
Appendices
A Linear Performance Metric Elicitation

As explained in Section 2.3, we use the linear metric elicitation procedure [21] as a subroutine in
order to elicit a more complicated metric as defined in Definition 1. For completeness, we provide
the details here.

The linear metric elicitation procedure proposed in [21] assumes an enclosed sphere S ⊂ Z , where
Z is the q-dimensional space of classifier statistics that are feasible, i.e., can be achieved by some
classifier. Let the the radius of the sphere S be ρ. We extend the linear metric elicitation procedure
(Algorithm 2 in [21]) to elicit any linear metric (without the monotonicity condition) defined over
the space Z . This is because in Section 4.2, we require to elicit slopes that are not necessarily for
monotonic metrics (e.g., see Equation (9)). Let the oracle’s scale invariant metric be ξ(z) := 〈a, z〉,
such that ‖a‖2 = 1. Analogously, the oracle queries are Ω′(z1, z2) := 1[ξ(z1) > ξ(z2)]. We start by
outlining a trivial Lemma from [21].

Lemma 2. [21] Let ξ be a linear metric parametrized by a such that ‖a‖2 = 1, then the unique
optimal classifier statistic z over the sphere S is a point on the boundary of S given by z = ρa + o,
where o is the center of the sphere S.

Given a linear performance metric, Lemma 2 provides a unique point in the query space which lies
on the boundary of the sphere ∂S. Moreover, the converse also holds true that given a point on the
boundary of the sphere ∂S, one may recover the linear metric for which the given point is optimal.
Thus, in order to elicit a linear metric, Hiranandani et al. [21] essentially search for the optimal
statistic (over the surface of the sphere) using pairwise queries to the oracle which in turn reveals
the true metric. The algorithm is summarized in Algorithm 2. The algorithm also uses the following
standard paramterization for the surface of the sphere ∂S.

Parameterizing the boundary of the enclosed sphere ∂S. Let θ be a (q − 1)-dimensional vector
of angles, where all the angles except the primary angle are in [0, π], and the primary angle is in
[0, 2π]. A linear performance metric with ‖a‖2 = 1 is constructed by setting ai = Πi−1

j=1 sin θj cos θi

for i ∈ [q− 1] and aq = Πq−1
j=1 sin θj . By using Lemma 2, the metric’s optimal classifier statistic over

the sphere S is easy to compute. Thus, varying θ in this procedure, parametrizes the surface of the
sphere ∂S. We denote this parametrization by µ(θ), where µ : [0, π]q−2 × [0, 2π]→ ∂S.

Description of Algorithm 2:1 Suppose that the oracle’s linear metric is ξ parametrized by a where
‖a‖2 = 1 (Section 2.3). Using the parametrization µ(θ) of the surface of the sphere ∂S as explained
above, Algorithm 2 returns an estimate â with ‖â‖2 = 1. Line 2-6 in Algorithm 2 recovers the
orthant of the optimal statistic over the sphere by posing q trivial queries. Once the search orthant of
the optimal statistic is fixed, the procedure is same as Algorithm 2 of [21]. In each iteration of the for
loop, the algorithm updates one angle θj keeping other angles fixed by a binary-search procedure,
where the ShrinkInterval subroutine (illustrated in Figure 5) shrinks the interval [θaj , θ

b
j] by half based

on the responses. Then the algorithm cyclically updates each angle until it converges to a metric
sufficiently close to the true metric. The number of cycles in coordinate-wise search is fixed to four.

B Proofs and Details of Section 3

Proof of Proposition 1. The set of ratesRg for a group g satisfies the following properties:

• Convex: Let us take two classifiers hg1, h
g
2 ∈ Hg which achieve the rates rg1, r

g
2 ∈ Rg . We need to

check whether or not the convex combination αrg1 + (1− α)rg2 is feasible, i.e., there exists some
classifier which achieve this rate. Consider a classifier hg , which with probability α predicts what
classifier hg1 predicts and with probability 1 − α predicts what classifier hg2 predicts. Then the
elements of the rate matrix Rgij(h) is given by:

1The superscripts in Algorithm 2 denote iterates. Please do not confuse it with the sensitive group index.

14

Algorithm 2 Linear Performance Metric Elicitation

1: Input: Query space S, binary-search tolerance ε > 0, oracle Ω′ with metric ξ

2: for i = 1, 2, · · · q do
3: Set a = a′ = (1/

√
q, . . . , 1/

√
q).

4: Set a′i = −1/
√
q.

5: Compute the optimal z(a) and z(a
′) over the sphere S using Lemma 2

6: Query Ω′(z(a), z(a
′))

{Fix the search orthant based on the above oracle responses}

7: Initialize: θ = θ(1) {θ(1) is any point in the search orthant.}
8: for t = 1, 2, · · · , T = 4(q − 1) do
9: Set θ(a) = θ(c) = θ(d) = θ(e) = θ(b) = θ(t).

10: while
∣∣∣θ(b)j − θ(a)j

∣∣∣ > ε do

11: Set θ(c)j =
3θ

(a)
j +θ

(b)
j

4
, θ(d)j =

θ
(a)
j +θ

(b)
j

2
, and θ(e)j =

θ
(a)
j +3θ

(b)
j

4
.

