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Abstract

This work introduces macro-action discovery using value-of-information (VoI) for
robust and efficient planning in partially observable Markov decision processes
(POMDPs). POMDPs are a powerful framework for planning under uncertainty.
Previous approaches have used high-level macro-actions within POMDP policies
to reduce planning complexity. However, macro-action design is often heuristic
and rarely comes with performance guarantees. Here, we present a method for
extracting belief-dependent, variable-length macro-actions directly from a low-level
POMDP model. We construct macro-actions by chaining sequences of open-loop
actions together when the task-specific value of information (VoI) — the change in
expected task performance caused by observations in the current planning iteration
— is low. Importantly, we provide performance guarantees on the resulting VoI
macro-action policies in the form of bounded regret relative to the optimal policy.
In simulated tracking experiments, we achieve higher reward than both closed-loop
and hand-coded macro-action baselines, selectively using VoI macro-actions to
reduce planning complexity while maintaining near-optimal task performance.

1 Introduction

Partially observable Markov decision processes (POMDPs) are a powerful and general framework
for model-based planning under uncertainty [9]. A core challenge in POMDP planning is that the
optimally reachable belief spaceR∗(b0) — the set of beliefs that are reachable from an initial belief
b0 under stochastic observation transitions when following an optimal policy — grows exponentially
with the planning horizon in the size of the observation set. The complexity of computing an optimal
POMDP policy is related to the covering number ofR∗(b0) [13], and this exponential growth poses
a challenge for planning algorithms that attempt to approximateR∗(b0) using offline, point-based
approximations [11, 15, 17] or online, sampling methods [18–20].

Previous approaches have introduced high-level macro-actions 1 or options [21], such as drive to the
nearest exit, to reduce planning complexity in complex tasks. Policies that use open-loop macro-
actions have the dual benefits of a shorter effective planning horizon and smaller reachable belief
space (RBS), as a policy’s reachable belief space grows linearly rather than exponentially when acting
in open-loop (Figure 1). However, macro-actions are largely hand-coded [2, 6, 22] or learned without
formal guarantees [1, 3, 8]. Here, we address the key challenge of generating macro-actions from a
low-level POMDP model such that the resulting policies have bounded regret.

This paper introduces a method for generating belief-dependent, variable-length macro-actions using
a point-based representation of the POMDP value function. Our key insight is to introduce a value
of information (VoI) function — which estimates the change in expected task performance caused
by sensing in the current planning iteration — and constrain policies to selectively act open-loop

1 We use the term macro-action synonymously with open loop action sequence.
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when VoI is low. Unlike hand-coded or learned macro-actions, we show that a horizon-H policy
utilizing VoI macro-actions has bounded regret rH compared to the optimal policy. Letting V ∗H be the
expected reward of an optimal policy and VMA

H the expected reward of the VoI macro-action policy,
our main result (Theorem 5.2) shows:

rH =
∥∥V ∗H − VMA

H

∥∥
∞ ≤

1− γH

1− γ

(
δB
(
3L+

Rmax
1− kγ

+ Lγk
)

+ τ
)
, (1)

where γ is the POMDP discount factor, L is a Lipschitz constant describing the smoothness of the
value function in belief space, and the POMDP reward function is bounded in [−Rmax, Rmax].

The three remaining terms — τ , δB, and k — elucidate the key trade-offs for macro-action-based
POMDP planning. Introducing potentially sub-optimal macro-actions into a policy increases regret.
The parameter τ is a VoI threshold, below which the planner acts in open-loop; high values of τ
increase macro-action utilization but also increase regret. However, macro-action policies are often
easier to approximate than an optimal policy. During planning, we approximate the value function
at a set of beliefs that form a δB-covering of the macro-action policy’s RBS. Since the open-loop
belief dynamics are a k-contractive mapping on belief space, this RBS grows slowly when acting in
open-loop; macro-action utilization leads to lower values of δB and lower regret bounds. The form of
Eq. 1 makes the trade-off between policy complexity, as measured by the size of a policy’s reachable
belief space, and policy performance explicit. Somewhat surprisingly, although consistent with Eq. 1,
our empirical results demonstrate that macro-action policies can even outperform approximations of
the optimal policy when planning with a finite point-based belief representation.

