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1 GAIT-prop as equilibrium states in a linear network

The GAIT-prop and ITP targets are implemented as a weak perturbation of the forward pass. This
can be implemented through weak feedback connections. We demonstrate this in the following linear
firing rate model:

Ty (s) = —uy(s) + z(s) + vW  tug(s) (1)
Tla(s) = —ua(s) + Wui(s) + ta(s) .

where u;(s) is the firing rate of the j-th layer at time s, v is a small feedback coupling parameter
and and 7 is a time constant. Consider a setting when the input z is presented ¢ time units before the
target ¢ and then stays present throughout the experiment. If 6 > 7 and v < 1, the activity of the
first hidden layer, firing rate denoted u1 (s) above, will converge to the an equilibrium-state value, y1,
which can be expressed as:

Y = (1+”>m=(1+v>x, ®)
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where v = 1:/ is our incremental factor. Note that for this incremental factor to remain below 1.0,

v < 0.5. After the target is presented (i.e. ¢ is a fixed non-zero value), the firing rate will converge
to a shifted steady-state, y; such that
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where t; = W~ 't, and represents the inverted target. If we compare the available terms in the two
equilibrium states (y; and g;), these equilibrium points contain sufficient information to make use of
the GAIT-prop rule. In particular, the GAIT-prop rule in the linear case (or the ITP rule generally)
requires a target of the form (1 — «)y; + -yt1. Such a difference term can be trivially computed using
these two equilibrium states. Furthermore, the shifted equilibrium state, g1, is as default extremely
close to the desired target (the effect of the missing (1 — +) factor is not explored).

For non-linear networks, the computation of the full GAIT-prop target also require the computation
of the activity dependent term A;. We have not described a particular dynamical system in which
this could emerge, however this information is local to each unit and therefore remains biologically
plausible.
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2 Model parameters

The networks we train in this study all made use of the Adam optimiser [1]]. Along side the Adam
optimiser parameters, we had parameters related to orthogonal regularization and the incremental
component of GAIT-prop. All parameters are outline below, many of these were kept fixed and some
were tested in a parameter grid search. The table below presents the relevant parameters.

| Parameter [ Value |
Learning Rate of Adam Optimiser {10~3,107%,107°}
(1 of Adam Optimiser (fixed) 09
B2 of Adam Optimiser (fixed) 0.99
¢ of Adam Optimiser (fixed) 108
Orthogonal Regularizer Strength (\) {0,101, 107, 103}
Incremental Factor for GAIT-prop (v, fixed) 1073

2.1 Learning rate and regularizer grid search

In order to determine favourable parameters for the learning algorithms which we investigated, we
ran a grid search over two key parameters: the learning rate, 7, and the strength of the orthogonal
regularizer, A. This parameter search was carried out in a feed-forward square network with 4 hidden
layers and a full output layer of 10 output units and 774 auxilliary units. A leaky-ReLu transfer
function was used (as is true for all non-linear network results in this paper).

Note that networks were either initialised with orthogonal weight matrices or by Xavier initialisation
[2]]. Both in this parameter search and in our main paper, Xavier initialization was used for all networks
in which A = 0.0. For all non-zero values of )\, networks were initialised with an orthogonal weight
matrix.

The results report peak and final (end of training) accuracy on the training set (organise ‘peak / final’).
Parameters shown in bold were chosen and used for all results presented in the main paper.

Note that target propagation systematically shows lower accuracy at the end of training compared to
at its peak over a large parameter range. We find that target propagation often does best when early-
stopping is implemented to ‘catch’ this peak, unlike the other two algorithms which have asymptotic
behaviour. Furthermore, the highest performing parameters for target propagation (indicated in
italics) were found to be highly unstable when network depth was modified. This was to an extent
that reducing network depth caused a counter-intuitive drop in performance. Therefore, we made
use of parameters which had much greater stability in performance across network architectures and
structure), shown in bold as for the other algorithms.

Table 1: Backpropagation

A
0.0 0.1 10.0 1000.0
le-3 | 100.00/99.98 99.93/799.78 99.59/98.80 | 89.23/10.44
n | le-4 | 100.00/100.00 | 100.00/100.00 | 100.00/100.00 | 97.08 / 97.04
le-5 | 100.00/100.00 | 99.91/99.90 99.71/99.70 | 96.92/96.92
Table 2: Target Propagation
A
0.0 0.1 10.0 1000.0
le-3 | 17.94/10.22 | 21.51/9.87 | 90.38/11.45 | 86.53/7.16
n | le4 | 68.11/9.74 77.5/557 | 92.02/11.10 | 90.53/9.38
le-5 | 77.29/9.75 | 82.62/13.02 | 93.10/92.16 | 91.63 /90.28
Table 3: GAIT Propagation
A
0.0 0.1 10.0 1000.0
le-3 | 19.34/17.94 | 100.0/99.91 | 99.74/93.79 | 92.44/72.24
n | le-4 | 93.08/26.36 | 100.00 /100.00 | 99.99/99.98 | 97.05/96.99
le-5 | 98.38/98.27 | 99.84/99.83 | 99.66/99.64 | 96.83/96.82




3 Performance of GAIT-propagation in deeper networks

In the main paper, we showed that GAIT-propagation produces networks with final training/test
accuracies which are indistinguishable from those produced by backpropagation of error. Those
results were shown for networks with up to four hidden layers.
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Figure 1: The performance of deep multi-layer perceptrons trained by BP, and GAIT-prop. All
results in this figure are in networks with a fixed width network: 784 neurons in every layer. Test
accuracies (MNIST) of the algorithms are presented here during training in non-linear networks with
6 and 8 hidden layers. The networks use optimal parameters as determined by a grid search (see
previous section).

Figure [T] shows that GAIT-prop remains highly performant even in networks with six or eight hidden
layers. Performance lags slightly behind that of BP for the eight hidden layer network though it
should be expected that in deeper networks our decision to fix the incremental + parameter would
lead to a worse approximation of BP (and therefore a decrease in performance). Nonetheless, GAIT-
prop remains robust and shows stable training and high performance despite potential increases in
approximation errors in deeper networks.

4 Code

Code to reproduce the results presented in this work, details of the required python environment, and
a README providing some information are provided at

https://github.com/nasiryahm/GAIT-prop.
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