12: Set z(a) = µ(θ(a)) (i.e. parametrization of ∂S). Similarly, set z(c), z(d), z(e), z(b)

13: Query Ω′(z(c), z(a)),Ω′(z(d), z(c)), Ω′(z(e), z(d)),Ω′(z(b), z(e)).
14: [θ

(a)
j , θ

(b)
j]← ShrinkInterval (responses) {see Figure 5}

15: Set θ(d)j = 1
2
(θ

(a)
j + θ

(b)
j)

16: Set θ(t) = θ(d).
17: Output: âi = Πi−1

j=1 sin θ
(T)
j cos θi

(T) ∀i ∈ [q − 1], âq = Πq−1
j=1 sin θ

(T)
j

Subroutine ShrinkInterval
Input: Oracle responses for Ω′(z(c), z(a)),
Ω′(z(d), z(c)), Ω′(z(e), z(d)),Ω′(z(b), z(e))

If (z(a) � z(c)) Set θ(b)j = θ
(d)
j .

elseif (z(a) ≺ z(c) � z(d)) Set θ(b)j = θ
(d)
j .

elseif (z(c) ≺ z(d) � z(e)) Set θ(a)j = θ
(c)
j , θ(b)j = θ

(e)
j .

elseif (z(d) ≺ z(e) � z(b)) Set θ(a)j = θ
(d)
j .

else Set θ(a)j = θ
(d)
j .

Output: [θ
(a)
j , θ

(b)
j].

ξ

θjθ
(a)
j θ

(c)
j θ

(d)
j θ

(e)
j θ

(b)
j

Figure 5: (Left): Subroutine ShrinkInterval. (Right): Visual intuition of the subroutine ShrinkIn-
terval [21]; the subroutine shrinks the current interval to half based on oracle responses to the four
queries.

Rgij(h) = P(hg = j|Y = i)

= P(hg1 = j|hg = hg1, Y = i)P(hg = hg1) + P(hg2 = j|hg = hg2, Y = i)P(hg = hg2)

= αrg1 + (1− α)rg2.

Therefore,Rg ∀ g ∈ [m] is convex.

• Bounded: Since Rgij(h) = P [h = j|Y = i] = P [h = j, Y = i]/P [Y = i] ≤ 1 for all i, j ∈ [k],
Rg ⊆ [0, 1]q .

• ei’s and o are always achieved: The classifier which always predicts class i, will achieve the rate
ei. Thus, ei ∈ Rg ∀ i ∈ [k], g ∈ [m] are feasible. Just like the convexity proof, a classifier which
predicts similar to one of the trivial classifiers with probability 1/k will achieve the rates o.

• ei’s are vertices: Any supporting hyperplane with slope `1i < `1j < 0 and `1p = 0 for p ∈
[k], p 6= i, j will be supported by e1 (corresponding to the trivial classifier which predict class
1). Thus, ei’s are vertices of the convex set. As long as the class-conditional distributions are not
identical, i.e., there is some signal for non-trivial classification conditioned on each group [21],
one can construct a ball around the trivial rate o and thus o lies in the interior.

15

Algorithm 3 Obtaining the sphere Sρ with radius ρ

1: Input: The center o of the feasible region of rates across groups.
2: for j = 1, 2, · · · , q do
3: Let rj be the standard basis vector for the j-th dimension.
4: Compute the maximum `j such that o + `jrj is feasible for all groups by solving (OP1).
5: Let CONV be the convex hull of {o± `jrj}qj=1.
6: Compute the radius s of the largest ball which can fit inside of CONV , centered at o.
7: Output: Sphere Sρ with radius ρ = s centered at o.

B.1 Finding the Sphere Sρ

In this section, we discuss how a sufficiently large sphere Sρ with radius ρ may be found. The follow-
ing discussion is extended from [21] to multiple groups setting and provided here for completeness.

The following optimization problem is a special case of OP2 in [34, 46]. The problem corresponds to
feasiblity check problem for a given rate r0 achieved by all groups within small error ε > 0.

min
rg∈Rg ∀g∈[m]

0 s.t. ‖rg − r0‖2 ≤ ε ∀ g ∈ [m]. (OP1)

The above problem checks the feasibility and if a solution to the above problem exists, then Algo-
rithm 1 of [34] returns it. The approach in [34] constructs a classifier whose group-wise rates are
ε-close to the given rate r0.

Furthermore, Algorithm 3 computes a value of ρ ≥ s̃/k, where s̃ is the radius of the largest ball
contained in the setR1 ∩ · · · ∩ Rm. Notice that the approach in [34] is consistent, thus we should
get a good estimate of the sphere, provided we have sufficient samples. The algorithm runs offline
and does not impact query complexity.
Lemma 3. [21] Let s̃ be the radius of the largest ball centered at o in R1 ∩ · · · ∩ Rm. Then
Algorithm 3 returns a radius ρ ≥ s̃/k.

Proof. Let `j be as computed in the algorithm and ` := minj `j , then we have ` ≥ s̃. Moreover, the
region CONV contains the convex hull of {o ± `ej}qj=1; however, this region contains a ball of
radius `/

√
q = `/

√
k2 − k ≥ `/k ≥ s̃/k, and thus ρ ≥ s̃/k.

