXL(UcbExplore, L, ", �) =
eO
✓
L6SL+"A

"3

◆
· (6)

Eq. 6 shows that the sample complexity of UcbExplore is linear in SL+", while for DisCo the
dependency is somewhat worse. In the main-order term eO(1/"2) of Eq. 3, the bound depends linearly
on SL+" but also grows with the branching factor �L+", which is not the “global” branching factor

7Note that if we replace the error of " for AXL with an error of L" as in [1], we recover the sample complexity
of eO

�
L3SL+"A/"3

�
stated in [1, Thm. 8].

7

but denotes the number of possible next states in S!
L+"

starting from S!
L+"

. While in general we only
have �L+" SL+", in many practical domains (e.g., robotics, user modeling), each state can only
transition to a small number of states, i.e., we often have �L+" = O(1) as long as the dynamics is
not too “chaotic”. While DisCo does suffer from a quadratic dependency on SL+" in the second
term of order eO(1/"), we notice that for any SL+" L3"�2 the bound of DisCo is still preferable.
Furthermore, since for "! 0, SL+" tends to SL, the condition is always verified for small enough ".

Compared to DisCo, the sample complexity of UcbExplore is worse in both " and L. As stressed in
Sect. 2.2, the better dependency on " both improves the quality of the output goal-reaching policies as
well as reduces the number of incrementally (L+ ")-controllable states returned by the algorithm. It
is interesting to investigate why the bound of [1] (Eq. 6) inherits a eO("�3) dependency. As reviewed
in App. E, UcbExplore alternates between two phases of state discovery and policy evaluation.
The optimistic policies computed by UcbExplore solve a finite-horizon problem (with horizon
set to HUCB). However, minimizing the expected time to reach a target state is intrinsically an
SSP problem, which is exactly what DisCo leverages. By computing policies that solve a finite-
horizon problem (note that UcbExplore resets every HUCB time steps), [1] sets the horizon to
HUCB := dL + L2"�1e, which leads to a policy-evaluation phase with sample complexity scaling
as eO(HUCB"�2) = eO("�3). Since the rollout budget of eO("�3) is hard-coded into the algorithm,
the dependency on " of UcbExplore’s sample complexity cannot be improved by a more refined
analysis; instead a different algorithmic approach is required such as the one employed by DisCo.

4.3 Goal-Free Cost-Free Exploration on S!
L

with DisCo

A compelling advantage of DisCo is that it achieves an accurate estimation of the environment’s
dynamics restricted to the unknown subset of interest S!

L
. In contrast to UcbExplore which needs

to restart its sample collection from scratch whenever L, " or some transition costs change, DisCo
can thus be robust to changes in such problem parameters. At the end of its exploration phase in
Alg. 1, DisCo is able to perform zero-shot planning to solve other tasks restricted on S!

L
, such

as cost-sensitive ones. Indeed in the following we show how the DisCo agent is able to compute
an "/cmin-optimal policy for any stochastic shortest-path problem on S!

L
with goal state s 2 S!

L

(i.e., s is absorbing and zero-cost) and cost function lower bounded by cmin > 0.
Corollary 1. There exists an absolute constant � > 0 such that for any L � 1, " 2 (0, 1] and

cmin 2 (0, 1] verifying " � · (L cmin), with probability at least 1 � �, for whatever goal state

s 2 S!
L

and whatever cost function c in [cmin, 1], DisCo can compute (after its exploration phase,

without additional environment interaction) a policy b⇡s,c whose SSP value function Vb⇡s,c
verifies

Vb⇡s,c
(s0 ! s) V ?

S!
L

(s0 ! s) +
"

cmin
,

where V⇡(s0 ! s) := E
hP

⌧⇡(s0!s)
t=1 c(st,⇡(st))

�� s1 = s0
i

is the SSP value function of a policy ⇡

and V ?

S!
L

(s0 ! s) := min⇡2⇧(S!
L

) V⇡(s0 ! s) is the optimal SSP value function restricted on S!
L

.