In the following sections, we introduce VoI macro-action generation and present empirical results
in a set of simulated tracking experiments. Taken together, VoI macro-action generation and the
associated regret bound address two fundamental questions for macro-action-based planning in
partially observable domains: how do we construct high-value macro-actions and when can we use
them without compromising policy performance?

2 Related Work

Existing offline [11, 15, 17] and online [18, 19] POMDP planners must contend with the rapid
growth of R∗(b0) and the resulting difficulty of approximating optimal plans. Previous work has
quantified the hardness of approximating optimal POMDP policies in terms of the covering number
ofR∗(b0) [13] and POMDP planners such as SARSOP [11] leverage this insight during planning.
Online POMDP solvers, on the other hand, search over a reduced RBS by sampling scenarios in a
receding horizon fashion [18–20]. However, the performance of many online planning algorithms
depends on the complexity of the optimal policy [19]. For problems in which the covering number
of R∗(b0) is large, both offline and online methods have little recourse. By contrast, we explicitly
search for near-optimal policies that are easy to approximate by selectively employing open-loop
macro-actions to reduce the size of the policy’s reachable belief space.

Belief State
Initial Belief
Open-loop belief transition
Closed-loop belief transition
due to observations z

RBS under Macro-Action

Initial Belief

Full Belief Simplex

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

RBS under Optimal Policy

z=0
z=1z=2

Figure 1: Reachable Belief Space (RBS) and Macro-actions: POMDP planning algorithms often reason over
the value of beliefs in a policy’s reachable belief space (RBS). However, the size of a policy’s RBS generally
grows exponentially with the planning horizon in the size of the observation set Z . This exponential growth
is visualized for a three-state discrete POMDP with |Z| = 3. Because the belief transitions deterministically
under the open-loop VoI macro-actions, the size of the RBS grows only linearly during macro-action execution.
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Options and macro-actions [21] have been widely used within the POMDP and reinforcement
learning communities to reduce planning complexity. Previous approaches use a presribed set of
macro-actions or closed-loop options, which are identified to provide a useful problem decomposition
[2,6,7,10,14,22]. These algorithms allow planners to search over shorter effective planning horizons
and often benefit from a reduced RBS, but do not provide a mechanism to identify useful options
or macro-actions from the underlying planning problem. Recently, work in deep reinforcement
learning has attempted to directly learn data-dependent closed-loop options in fully-observeable
problems [1, 3, 4, 8]. However, these approaches do not provide formal performance guarantees or
deal with the growth of the RBS and the other challenges present in partially observable problems.

3 Planning Preliminaries

POMDPs are general framework for planning under uncertainty. Let Π(·) denote the space of
probability distributions over the argument. A finite-horizon POMDP can be represented as tuple:
(S,A, T,R,Z, O, b0, H, γ), where S are the states,A are the actions, and Z are the observations. At
planning iteration t, the agent selects an action a ∈ A and the transition function T : S ×A → Π(S)
defines the probability of transitioning between states in the world, given the current state s and control
action a. After the state transition, the agent receives an observation according to the observation
function O : S × A → Π(Z), which defines the probability of receiving an observation, given
the current state s and previous control action a. The reward function R : S × A → R serves as
a specification of the task. A POMDP is initialized with belief b0 and plans over horizon H with
discount factor γ. In the following, we consider finite-horizon planning problems; extensions of many
of the results to discounted infinite-horizon problems is straightforward.

Due to the stochastic and partially observable nature of current and future states, the realized reward
in a POMDP is a random variable. Optimal planning is often defined as finding the sequence of
policies {π∗t : Π(S) → A}H−1t=0 that maximize expected reward: E

[∑H−1
t=0 γtR

(
St, πt(bt)

)
| b0
]
,

where bt is the updated belief at time t, conditioned on the history of actions and observations.