C Derivations of Section 4

Notice that
∑m
g=1 τ

g = 1, i.e., the vector of ones.

C.1 Eliciting the Misclassification Cost φ(r); Part 1 in Figure 3 and line 1 in Algorithm 1

The key to eliciting φ is to remove the effect of fairness violation ϕ in the oracle responses. As
explained in Section 4.1, we run the LPME procedure (Algorithm 2) with the q-dimensional query
space Sρ, binary search tolerance ε, the equivalent oracle Ωclass. From Remark 1, this subroutine
returns a slope f with ‖f‖2 = 1 such that:

(1− λ)ai
(1− λ)aj

=
fi
fj

=⇒ ai
aj

=
fi
fj
. (18)

Thus, we set â := f (line 1, Algorithm 1).

C.2 Eliciting the Fairness Violation ϕ(r1:m); Part 2 in Figure 3 and lines 2-11 in Algorithm 1

C.2.1 Eliciting the Fairness Violation ϕ(r1:m) for m = 2; lines 2-5 in Algorithm 1

For m = 2, we have only one vector of unfairness weights b12, which we now aim to elicit given â.
As discussed in Section 4.2.1, we fix trivial rates (through trivial classifiers) to one group and allow
non-trivial rates from Sρ on another group. This essentially makes the metric in Definition 1 linear.
The elicitation procedure is as follows.

16

Fix trivial classifier predicting class 1 for group 2 i.e. fix h2(x) = 1∀x ∈ X , and thus r2 = e1. For
group 1, we constrain the confusion rates to lie in the sphere Sρ i.e. r1 = s for s ∈ Sρ. Then the
metric in Definition 1 amounts to:

Ψ((s, e1);a,b12, λ) = (1− λ)〈a� (1− τ 2), s〉+ λ〈b12, |e1 − s|〉+ c1. (19)
The above is a function of s ∈ Sρ. Since ei’s are binary vectors and since 0 ≤ s ≤ 1, the sign
of the absolute function with respect to s can be recovered. Recall that the rates are defined in
row major form of the rate matrices, thus e1 is 1 at every (k + j ∗ (k − 1))-th coordinate, where
j ∈ {0, . . . , k − 2}, and 0 otherwise. The coordinates where the confusion rates are 1 in e1, the
absolute function opens with a negative sign (wrt. s) and with a positive sign otherwise. In particular,
define a q-dimensional vector w1 with entries −1 at every (k + j ∗ (k − 1))-th coordinate, where
j ∈ {0, . . . , k − 2}, and 1 otherwise. One may then write the metric Ψ as:

Ψ((s, e1) ; a,b12, λ) = 〈(1− λ)a� (1− τ 2) + λw1 � b12, s〉+ c1. (20)
This is again a linear metric elicitation problem where s ∈ S . We may again use the LPME procedure
(Algorithm 2), which outputs a (normalized) slope f̆ with ‖f̆‖2 = 1 in line 3 of Algorithm 1. Using
Remark 1, we get q − 1 independent equations and may represent every element of b12 based on one
element, say b

12

k−1, i.e.:

f̆k−1

f̆i
=

(1− λ)(1− τ2
k−1)ak−1 + λb

12

k−1

(1− λ)(1− τ2
i)ai + λw1ib

12

i

∀ i ∈ [q].

=⇒ λb12 = w1 �


 (1− λ)(1− τ2

k−1)ak−1 + λb
12

k−1

f̆k−1

 f̆ − (1− λ)((1− τ 2)� a)

 . (21)

In order to elicit entire b12, we need one more linear relation such as (21). So, we now fix the trivial
classifier predicting class k for group 2 i.e. fix h2(x) = k ∀x ∈ X , and thus r2 = ek. For group 1,
we constrain the rates to again lie in the sphere Sρ i.e. r1 = s for s ∈ Sρ. Since the rate vectors are in
row major form of the rate matrices, notice that ek is 1 at every (k − 1 + j ∗ (k − 1))-th coordinate,
where j ∈ {0, . . . , k − 2}, and 0 otherwise. In particular, define a q-dimensional vector wk with
entries −1 at every (k − 1 + j ∗ (k − 1))-th coordinate, where j ∈ {0, . . . , k − 2}, and 1 otherwise.
One may then write the metric Ψ as:

Ψ((s, ek);a,b12, λ) = (1− λ)〈a� (1− τ 2), s〉+ λ〈b12, |ek − s|〉+ ck. (22)
This is a linear metric elicitation problem where s ∈ S. Thus, line 4 of Algorithm 1 applies LPME
subroutine (Algorithm 2), which outputs a (normalized) slope f̃ with ‖f̃‖2 = 1. Using Remark 1, we
extract the following relation between two of its coordinates, say the (k− 1)-th and ((k− 1)2 + 1)-th
coordinates:

f̃k−1

f̃(k−1)2+1

=
(1− λ)(1− τ2

k−1)ak−1 − λb
12

k−1

(1− λ)(1− τ2
(k−1)2+1)a(k−1)2+1 + λb

12

(k−1)2+1

. (23)

Combining equations (21) and (23) and replacing the true a with the estimated â from Section 4.1,
we have an estimate of the scaled substitute as:

b̃12 = w1 �
[
δf̆12 − â� (1− τ 2)

]
, (24)

where δ =
2(1− τ2

k−1)âk−1

f̆k−1


(1−τ2

(k−1)2+1
)â(k−1)2+1

(1−τ2
k−1)âk−1

− f̃(k−1)2+1

f̃k−1(
f̆(k−1)2+1

f̆k−1
− f̃(k−1)2+1

f̃k−1

)


and b̃ is a scaled substitute defined as b̃12 := λ
(1−λ)b

12, which nonetheless is computable from (24).