It is interesting to compare Cor. 1 with the reward-free exploration framework recently introduced by
Jin et al. [24] in finite-horizon. At a high level, the result in Cor. 1 can be seen as a counterpart of [24]
beyond finite-horizon problems, specifically in the goal-conditioned setting. While the parameter L
defines the horizon of interest for DisCo, resetting after every L steps (as in finite-horizon) would
prevent the agent to identify L-controllable states and lead to poor performance. This explains the
distinct technical tools used: while [24] executes finite-horizon no-regret algorithms, DisCo deploys
SSP policies restricted on the set of states that it “controls” so far. Algorithmically, both approaches
seek to build accurate estimates of the transitions on a specific (unknown) state space of interest: the
so-called “significant” states within H steps for [24], and the incrementally L-controllable states S!

L

for DisCo. Bound-wise, the cost-sensitive AX? problem inherits the critical role of the minimum cost
cmin in SSP problems (see App. C and e.g., [27, 28, 29]), which is reflected in the accuracy of Cor. 1
scaling inversely with cmin. Another interesting element of comparison is the dependency on the size
of the state space. While the algorithm introduced in [24] is robust w.r.t. states that can be reached
with very low probability, it still displays a polynomial dependency on the total number of states S.
On the other hand, DisCo has only a logarithmic dependency on S, while it directly depends on
the number of (L + ")-controllable states, which shows that DisCo effectively adapts to the state
space of interest and it ignores all other states. This result is significant since not only SL+" can be
arbitrarily smaller than S, but also because the set S!

L+"
itself is initially unknown to the algorithm.

8

0 1 2 3 4 5 6

·106

0.2

0.4

0.6

0.8

1

hBK2

S`
QT

Q`
iBQ

M
Q7

G@
+Q

Mi
`Q

HH�
#H

2
bi

�i
2b

✏4yXR

l+#1tTHQ`2
.Bb*Q

0 0.2 0.4 0.6 0.8 1 1.2

·105

0.2

0.4

0.6

0.8

1

hBK2

S`
QT

Q`
iBQ

M
Q7

G@
+Q

Mi
`Q

HH�
#H

2
bi

�i
2b

✏4yX9

l+#1tTHQ`2
.Bb*Q

0 0.5 1 1.5 2 2.5

·104

0.2

0.4

0.6

0.8

1

hBK2

S`
QT

Q`
iBQ

M
Q7

G@
+Q

Mi
`Q

HH�
#H

2
bi

�i
2b

✏4yX3

l+#1tTHQ`2
.Bb*Q

Figure 2: Proportion of the incrementally L-controllable states identified by DisCo and UcbExplore
in a confusing chain domain for L = 4.5 and " 2 {0.1, 0.4, 0.8}. Values are averaged over 50 runs.

5 Numerical Simulation

In this section, we provide the first evaluation of algorithms in the incremental autonomous exploration
setting. In the implementation of both DisCo and UcbExplore, we remove the logarithmic and
constant terms for simplicity. We also boost the empirical performance of UcbExplore in various
ways, for example by considering confidence intervals derived from the empirical Bernstein inequality
(see [30]) as opposed to Hoeffding as done in [1]. We refer the reader to App. F for details on the
algorithmic configurations and on the environments considered.

We compare the sample complexity empirically achieved by DisCo and UcbExplore. Fig. 2 depicts
the time needed to identify all the incrementally L-controllable states when L = 4.5 for different
values of ", on a confusing chain domain. Note that the sample complexity is achieved soon
after, when the algorithm can confidently discard all the remaining states as non-controllable (it
is reported in Tab. 2 of App. F). We observe that DisCo outperforms UcbExplore for any value
of ". In particular, the gap in performance increases as " decreases, which matches the theoretical
improvement in sample complexity from eO("�3) for UcbExplore to eO("�2) for DisCo. On a
second environment — the combination lock problem introduced in [31] — we notice that DisCo
again outperforms UcbExplore, as shown in App. F.