The recursively defined horizon-h optimal value function V ∗h quantifies, for any belief b, the expected
cumulative reward over the remaining planning iterations when following an optimal policy: V ∗0 (b) =
maxa∈A Es∼b[R(s, a)] and

V ∗h (b) = max
a∈A

Es∼b[R(s, a)] + γ

∫
Z
P (z | b, a)V ∗h−1(ba,z)dz h = 1, . . . ,H − 1, (2)

where ba,z is the updated belief after taking control action a and receiving observation z, computed
via Bayes rule using the transition T and observation O functions. The optimal policy at horizon h is
to act greedily according to a one-step look ahead of the value function.

4 Generating Belief-Dependent Macro-Actions

In the following section, we introduce value of information (VoI) and describe how VoI can be used to
generate belief-dependent, variable-length macro-actions. In Eq. (4), we define VoI for a given belief
as the change in expected long-term reward caused by acting closed-loop and collecting a sensor
observation in the current planning iteration. Estimating VoI is critical for selectively employing
open-loop macro-actions because open-loop actions have bounded regret exactly when VoI is low.

Before presenting the formal definition of VoI, we give an example to provide intuition about when
low VoI may arise in planning problems. A belief may have low VoI when: (i) state dynamics
are locally predictable due to the transition function, or (ii) the reward function is insensitive to
uncertainty in the current belief, or (iii) sensors are locally uninformative or only infrequent sensing
is to necessary to reduce state uncertainty. These conditions are visualized schematically in Fig. 2.
These (and other) conditions arise in many real-world planning problems. Consider the problem of a
marine robot tracking a plankton bloom using an ocean flow model. State uncertainty grows slowly
when the bloom is localized in regions of near-laminar flow (i). Moderate uncertainty in the bloom
location may be tolerable when far from human-occupied beaches (ii). Finally, if the state of the
bloom can be observed accurately in certain regions of the ocean, only infrequent observation may be
necessary; by contrast, in regions where sensor observations are highly noisy, observations may not
meaningfully reduce state uncertainty (iii).
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Figure 2: Conditions for Low VoI: Value of information may be low in a POMDP when the transition dynamics
are locally predictable over short horizons (left), the reward function is invariant to aspects of state uncertainty
(middle), or when observations are uninformative due to low state observability (right).

Rather than specialize an algorithm to recognize conditions (i)-(iii), invariably missing other condi-
tions, we find regions of belief-space where open-loop macro-actions are near-optimal by estimating
VoI direclty using the POMDP value function.

4.1 Value of Information for Identifying One-Step Open-loop Actions

We adopt a point-based value function representation, i.e., we approximate the value function using
a set of N exemplar beliefs B = {bi}N−1i=0 . We compute successive value-function approximations
to horizon-H using point-based value iteration [15], where backups of beliefs in the set B leverage
a parametric form of the value function over belief space, e.g., a set of α-vectors [9] or a deep
neural network. We modify the standard value iteration backup operation to compute the VoI, adding
open-loop backups whenever the VoI is low. An algorithm summary is presented in the supplement.

We begin by constructing the value function V̂ ∗h , which approximates the value of a policy that
selectively acts in open-loop when VoI is low. V̂ ∗0 is initialized to the optimal value function. To
perform backups of V̂ ∗h , we compute the open-loop value, V OLPh , which considers acting in open-loop
in the current planning iteration:

V OLPh (b) = max
a∈A

Es∼b[R(s, a)] + γV̂ ∗h−1(ba,∗) h = 0, . . . ,H − 1, (3)

where ba,∗ represents the open-loop belief transition, marginalizing over the received observation.