Since we require a solution b̂ such that ‖b̂‖2 = 1 (Definition 1), we normalize b̃ and get the final
solution:

b̂12 =
b̃12

‖b̃12‖2
. (25)

Notice that, due to the above normalization, the solution is independent of the true trade-off λ.

17

C.2.2 Eliciting the Fairness Violation ϕ(r1:m) for m > 2; line 6-11 in Algorithm 1

Consider a non-empty set of setsM⊂ 2[m] \ {∅, [m]}. We will later discuss how to chooseM for
efficient elicitation. When m > 2, we partition the set of groups [m] into two sets of groups. Let
σ ∈ M and [m] \ σ be one such partition of the m groups defined by the set σ. We follow exactly
similar procedure as in the previous section i.e. fixing trivial rates (through trivial classifiers) on the
groups in σ and allowing non-trivial rates from Sρ on the groups in [m] \ σ. In particular, consider a
paramterization ν : (Sρ,M, [k])→ R1:m defined as:

ν(s, σ, i) := r1:m such that rg =

{
ei if g ∈ σ
s o.w.

(26)

i.e., ν assigns trivial confusion rates ei on the groups in σ and assigns s ∈ Sρ on the rest of the
groups. Similar to the previous section, we first fix trivial classifier predicting class 1 for groups in σ
and constrain the rates for groups in [m] \ σ to be on the sphere Sρ. Such a setup is governed by the
parametrization ν(·, σ, 1) in equation (26). Specifically, fixing hg(x) = 1 ∀ g ∈ σ would entail the
metric in Definition 1 to be:

Ψ(ν(s, σ, 1);a,B, λ) = (1− λ)〈a� (1− τσ), s〉+ λ〈ησ, |e1 − s|〉+ c1, (27)

where τσ =
∑
g∈σ τ

g and ησ =
∑
u,v∈[m],v>u 1

[
|{u, v} ∩ σ| = 1

]
buv. Similar to the previous

section, since ei’s are binary vectors, the sign of the absolute function wrt. s can be recovered. In
particular, the metric amounts to:

Ψ(ν(s, σ, 1);a,B, λ) = 〈(1− λ)a� (1− τ 2) + λw1 � ησ, s〉+ c1, (28)

where w1 := 1− 2e1 and c1 is a constant not affecting the responses. Notice that (27) and (28) are
analogous to (19) and (20), respectively, except that τ 2 is replaced by τσ and b12 is replaced by ησ .
This is a linear metric in s. We again the use the LPME procedure in line 8 of Algorithm 1, which
outputs a normalized slope f̆σ such that ‖f̆σ‖2 = 1, and thus we get an analogous solution to (21) as:

λησ = w1 �

((1− λ)(1− τσk−1)ak−1 + λησk−1

f̆σk−1

)
f̆σ − (1− λ)((1− τσ)� a

 . (29)

In order to elicit entire ησ , we need one more linear relation such as (29). So, we now fix the trivial
rates through trivial classifier predicting class k for the groups in σ i.e. fix hg(x) = k ∀x ∈ X if
g ∈ σ, and thus rg = ek for all groups g ∈ σ. For the rest of the groups, we constrain the confusion
rates to again lie in the sphere Sρ i.e. rg = s for s ∈ Sρ for all groups g ∈ [m] \ σ. Such a setup is
governed by the parametrization ν(·, σ, k) (26). The metric Ψ in Definition 1 amounts to:

Ψ(ν(s, σ, k);a,B, λ) = (1− λ)〈a� (1− τσ), s〉+ λ〈ησ, |ek − s|〉+ ck. (30)

Thus by running LPME procedure again in line 9 of Algorithm 1 results in f̃12 with ‖f̃12‖2 = 1.
Using Remark 1, we extract the following relation between the (k − 1)-th and ((k − 1)2 + 1)-th
coordinates:

f̃σk−1

f̃σ(k−1)2+1

=
(1− λ)(1− τσk−1)ak−1 − λησk−1

(1− λ)(1− τσ(k−1)2+1)a(k−1)2+1 + λησ(k−1)2+1

. (31)

Combining equations (29) and (31), we have:∑
u,v

1
[
|{u, v} ∩ σ| = 1

]
b̃uv = γσ, where (32)

γσ = w1 �
[
δσfσ − â� (1− τσ)

]
, δσ =

2(1− τσk−1)âk−1

fσk−1


(1−τσ

(k−1)2+1
)â(k−1)2+1

(1−τσk−1)âk−1
−

f̃σ
(k−1)2+1

f̃σk−1(
fσ
(k−1)2+1

fσk−1
−

f̃σ
(k−1)2+1

f̃σk−1

)
 ,

and b̃uv := λbuv/(1 − λ) is a scaled version of the true (unknown) b, which nonetheless can be
computed from (32).