Another important feature of DisCo is that it targets the tighter objective AX?, whereas UcbExplore
is only able to fulfill objective AXL and may therefore elect suboptimal policies. In App. F we show
empirically that, as expected theoretically, this directly translates into higher-quality goal-reaching
policies recovered by DisCo.

6 Conclusion and Extensions

Connections to existing deep-RL methods. While we primarily focus the analysis of DisCo in the
tabular case, we believe that the formal definition of AX problems and the general structure of DisCo
may also serve as a theoretical grounding of many recent approaches to unsupervised exploration.
For instance, it is interesting to draw a parallel between DisCo and the ideas behind Go-Explore [32].
Go-Explore similarly exploits the following principles: (1) remember states that have previously been
visited, (2) first return to a promising state (without exploration), (3) then explore from it. Go-Explore
assumes that the world is deterministic and resettable, meaning that one can reset the state of the
simulator to a previous visit to that cell. Very recently [15], the same authors proposed a way to relax
this requirement by training goal-conditioned policies to reliably return to cells in the archive during
the exploration phase. In this paper, we investigated the theoretical dimension of this direction, by
provably learning such goal-conditioned policies for the set of incrementally controllable states.

Future work. Interesting directions for future investigation include: 1) Deriving a lower bound for the
AX problems; 2) Integrating DisCo into the meta-algorithm MNM [33] which deals with incremental
exploration for AXL in non-stationary environments; 3) Extending the problem to continuous state
space and function approximation; 4) Relaxing the definition of incrementally controllable states and
relaxing the performance definition towards allowing the agent to have a non-zero but limited sample
complexity of learning a shortest-path policy for any state at test time.

9

Broader Impact

This paper makes contributions to the fundamentals of online learning (RL) and due to its theoretical
nature, we see no ethical or immediate societal consequence of our work.

References
[1] Shiau Hong Lim and Peter Auer. Autonomous exploration for navigating in MDPs. In

Conference on Learning Theory, pages 40–1, 2012.

[2] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In Proc. of the international conference on simulation of adaptive behavior:

From animals to animats, pages 222–227, 1991.

[3] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated rein-
forcement learning. In Advances in neural information processing systems, pages 1281–1288,
2005.

[4] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of
computational approaches. Frontiers in neurorobotics, 1:6, 2009.

[5] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental

Development, 2(2):70–82, 2010.

[6] Adrien Baranes and Pierre-Yves Oudeyer. Intrinsically motivated goal exploration for active
motor learning in robots: A case study. In 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1766–1773. IEEE, 2010.

[7] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in neural

information processing systems, pages 1471–1479, 2016.

[8] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pages
2753–2762, 2017.

[9] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Variational information maximizing exploration. Advances in Neural Information Processing

Systems (NIPS), 2016.

[10] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 16–17, 2017.

[11] Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo Avila Pires, Jean-Bastian Grill, Florent
Altché, and Rémi Munos. World discovery models. arXiv preprint arXiv:1902.07685, 2019.

[12] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning

Representations, 2019.

[13] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. In International Conference on Learning Representa-

tions, 2020.

[14] Vı́ctor Campos Camúñez, Alex Trott, Caiming Xiong, Richard Socher, Xavier Giró Nieto, and
Jordi Torres Viñals. Explore, discover and learn: unsupervised discovery of state-covering skills.
In International Conference on Machine Learning, pages 1317–1327. PMLR, 2020.

[15] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return
then explore. arXiv preprint arXiv:2004.12919, 2020.

10

[16] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International Conference on Machine Learning, pages
1515–1528, 2018.

[17] Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
Curious: intrinsically motivated modular multi-goal reinforcement learning. In International

conference on machine learning, pages 1331–1340. PMLR, 2019.

[18] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. In
International Conference on Learning Representations, 2019.

[19] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine.
Skew-fit: State-covering self-supervised reinforcement learning. In International Conference

on Machine Learning, pages 7783–7792. PMLR, 2020.

