
We thank all the reviewers for their valuable comments. We would be happy to revise our paper using their suggestions.1

Reviewer 1: Lipschitz constant and adversarial robustness. While we agree that different approaches can be used2

to improve adversarial robustness, optimizing the Lipschitz constant of a model is shown to tightly bound the worst-case3

error due to bounded input perturbation (See Fig 1(e) below from our experiments; our SI and Fazlyab et al., NeurIPS4

2019). The Lipschitz constraint is particularly effective at targeting precisely the regions of peak sensitivity of the5

model, and our approach thereby provides provable guarantees for the trained model against adversarial perturbations.6

We respectfully disagree with the statement that a “model can have large Lipschitz constant but can still be robust”. In7

the provided example, if g achieves a higher performance than f , then the model g lacks robustness. In fact, a very8

small perturbation (of the order of 1/1000) can degrade the performance of g at all testing points close to the decision9

boundaries (which are, in the absence of perturbation, correctly classified due to the high-frequency component). If g10

achieves the same performance as f , then g contains an unnecessary high-frequency term. In fact, because our loss11

function is strictly convex, it admits a unique minimizer, and high-frequency components are present in our models only12

if they improve the overall performance (our Laplacian approach favors smooth solutions). This analysis is compatible13

with the result that the Lipschitz constant provides a worst-case bound on the robustness of a model to perturbations.14

Finally, despite its title, the reference cited by Reviewer 1 does not claim that bounding the Lipschitz constant is not a15

good approach to obtain a robust model. Rather, it argues in favor of our work: it claims that the existing methods to16

compute the Lipschitz constant had limitations, and that overcoming them would lead to adversarially robust models.17

Reviewers 1 and 4: Empirical validations, figures, and reproducibility. We thank the reviewers for pointing out18

these weaknesses. We recreated our figures (below; which now align with Reviewer 1’s intuition). We can now provide19

more MNIST implementation details, upload our code to GitHub, and further demonstrate our robust training scheme.20

Reviewer 2: Confidence vs accuracy. Confidence and accuracy are directly related (Figure 1(d)). Confidence is a21

smoother metric for optimization and encoding the Lipschitz constraint, and is readily mapped onto one-hot vectors.22

Reviewer 2: Scalability. We are able to successfully demonstrate our approach using the MNIST dataset. While23

additional studies are needed to investigate scalability, our numerical studies show that our performance increases24

rapidly with the number of vertices (model complexity), with an accuracy of 96% with only 10000 vertices (Figure 1(c)).25

For comparison, our study shows that neural networks with the same number of parameters achieve only 68% accuracy.26

Reviewer 2: Dataset. We choose the checkerboard dataset precisely because it requires a Lipschitz constant that tends27

to infinity, so as to compare the performance over a broad range. We use the MNIST dataset for a more realistic study.28

Reviewer 3: Conclusion and novelty. To the best of our knowledge, our results are the first to prove that a fundamental29

tradeoff exists between Lipschitz constant and accuracy. Prior works (cited) provide empirical or less general results.30

Our paper contributes both new results to the literature to address the immediate questions on tradeoffs, and a novel way31

of looking at the learning problem (connections to PDE) that has broader scope and will pave the way for future works.32

Reviewer 3: Connections between problems and motivation. The first problem generates models with minimal loss33

and desired robustness. The second problem fixes the performance (loss) and improves the robustness of a model. While34

the first problem yields a training scheme, the second is used to prove a fundamental tradeoff between performance and35

robustness. We have drawn motivation for our work from prior works on adversarial attacks that have demonstrated a36

glaring problem of robustness of machine learning models and a need for adversarially robust training.37

Reviewer 4: Discretized models and neural networks. The discretized versions of the problems offer a way to38

construct an implementable training scheme with robustness guarantees. Implementable models are obtained by various39

discretizations of the original infinite-dimensional loss minimization problem. We have considered a graph discretization40

that directly inherits the convexity of the infinite-dimensional problem. As the reviewer points out, other function41

space parametrizations, such as neural networks, result in non-convex finite-dimensional optimization problems. Our42

infinite-dimensional analysis holds regardless of parametrization and characterizes the solution that particular models43

approximate, while our graph-based design offers a novel and alternative scheme to construct provably-robust models.44
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Figure 1: Figure (a) updates Fig. 2c in the paper. Figures (b)-(e) complement our study of the MNIST dataset by looking at the
relations between accuracy and Lipschitz, accuracy and complexity, accuracy and confidence, adversarial robustness and Lipschitz.