18

By two runs of LPME algorithm, we can get γσ and solve (32). However, the left hand side of (32)
does not allow us to recover the b̃’s separately and provides only one equation. Let us denote
the Equation (32) by `σ corresponding to the set σ. In order to elicit all b̃’s we need a system of
M :=

(
m
2

)
independent equations. This is easily achievable by choosing M σ’s so that we get M set

of unique equations like (32). LetM be those set of sets. In most cases, pairing two groups to have
trivial rates (through trivial classifiers) and rest of the groups to have rates from the sphere S will
work. For example, when m = 3, fixingM = {{1, 2}, {1, 3}, {2, 3}} suffices. Thus, running over
all the choices of sets of groups σ ∈M provides the system of equations L := ∪σ∈M`σ (line 10 in
Algorithm 1), which is formally described as follows:

Ξ 0 . . . 0
0 Ξ . . . 0
.
0 0 . . . Ξ




b̃(1)

b̃(2)

. . .

b̃(q)

 =


γ(1)

γ(2)

. . .
γ(q)

 , (33)

where b̃(i) = (b̃1i , b̃
2
i , · · · , b̃Mi) and γ(i) = (γ1

i , γ
2
i , · · · , γMi) are vectorized versions of the i-th entry

across groups for i ∈ [q], and Ξ ∈ {0, 1}M×M is a binary full-rank matrix denoting membership of
groups in the set σ ∈M. For instance, for the choice ofM = {{1, 2}, {1, 3}, {2, 3}} when m = 3
gives:

Ξ =

 0 1 1
1 0 1
1 1 0

 .
From technical point of view, one may choose anyM such that the resulting group membership
matrix Ξ is non-singular. Hence the solution of the system of equations L is:

b̃(1)

b̃(2)

. . .

b̃(q)

 =


Ξ 0 . . . 0
0 Ξ . . . 0
.
0 0 . . . Ξ


(−1) 

γ(1)

γ(2)

. . .
γ(q)

 . (34)

When we normalize b̃, we get the final fairness violation weight estimates as:

b̂uv =
b̃uv∑m

u,v=1,v>u ‖b̃uv‖2
for u, v ∈ [m], v > u. (35)

Notice that, due to the above normalization, the solution is again independent of the true trade-off λ.

C.3 Eliciting Trade-off λ; Part 3 in Figure 3 and line 12 in Algorithm 1

For ease of notation, let us construct a parametrization ν′ : S+
% → R1:m:

ν′(s+) := (s+,o, . . . ,o), (36)

Using the parametrization ν′ from (36), the metric in Definition 1 reduces to a linear metric in s+ as
discussed in (15), i.e:

Ψ(ν′(s+) ; a,B, λ) = 〈(1− λ)τ 1 � a + λ
∑m

v=2
b1v, s+〉+ c. (37)

We first show the proof of Lemma 1 and then discuss the trade-off elicitation algorithm (Algorithm 4).

Proof of Lemma 1. For simplicity, let us abuse notation for this proof and denote τ 1 � a simply by
a,
∑m
v=2 b

1v simply by b, and S+
% simply by S.

S is a convex set. Let Z = {z = (z1, z2) | z1 =< a, s >, z2 =< b, s >, s ∈ S}.
Claim: Z is convex.

Let z, z′ ∈ Z .

αz1 + (1− α)z′1 = α < a, s > +(1− α) < a, s′ > = < a, αs + (1− α)s′ >

19

Algorithm 4 Eliciting the trade-off λ

1: Input: Query space S+
% , binary-search tolerance ε > 0, oracle Ωtrade-off

2: Initialize: λ(a) = 0, λ(b) = 1.
3: while

∣∣∣λ(b) − λ(a)
∣∣∣ > ε do

4: Set λ(c) = 3λ(a)+λ(b)

4
, λ(d) = λ(a)+λ(b)

2
, λ(e) = λ(a)+3λ(b)

4

5: Set s(a) = argmax
s+∈S+

%

〈(1− λa)τ 1 � â + λa

m∑
v=2

b̂1v, s+〉 using Lemma 2

6: Similarly, set s(c), s(d), s(e), s(b).
7: Query Ωtrade-off(s(c), s(a)), Ωtrade-off(s(d), s(c)), Ωtrade-off(s(e), s(d)), and Ωtrade-off(s(b), s(e)).
8: [λ(a), λ(b)]← ShrinkInterval (responses) using a subroutine analogous to the routine shown in Figure 5.
9: Output: λ̂ = λ(a)+λ(b)

2
.

αz2 + (1− α)z′2 = α < b, s > +(1− α) < b, s′ > = < b, αs + (1− α)s′ >

Since αs + (1− α)s′ ∈ S, αz + (1− α)z′ ∈ Z . Hence Z is convex.

Claim: The boundary of the set Z is a strictly convex curve with no vertices for a 6= b.

Recall that, the required function is given by:

ϑ(λ) = maxz∈Z(1− λ)z1 + λz2 + c (38)

(i) Since the set Z is convex, every boundary point is supported by a hyperplane.

(ii) Since a 6= b, notice that the slope is uniquely defined by λ. Since the sphere S is strictly convex,
the above linear functional defined by λ is maximized by a unique point in Z (similar to Lemma 2).
Thus, the the hyperplane is tangent at a unique point on the boundary of Z .