[20] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. In International Conference on Machine Learning, pages 2681–2691,
2019.

[21] Jean Tarbouriech and Alessandro Lazaric. Active exploration in markov decision processes.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 974–982,
2019.

[22] Wang Chi Cheung. Exploration-exploitation trade-off in reinforcement learning on online
markov decision processes with global concave rewards. arXiv preprint arXiv:1905.06466,
2019.

[23] Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, and Alessan-
dro Lazaric. Active model estimation in markov decision processes. In Conference on Uncer-

tainty in Artificial Intelligence, 2020.

[24] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. In International Conference on Machine Learning, pages 4870–4879.
PMLR, 2020.

[25] Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 2014.

[26] Dimitri Bertsekas. Dynamic programming and optimal control, volume 2. 2012.

[27] Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric.
No-regret exploration in goal-oriented reinforcement learning. In International Conference on

Machine Learning, pages 9428–9437. PMLR, 2020.

[28] Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds
for stochastic shortest path. In International Conference on Machine Learning, pages 8210–
8219. PMLR, 2020.

[29] Dimitri P Bertsekas and Huizhen Yu. Stochastic shortest path problems under weak conditions.
Lab. for Information and Decision Systems Report LIDS-P-2909, MIT, 2013.

[30] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 263–272. JMLR. org, 2017.

[31] Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J Kappen. Dynamic policy program-
ming. Journal of Machine Learning Research, 13(Nov):3207–3245, 2012.

[32] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[33] Pratik Gajane, Ronald Ortner, Peter Auer, and Csaba Szepesvari. Autonomous exploration for
navigating in non-stationary CMPs. arXiv preprint arXiv:1910.08446, 2019.

11

[34] Blai Bonet. On the speed of convergence of value iteration on stochastic shortest-path problems.
Mathematics of Operations Research, 32(2):365–373, 2007.

[35] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Tuning bandit algorithms in stochastic
environments. In International conference on algorithmic learning theory, pages 150–165.
Springer, 2007.

[36] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance
penalization. arXiv preprint arXiv:0907.3740, 2009.

[37] Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580–595, 1991.

[38] Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Improved analysis of ucrl2 with empirical
bernstein inequality. arXiv preprint arXiv:2007.05456, 2020.

[39] Abbas Kazerouni, Mohammad Ghavamzadeh, Yasin Abbasi, and Benjamin Van Roy. Conserva-
tive contextual linear bandits. In Advances in Neural Information Processing Systems, pages
3910–3919, 2017.

12

	Introduction
	Incremental Exploration to Discover and Control
	L-Controllable States
	AX Objectives

	The DisCo Algorithm
	Sample Complexity Analysis of DisCo
	Proof Sketch of Theorem 1
	Comparison with UcbExplore lim2012autonomous
	Goal-Free Cost-Free Exploration on SL with DisCo

	Numerical Simulation
	Conclusion and Extensions
	 Appendix
	Autonomous Exploration Objectives
	Efficient Computation of Optimistic SSP Policy
	Computation of Optimal Policy in Known SSP
	Computation of Optimistic Model in Unknown SSP
	Combining the two: Optimistic Value Iteration for SSP (OVISSP)

	Useful Result: Simulation Lemma for SSP
	Proof of Theorem 1 (Sample Complexity Analysis of DisCo)
	Computation of the Optimistic Policies
	High-Probability Event
	Properties of the Optimistic Policies and Value Vectors
	State Transfer from U to K (step .)
	Termination of the Algorithm
	High Probability Bound on the Sample Collection Phase (step .)
	Putting Everything Together: Sample Complexity Bound
	Proof of Corollary 1
	Computational Complexity of DisCo

	The UcbExplore Algorithm lim2012autonomous
	Outline of the Algorithm
	Minor Issue and Fix in the Analysis of UcbExplore
	Issue with a Possibly Infinite State Space
	Effective Horizon of the AX Problem and its Dependency on

	Experiments
	Algorithmic Configurations
	Confusing Chain
	Combination Lock