During the value function backup, we compute both the standard, closed-loop value (Eq. 2), denoted
V CLPh and the open-loop value V OLPh , where for both backups V̂ ∗h−1 is used to evaluate the recursion.

t = 2

t = 1

t = 0

z = 2
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Length-1
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Macro-action

Closed Loop Set
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(A) (B)
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Figure 3: Macro-action generation: (A) To compute the value of information at the current belief, we compute
immediate reward plus the horizon-(h − 1) value under both an open-loop (blue) and closed-loop (purple)
belief transition. This difference represents the value of information for long-term task performance. (B)
Variable-length macro-actions are constructed by macro-action chaining — for each belief in the open-loop
set BOLP

h , we compute the open-loop transition (blue) and terminate macro-action chaining when the belief
transitions into the closed-loop set (purple). For beliefs in the closed loop set, no macro-action is generated.
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The difference between the open- and closed-loop value represents the VoI at horizon h for each
belief in B (Figure 3).

VoIh(b) = V CLPh (b)− V OLPh (b) (4)

When VoI is below a regret threshold τ we perform an open-loop backup at b. We then add b to
the open-loop set BOLPh and store the optimal open-loop action in action set AOLPh . The resulting
backup operator is denoted Ĥ:

V̂ ∗h (b) = ĤV̂ ∗h−1(b) =

{
V OLPh (b) if V OLPh (b) ≥ V CLPh (b)− τ
V CLPh (b) otherwise

(5)

4.2 Chaining Open-loop Actions into Macro-Actions

Value iteration is performed to horizon H using Eq. 5, producing the value function V̂ ∗h , sets of open-
loop BOLPh beliefs, and optimal open-loop actions AOLPh . We use these sets to generate near-optimal
macro-actions for each belief in B by performing macro-action chaining (Fig. 3). An algorithm
summary for macro-action chaining is presented in the supplement.

Starting from horizon h, we iterate over beliefs in B. If b 6∈ BOLPh , we immediately terminate
macro-action chaining. If b ∈ BOLPh , we find the associated open-loop action a ∈ AOLPh . Critically,
the open-loop belief transition is deterministic conditioned on the selected action. Let ba,∗ be the
belief resulting from open-loop action a, which may or may not be included in B. If ba,∗ 6∈ B, we
evaluate V OLPh−1 (ba,∗) and V CLPh−1 (ba,∗) and use Eq. 5 to decide if ba,∗ ∈ BOLPh−1 . If so, we find the
associated optimal action a′ and extend the macro-action chain for belief b to include a′; if not, we
terminate the chain. We proceed in this manner for the remainder of the planning horizon, or until the
deterministically transitioning belief is not in the open-loop set. The chaining process is repeated for
each belief in B and each horizon h = 0, . . . ,H − 1.

Macro-action chaining produces a set of belief-dependent macro-actions for beliefs in B. However,
during online policy execution, we are likely to encounter beliefs not contained in B. For each belief
b 6∈ B, we execute the macro-action associated with b’s nearest neighbor in B under the L1 norm. Let
VMA
H to denote the expected reward of this approximate macro-action policy over horizon H .

Method Summary VoI macro-action generation first proceeds backward, performing point-based
value iteration to estimate VoI and using VoI to decompose the belief space into beliefs for which an
open-loop action is near-optimal (open-loop set) and those for which sensing is needed (closed-loop
set) (Section 4.1). Then, macro-action chaining proceeds forward, propagating each belief in the
open-loop set forward under the action computed during value iteration and building an open-loop
macro-action chain until the propagated belief lies in the closed-loop set (Section 4.2). The resulting
VoI macro-actions are belief-dependent and variable-length. This method is visualized in Fig. 3.

5 Analysis

In the following, we show that the the macro-action value function VMA
H is within a constant factor

of the optimal value function V ∗H .

Let (S,F , µ) be a σ-finite measurable space with σ-algebra F and measure µ. Let the belief space
Π(S) be a subset of L1(S,F , µ) with L1 norm ‖·‖1 and let ‖·‖ denote the absolute value on R. Let
the point-based belief set B form a δB-covering of a compact set G ⊆ Π(S) that contains all beliefs
reachable under the VoI macro-action policyRMA(b0) ⊆ G. We assume the following:
Assumption 5.1. Let V πh , the horizon h value function under a policy π be Lipschitz continu-
ous with Lipschitz constant L over the reachable belief space of initial belief b0 under policy π:
‖V πh (b1)− V πh (b2)‖ ≤ L ‖b1 − b2‖1 ,∀b1, b2 ∈ Rπ(b0).