(iii) It only remains to show that there are no vertices on the boundary of Z . Recall that a vertex exists
if (and only if) some point is supported by more than one tangent hyperplane in two dimensional
space. This means there are two values of λ that achieve the same maximizer. This is contradictory
since there are no two linear functionals that achieve the same maximizer on S.

This implies that the boundary of Z is strictly convex curve with no vertices. Since we are interested
in the maximization of ϑ, let us call this boundary as the upper boundary and denote it by ∂Z+.

Claim: Let υ : [0, 1]→ ∂Z+ be continuous, bijective, parametrizations of the upper boundary. Let
ϑ : Z → R be a quasiconcave function which is monotone increasing in both z1 and z2. Then the
composition ϑ ◦ υ : [0, 1]→ R is strictly quasiconcave (and therefore unimodal with no flat regions)
on the interval [0, 1].

Let S be some superlevel set of the quasiconcave function ϑ. Since υ is a continuous bijection
and since the boundary ∂Z+ is a strictly convex curve with no vertices, wlog., for any r < s < t,
z1(υ(r)) < z1(υ(s)) < z1(υ(t)), and z2(υ(r)) > z2(υ(s)) > z2(υ(t)). (otherwise, swap r and t).
Since the boundary ∂Z+ is a strictly convex curve, then υ(s) must be greater (component-wise)
a point in the convex combination of υ(r) and υ(t). Let us denote that point by u. Since ϑ is
monotone increasing, then x ∈ S implies that y ∈ S, too, for all y ≥ x componentwise. Therefore,
ϑ(υ(s)) ≤ ϑ(u). Since S is convex, u ∈ S and thus υ(s) ∈ S.

This implies that υ−1(∂Z+ ∩ S) is an interval; hence it is convex, which in turn tells us that
the superlevel sets of ϑ ◦ υ are convex. So, ϑ ◦ υ is quasiconcave, as desired. This implies
unimodaltiy, because a function defined on real line which has more than one local maximum can not
be quasiconcave. Moreover, since there are no vertices on the boundary ∂Z+, the ϑ ◦ υ : [0, 1]→ R
is strictly quasiconcave (and thus unimodal with no flat regions) on the interval [0, 1]. This completes
the proof of Lemma 1.

Description of Algorithm 4:2 Given the unimodality of ϑ(λ) from Lemma 1, we devise the binary-
search procedure Algorithm 4 for eliciting the true trade-off λ. The algorithm takes in input the query
space S+

% , binary-search tolerance ε, an equivalent oracle Ωtrade-off, the elicited â from Section 4.1,

2The superscripts in Algorithm 2 denote iterates. Please do not confuse it with the sensitive group index.

20

and the elicited B̂ from Section 4.2. The algorithm finds the maximizer of the function ϑ̂(λ) defined
analogously to (16), where a,B are replaced by â, B̂. The algorithm poses four queries to the oracle
and shrink the interval [λ(a), λ(b)] into half based on the responses using a subroutine analogous
to ShrinkInterval shown in Figure 5. The algorithm stops when the length of the search interval
[λ(a), λ(b)] is less than the tolerance ε.

D Proof of Section 5

Proof of Theorem 1. Let ‖ · ‖∞ denote the `-infinity norm. We break this proof into three parts.

1. Elicitation guarantees for the misclassification cost φ̂ (i.e., â)

Since Algorithm 1 elicits a linear metric using the q-dimensional sphere S, the guarantees on
â follows from Theorem 2 of [21]. Thus, under Assumption 2, the output â from line 1 of
Algorithm 1 satisfies ‖a∗ − â‖2 ≤ O(

√
q(ε+

√
εΩ/ρ)) after O

(
q log π

2ε

)
queries.

2. Elicitation guarantees for the fairness violation cost ϕ̂ (i.e., B̂)

We start with the definition of true γ (i.e. when all the elicited entities are true) from (32) and let
us drop the superscript σ for simplicity. Furthermore, let ε+

√
εΩ/ρ be denoted by ε.

γ = w1 �
[
δf̆ − a� (1− τ)

]
where δ =

2(1− τk−1)ak−1

f̆k−1


(1−τ(k−1)2+1)a(k−1)2+1

(1−τk−1)ak−1
− f̃(k−1)2+1

f̃k−1(
f̆(k−1)2+1

f̆k−1
− f̃(k−1)2+1

f̃k−1

)
 .

Let us look at the derivative of the i-th coordinate of γ.

∂γi
∂aj

=


0 if j 6= i, j 6= k − 1, j 6= (k − 1)2 + 1

−τi if j = i

ci,1 if j = k − 1

ci,2 if j = (k − 1)2 + 1,

where ci,1 and ci,2 are some bounded constants due to Assumption 2. Similarly, ∂γi/∂fj is
bounded as well due to the regularity Assumption 2. This means that γi is Lipschitz in 2-norm
wrt. a and f . Thus,

‖γ − γ̂‖∞ ≤ c3‖a− â‖2 + c4‖f̆ − ˆ̆
f‖2,

for some Lipschits constants c3 and c4. From the bounds of Part 1 of this proof, we have:

‖γ − γ̂‖∞ ≤ O(
√
qε).

Recall the construction of b̃(i) from (33). We then have from the solution of system of equa-
tions (34) that:

b̃(i) = Ξ−1γ(i) ∀ i ∈ [q],

where b̃(i) = (b̃1i , b̃
2
i , · · · , b̃Mi) and γ̃(i) = (γ1

i , γ
2
i , · · · , γMi) are vectorized versions of the i-th

entry across groups for i ∈ [q]. Ξ ∈ {0, 1}M×M is a full-rank symmetric matrix with bounded
infinity norm ‖Ξ−1‖∞ ≤ c (here, infinity norm of a matrix is defined as the maximum absolute
row sum of the matrix). Thus we have:

‖b̃(i) − ˆ̃
b(i)‖∞ = ‖Ξ−1γ(i) − Ξ−1γ̂(i)‖∞ = ‖Ξ−1(γ(i) − γ̂(i))‖∞ ≤ ‖Ξ−1‖∞‖γ(i) − γ̂(i)‖∞,

which gives

‖b̃(i) − ˆ̃
b(i)‖∞ ≤ O(

√
qε).

21

Now, our final estimate is the normalized form of ˆ̃
b from (35), so the final error in the stacked

version vec(B) and vec(B̂) is:

‖vec(B)− vec(B̂)‖∞ ≤ O(
√
qε). (39)

Since there are q ×M entities in vec(B), we have:

‖vec(B)− vec(B̂)‖2 ≤ O(
√
qM
√
qε) = O(mqε). (40)

Due to elicitation on sphere and the oracle noise εΩ as defined in Definition 4, we can replace ε
with ε+

√
εΩ/ρ back to get the final bound on fairness violation weights as in Theorem 1.

3. Elicitation guarantees for the trade-off parameter (i.e., λ̂)

The metric for our purpose is a linear metric in s+ ∈ S+
ρ with the following slope:

Ψ(ν′′′(s+) ; a,B, λ) = 〈(1− λ)τ 1 � a + λ

m∑
v=2

b1v, s+〉. (41)

Since we elicit λ through queries over a surface of the sphere, we pose this problem as finding the
right angle (slope) defined by the true λ. Note that λ is what we want to elicit; however, due to
oracle noise εΩ, we can only aim to achieve a target angle λt. Moreover, we do not have true a

and B but have only estimates â and B̂. Thus we query proxy solutions always and can only aim
to achieve an estimated version λe of the target angle. Lastly, Algorithm 4 is stopped within an ε
threhsold, thus the final solution λ̂ is within ε distance from λe. In total, we want to find:

|λ− λ̂| ≤ |λ− λt|︸ ︷︷ ︸
oracle error

+ |λt − λe|︸ ︷︷ ︸
estimation error

+ |λe − λ̂|︸ ︷︷ ︸
optimization error

.

• optimization error: |λe − λ̂| ≤ ε.
• oracle error: Notice that the oracle correctly answers as long as %(1 − cos(λ − λt)) > εΩ.

This is due to the fact that the metric is a 1-Lipschitz linear function, and the optimal value
on the sphere of radius % is %. However, as 1− cos(x) ≥ x2/3, so oracle is correct as long as
|λ− λe| ≥

√
3εΩ/%. Given this condition, the binary search proceeds in the correct direction.

• estimation error: We make this error because we only have access to the estimated â and B̂
not the true a and B. However, since the metric in (41) is Lipschitz in a and

∑m
v=2 b

1v, this
error can be treated as oracle feedback noise where the oracle responses with the estimated â

and B̂. Thus, if we replace εΩ from the previous point to the error in â and
∑m
v=2 b̂

1v, the
binary search Algorithm 4 moves in the right direction as long as

|λt − λe| ≥ O

√‖a− â‖2 +
∑m
v=2 ‖b1v − b̂1v‖2
%

 = O

(√
mq(ε+

√
εΩ/ρ)/%

)
,

where we have used (40) to bound the error in {b̂1v}mv=2.

Combining the three error bounds above gives us the desired result for trade-off parameter in
Theorem 1.

E Extended Experiments on Real-World Datasets; Ranking of Classifiers

One of the most important applications of performance metrics is evaluating classifiers, i.e., pro-
viding a quantitative score for their quality which then allows us to choose the best (or best set of)
classifier(s). In this section, we discuss how the ranking of plausible classifiers is affected when a
practitioner employs default metrics to rank (fair) classifiers instead of the oracle’s metric or our
elicited approximation.

22

Table 1: Dataset statistics; the real-valued regressor in wine and crime datasets is recast to 3 classes
based on quantiles.

Dataset k m #samples #features group.feat
default 2 2 30000 33 gender
adult 2 3 43156 74 race
wine 3 2 6497 13 color
crime 3 3 1907 99 race

Table 2: Common (baseline) metrics usually deployed to rank classifiers.
Name→ φ̂ϕ̂λ̂_a φ̂ϕ̂λ̂_w φ̂ϕ̂_a φ̂ϕ̂_w φ̂_a φ̂_w o_p o_f

â acc. w-acc. acc. w-acc. acc. w-acc. a -
B̂ acc. w-acc. acc. w-acc. elicit elicit - B

λ̂ 0.5 w-acc. elicit elicit elicit elicit 0 1

We take four real-world classification datasets with k,m ∈ {2, 3} (see Table 1). 60% of each dataset
is used for training and the rest for testing. We create a pool of 100 classifiers for each dataset by
tweaking hyperparameters under logistic regression models [28], multi-layer perceptron models [39],
support vector machines [23], LightGBM models [26], and fairness constrained optimization based
models [35]. We compute the group wise confusion rates on the test data for each model for each
dataset. We will compare the ranking of these classifiers achieved by competing baseline metrics
with respect to the ground truth ranking.