This assumption holds for many classes of POMDP problems, including finite-horizon discrete
POMDPs [9], finite-horizon continuous POMDPS [13], and information reward POMDPs [5].

Consider the POMDP model M = (S,A, T,R,Z, O, b0, H, γ) with reward bounded in
[−Rmax, Rmax]. We define regret rH at horizon H as the worst-case difference in long-term
expected reward between the optimal policy V ∗H and the approximate VoI macro-action policy VMA

H :
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Theorem 5.2. The worst-case regret of a policy using VoI macro-actions with threshold τ is bounded
for beliefs in G by:

rH =
∥∥V ∗H − VMA

H

∥∥
∞ ≤

1− γH

1− γ

(
δB
(
3L+

Rmax
1− kγ

+ Lγk
)

+ τ
)
. (6)

We prove Theorem 5.2 in the remainder of this section. The proof relies on two key results:
Lemma 5.3, which bounds value approximation error during VoI-based backups and Lemma 5.5,
which bounds the error of applying macro-actions computed offline to beliefs at runtime.

5.1 Value Backup Error

LetH, V ∗h denote the exact value backup operator and the resulting optimal value function respectively
(Eq. 2) and Ĥ, V̂ ∗h (b) denote the point-based, macro-action backup and value function (Eq. 5), where
the optimal open-loop action for each belief is used without macro-action chaining. We show that the
error between V ∗h and V̂ ∗h is bounded and can be decomposed into error caused by the point-based
approximation and error caused by the inclusion of potentially sub-optimal open-loop actions.
Lemma 5.3. The horizon-H value function error caused by including open-loop actions in backups
whenever VoI < τ is bounded for beliefs in G by εH =

∥∥∥V̂ ∗H − V ∗H∥∥∥∞ ≤ 1−γH

1−γ (2LδB + τ).

This bound illuminates the role of VoI parameter τ in policy performance — for larger τ , open-loop
actions are used frequently and δB will generally decrease, improving policy regret; however, large τ
also contributes to the policy regret by allowing open-loop actions be taken even when VoI is high.

Proof. Consider any compact subset β of G; importantly, β can be different from the belief set B
used in planning. We define εh to be the maximum error in the value function on the set β during
the value iteration recursion at horizon h. Let bε ∈ β be the belief for which the value function error
is maximized and δ be the minimum distance between a belief in B and bε: δ = minb∈B ‖b− bε‖1.
Because B forms a δB covering of β, we have that δ ≤ δB. We bound εh (proof in the supplement,
Section B) by the following term: εh =

∥∥∥V ∗h (β)− V̂ ∗h (β)
∥∥∥
∞
≤ 2LδB+

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥ .

The term 2LδB represents the value-function error induced by the point-based approximation [15].
We will further examine the termHV ∗h−1(b)− ĤV̂ ∗h−1(b). Without loss of generality, let a1 be the
optimal, closed-loop action at belief b and a2 be the near-optimal, open-loop action selected for
backing up V̂ ∗h . LetHa1 denote the closed-loop value function backup using action a1 and Ĥa2,OLP

denote the open-loop backup using action a2.

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥ =

∥∥∥Ha1V ∗h−1(b)− Ĥa2,OLP V̂ ∗h−1(b)
∥∥∥ , (7)

≤
∥∥∥Ha2,OLP V ∗h−1(b) + τ − Ĥa2,OLP V̂ ∗h−1(b)

∥∥∥ , (8)

≤
∥∥∥γV ∗h−1(ba2,∗) + τ − γV̂ ∗h−1(ba2,∗)

∥∥∥ ≤ γεh−1 + τ, (9)

where if ba2,∗ 6∈ G, we replace V ∗h−1(ba2,∗), V̂ ∗h−1(ba2,∗) with a valid lower-bound. Expanding the

recursion εh ≤ γεh−1 + 2LδB + τ , we conclude that εH ≤ 1−γH

1−γ (2LδB + τ).

5.2 Generalizing Macro-Actions

During policy execution, we generalize macro-actions computed for beliefs in B to new beliefs. The
error induced by this approximation can be bounded by demonstrating that the open-loop dynamics
are a non-expansive mapping in belief-space, ensuring that during an open-loop macro-action, the
distance between the forward-propagated beliefs can be no larger than their initial separation δ.
Lemma 5.4. (Lasota and Mackey [12]) The open-loop dynamics are a non-expansive mapping in
belief space. Consider two beliefs b1, b2 ∈ Π(S) such that ‖b1 − b2‖1 = δ. Then, for any action a
taken in open-loop, it follows that

∥∥ba,∗1 − ba,∗2

∥∥
1
≤ kδ for 0 ≤ k ≤ 1.
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Let VMA
h denote the value of following an approximate macro-action policy from belief b at horizon

h, where b 6∈ B and the macro-action computed for its nearest neighbor b∗ is instead executed.
Lemma 5.5. The additional value function error of approximating the VoI macro-action at belief b
using its nearest neighbor b∗ under k-contractive open-loop dynamics is bounded by:

ηH =
∥∥∥V̂ ∗H − VMA

H

∥∥∥
∞
≤ 1− γH

1− γ

(
LδB +

RmaxδB
1− γk

+ LγkδB

)
. (10)

Proof. Consider any compact subset β of G. Then ηh =
∥∥∥V̂ ∗h (β)− VMA

h (β)
∥∥∥
∞

.

Without loss of generality, let b be the belief for which ηh is maximized, let b∗ be its nearest neighbor
in B, and let Al = {a1, . . . , al} be the length-l macro-action that is optimal at b∗. We show (details
in the supplement, Section B) that ηh can be decomposed into error incurred during the macro-action
and error over the remainder of the planning horizon. We use the notation bA1:i to denote an updated
belief after taking the first i actions of macro-action Al in open-loop.

ηh ≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥+ γl(LklδB + ηh−l). (11)

The form of Eq. 11 reflects the expected reward when following the macro-action Al from both belief
b and b∗ and then reverting to the macro-action policy from the resulting belief. We bound Eq. 11 by
application of the non-expansive property:

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥ , (12)

≤
l−1∑
i=0

γiRmax
∥∥bA1:i
∗ − bA1:i

∥∥
1
≤

l−1∑
i=0

γiRmaxk
i ‖b∗ − b‖1 ≤

1− γlkl

1− γk
Rmaxδ. (13)

Plugging this expression into Eq. 11, we have the recursion: ηh ≤ LδB+ 1−γlkl

1−γk RmaxδB+γlLklδB+

γlηh−l. This expression depends on l, the length of the optimal macro-action at horizon h, in a a
complex way. Because l is variable and unknown a priori, we replace l with its worst-case value in
each expression: ηh ≤ LδB + RmaxδB

1−γk + γLkδB + γηh−1 and expand the recursion.

Analysis Summary To bound the regret of the VoI macro-action policy compared to the optimal
policy, we first bound the error caused by using sub-optimal open-loop actions when VoI was below a
threshold τ . We then bound the regret of generalizing macro-actions generated for beliefs in B to
new beliefs encountered during policy execution. Finally, we combine these approximation errors:

Proof. (Theorem 5.2) We bound the regret of the VoI macro-action policy on the set G as follows:

rH =
∥∥V ∗H − VMA

H

∥∥
∞ ≤

∥∥∥V ∗H − V̂ ∗H∥∥∥∞ +
∥∥∥V̂ ∗H − VMA

H

∥∥∥
∞

= εH + ηH . (14)

The result follows by applying Lemma 5.3 and Lemma 5.5 to bound εH and ηH .

6 Experiments

We present experimental results designed to highlight various aspects of VoI macro-actions and
provide insight into the nature of the regret bound and its implications macro-action design. We
assume discrete states, actions and observations and represent the value function by a piecewise-linear
and convex (PWLC) collection of α-vectors [9]. An adaptation of the algorithm presented in Section 4
to a PWLC value function is contained in the supplement (Section C).