We generate 100 random oracle metrics Ψ. Ψ’s gives us the ground truth ranking of the above
classifiers. We then use our proposed procedure FPME (Algorithm 1) to recover the oracle’s metric.
For comparison in ranking of real-world classifiers, we choose a few metrics that are routinely
employed by practitioners as baselines (see Table 2). The prefixes (i.e. φ̂, ϕ̂, or λ̂) in name of the
baseline metrics denote the components that are set to default metrics, and the suffixes (i.e. ‘a’ or
‘wa’) denote whether the assignment is done with accuracy (i.e. equal weights) or with weighted
accuracy (weights are assigned randomly however maintaining the true order of weights as in Ψ). For
example, φ̂ϕ̂λ̂_a corresponds to the metric where φ̂, ϕ̂, λ̂ are set to standard classification accuracy.
Similarly, φ̂_w denote a metric where the misclassification cost φ̂ is set to weighted accuracy but
both ϕ̂ and λ̂ are elicited using Part 2 and Part 3 of the FPME procedure (Algorithm 1), respectively.
Assigning weighted accuracy versions is a commonplace since sometimes the order of the costs
associated with the types of mistakes in misclassification cost φ or fairness violation ϕ or preference
for fairness violation over misclassification λ is known but not the actual cost. Another example
is φ̂ϕ̂_a which corresponds to the metric where φ̂, ϕ̂ are set to accuracy and only the trade-off λ̂ is
elicited using Part 3 of the FPME procedure (Algorithm 1). This is similar to prior work by Zhang et
al. [53] who assumed the classification error and fairness violation known, so only the trade-off has
to be elicited – however they also assume direct ratio queries, which can be challenging in practice.
Our approach applies much simnpler pairwise preference queries. Lastly, o_p and o_f represent only
predictive performance with λ = 0 and only fairness with λ = 1, respectively.

Figure 6 shows average NDCG (with exponential gain) [47] and Kendall-tau coefficient [43] over
100 metrics Ψ and their respective estimates by the competing baseline metrics. We see that FPME,
wherein we elicit φ̂, ϕ̂, and λ̂ in sequence, achieves the highest possible NDCG and Kendall-tau
coefficient. Even though we make some elicitation error in recovery (Section 8), we achieve almost
perfect results while ranking the classifiers. To connect to practice, this implies that when given a set
of classifiers, ranking based on elicited metrics will align most closely to ranking based on the true
metric, as compared to ranking classifiers based on default metrics. This is a crucial advantage of
metric elicitation for practical purposes. In this experiment, baseline metrics achieve inferior ranking
of classifiers in comparison to the rankings achieved by metrics that are elicited using the proposed
FPME procedure. Figure 6 also suggests that it is beneficial to elicit all three components (a,B, λ) of
the metric in Definition 1, rather than pre-define a component and elicit the rest. For the crime dataset,
some methods also achieve high NDCG values, so ranking at the top is good; however Kendall-tau
coefficient is weak which suggests that overall ranking is poor. With the exception of the default
dataset, the weighted versions are better than equally weighted versions in ranking. This is expected

23

Figure 6: Ranking performance of real-world classifiers by competing metrics.

because in weighted versions, at least order of the preference for the type of costs matches with the
oracle’s preferences.

24

	Introduction
	Background
	Fair Performance Metric
	Fair Performance Metric Elicitation; Problem Statement
	Linear Performance Metric Elicitation – Warmup

	Geometry of the product set R1:m
	Metric Elicitation
	Eliciting the Misclassification Cost (r): Part 1 in Figure 3 and Line 1 in Algorithm 1
	Eliciting the Fairness Violation (r1:m): Part 2 in Figure 3 and lines 2-11 in Algorithm 1
	Special Case of m=2: Lines 2-5 in Algorithm 1
	General Case of m>2: Lines 6-11 in Algorithm 1

	Eliciting Trade-off : Part 3 in Figure 3 and Line 12 in Algorithm 1

	Guarantees
	Experiments
	Related Work
	Discussion Points and Future Work
	Appendices
	Linear Performance Metric Elicitation
	Proofs and Details of Section 3
	Finding the Sphere S

	Derivations of Section 4
	Eliciting the Misclassification Cost (r); Part 1 in Figure 3 and line 1 in Algorithm 1
	Eliciting the Fairness Violation (r1:m); Part 2 in Figure 3 and lines 2-11 in Algorithm 1
	Eliciting the Fairness Violation (r1:m) for m=2; lines 2-5 in Algorithm 1
	Eliciting the Fairness Violation (r1:m) for m>2; line 6-11 in Algorithm 1

	Eliciting Trade-off ; Part 3 in Figure 3 and line 12 in Algorithm 1

	Proof of Section 5
	Extended Experiments on Real-World Datasets; Ranking of Classifiers