We demonstrate macro-action generation in a dynamic tracking problem (Fig. 4), in which a fully
observable, actuated agent tracks a partially observable target moving in a known 10× 10 discretized
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Agent
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Agent
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(II) Interior Random Walk

(I) Deterministic w/
escape prob

Random walk

Figure 4: An agent (blue) tracks a partially-
observable target (red) in an environment with
obstacles and boundaries (black) under (A) a ran-
dom walk or (B) a boundary dynamic with escape
probability α.

Planner Total Reward Empirical δB
Boundary Dynamics, α = 0.20

Base CL 2800.2 (465.6)* 0.45 (0.04)*
VoI MA 3039.5 (274.4) 0.29 (0.03)

Fixed MA 2584.3 (460.5)* 0.17 (0.02)*
Random Walk Dynamics

Base CL 3035.8 (257.5) 0.42 (0.04)*
VoI MA 3050.8 (212.9) 0.31 (0.04)

Fixed MA 2946.6 (311.4)* 0.15 (0.02)*

Table 1: Realized reward (higher is better) and empirical es-
timates of δB (lower is better) during M = 500 experiments
using VoI MA, Base CL, and Fixed MA policies (mean, std).
Significant differences from VoI MA (two-sided Welch’s t-test
with Bonferroni correction, p < 0.05/2) are indicated with
an asterisk.

map (|S| = 10, 000). A full description of the experimental domain and parameterization is in the
supplement (Section D). We use this example to expose several key low VoI regimes caused by
structure in the system dynamics, reward function, and transition dynamics.

Our first experiment is designed to highlight how locally predictable state dynamics can lead to low
VoI values (condition (i), Section 4). We test both a random-walk target dynamic and a boundary
target dynamic in which the target performs a random walk in the interior but moves deterministically
clockwise on the boundaries, with probability α = 0.20 of returning to the interior (Fig. 4). These
dynamics exemplify different VoI regimes. In the boundary dynamic, VoI is low on the boundary,
allowing for long macro-actions. In the random walk dynamic, VoI is more uniform over belief space;
only short macro-actions are possible before sensing is necessary.

Our second experiment introduces conditions (ii) and (iii) (Section 4) by rewarding the agent for
tracking the target only in a single zone of interest in the upper left corner of the world and imposing
non-uniform observation noise inspired by the Dark-Light POMDP problem [16, 20], such that the
agent can sense the target’s location most accurately on the bottom half of the world (Fig. 6). The
agent follows a boundary transition dynamic (condition (i)). The agent must perform information
gathering – moving to the bottom of the world to localize the target — before returning to the upper
corner to track the target in the zone of interest. VoI is high when the target is nearing the zone of
interest and can be localized with sufficient accuracy via sensing.

The VoI macro-action policy (VoI MA) is compared against an approximation to the closed-loop
optimal policy (base closed-loop, Base CL) and a fixed length macro-action (Fixed MA) policy,
which is constrained to act closed-loop only every T = 15 planning iterations. For all three policies,
value function approximation is performed using a custom implementation of PBVI [15]; the details
of value function approximation can be found in the supplement (Section D).

6.1 Experimental Results

Results for Experiment 1 are shown in Table 1. Under the boundary dynamic, the VoI macro-action
policy has higher cumulative reward than the Base CL and Fixed MA policies. This may seem
counterintuitive — the performance of the optimal policy is an upper bound on the VoI macro-action
policy. However, this is an example of the trade-off between policy complexity and approximability
indicated by Theorem 5.2. The observed value of δB is significantly lower for the VoI macro-action
policy (Table 1), indicative of the macro-action policy’s smaller reachable belief space. We note that
the fixed macro-action policy has the smallest value of δB. However, the fixed-length macro-actions,
like many other hand-coded macro-actions, can be arbitrarily sub-optimal. For the random walk
dynamic, there is less opportunity to exploit open-loop actions and we see that, as we would hope,
VoI MA policy performance reverts to that of the closed-loop policy.

We additionally explore the effect of the VoI threshold τ on planner performance, macro-action
utilization, and the value of δB. Results are presented in Fig. 5. As τ increases, the VoI macro-action
policy acts in open-loop for a larger fraction of the planning horizon and the value of δB decreases.

8



Base Base Base

Figure 5: (Left) Realized reward under Base CL and VoI macro-action policies with increasing values of the VoI
threshold τ . (Center) The proportion of the planning horizon for which open-loop macro-actions are employed.
(Right) The empirical value of δB. Plots show mean and standard error in M = 500 trials.

The realized reward reflects the balance between these two terms, initially increasing as δB decreases,
before finally decreasing as the policy incorporates more sub-optimal open-loop actions.

For Experiment 2, we visualize the length of the discovered belief-dependent macro-actions. To
visualize macro-actions as a function of the high-dimensional belief space, for each possible state in
the world, we compute the length of the macro-action corresponding to a belief where the the target
is localized to that state (the target probability mass function is a delta function), averaged over all
possible corresponding states of the agent. Results are shown in Fig. 6. The effect of structure in
the POMDP model on the discovered macro-actions is evident — when the target is localized in the
zone of interest (upper left corner) or has just passed the zone and is moving clockwise due to the
boundary dynamic, the agent can achieve high reward with open loop macroactions; when the target
is in the lower half of the world and moving towards the zone of interest, sensing is crucial. In this
experiment, the VoI MA policy achieves higher average reward (18.69) than the Base CL (15.08) and
Fixed MA (13.03) policies over M = 100 simulated trails.

Zone of Interest

Macro-action Length Dark-Light Sensor Model

(A) (B)

Figure 6: Visualizing Belief-Dependent Macro-Actions. (A) For each state in the world, the average length of
the discovered VoI macro-action is shown for each possible state of the target. If the target is localized near the
upper-left corner of the world, the agent can confidently track the target in the zone of interest, and long-horizon
macro-actions are possible. Sensing is more important in the bottom half of the world; the agent must move to
the higher observability regions near the bottom of the world in order to reduce target uncertainty before it enters
the zone of interest. VoI macro-actions are also sensitive to the state dynamics — for example, long-horizon
macro-actions are possible when the target is trapped in the bugtrap obstacle. (B) The dark-light sensor model;
sensor noise increases linearly from the bottom (light) to the top (dark) of the world.

7 Conclusion

This work presents value-of-information macro-actions for planning under uncertainty. By generating
macro-actions using VoI, we bound the regret of macro-action policies with respect to the optimal,
closed-loop policy. Leveraging open-loop macro-actions within POMDP policies can reduce the size
of a policy’s reachable belief space and thus the complexity of planning. This has direct implications
for the performance of point-based POMDP policies, as we show theoretically in Theorem 5.2 and
experimentally in a set of dynamic tracking experiments. VoI macro-actions balance the planning
complexity induced by sensing with the value of the information provided by observations in partially-
observable environments to enable efficient task execution in POMDPs.
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Broader Impact

Decision-making problems are ubiquitous, arising in applications such as tracking an oil spill using a
marine robot, selecting an effective drug schedule in personalized medicine, or allocating irrigation
resources based on seasonal weather forecasts. In each of these important application areas, system
dynamics are represented by complex and potentially learned models and the decision-making agent
can only observe the state through limited sensors. Many current planning and reinforcement learning
algorithms focus on fully-observable domains and generate learned policies without performance
guarantees. However, uncertainty and formal guarantees must play a role in robust decision-making
for high-stakes domains. VoI macro-action generation contributes to fundamental research in robust
and efficient model-based planning under uncertainty. As with all formal results, however, the
bounds we derive only hold under the assumptions that we describe in the text. When performing
decision-making in high-stakes applications, understanding these conditions, the extent to which they
hold, and how algorithm performance degrades as assumptions are violated is critical.
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