
Learning Compositional Rules via Neural Program
Synthesis

Maxwell I. Nye∗
MIT

Armando Solar-Lezama
MIT

Joshua B. Tenenbaum
MIT

Brenden M. Lake
NYU

Facebook AI

Abstract

Many aspects of human reasoning, including language, require learning rules
from very little data. Humans can do this, often learning systematic rules from
very few examples, and combining these rules to form compositional rule-based
systems. Current neural architectures, on the other hand, often fail to generalize in
a compositional manner, especially when evaluated in ways that vary systematically
from training. In this work, we present a neuro-symbolic model which learns entire
rule systems from a small set of examples. Instead of directly predicting outputs
from inputs, we train our model to induce the explicit system of rules governing a
set of previously seen examples, drawing upon techniques from the neural program
synthesis literature. Our rule-synthesis approach outperforms neural meta-learning
techniques in three domains: an artificial instruction-learning domain used to
evaluate human learning, the SCAN challenge datasets, and learning rule-based
translations of number words into integers for a wide range of human languages.

1 Introduction

Humans have a remarkable ability to learn compositional rules from very little data. For example,
a person can learn a novel verb “to dax" from a few examples, and immediately understand what
it means to “dax twice" or “dax around the room quietly." When learning language, children must
learn many interrelated concepts simultaneously, including the meaning of both verbs and modifiers
(“twice", “quietly", etc.), and how they combine to form complex meanings. People can also
learn novel artificial languages and generalize systematically to new compositional meanings (see
Figure 3). Fodor and Marcus have argued that this systematic compositionality, while critical
to human language and thought, is incompatible with classic neural networks (i.e., eliminative
connectionism) [1, 2, 3]. Despite advances, recent work shows that contemporary neural architectures
still struggle to generalize in systematic ways when directly learning rule-like mappings between
input sequences and output sequences [4, 5]. Given these findings, Marcus continues to postulate
that hybrid neural-symbolic architectures (implementational connectionism) are needed to achieve
genuine compositional, human-like generalization [3, 6, 7].

An important goal of AI is to build systems which possess this sort of systematic rule-learning
ability, while retaining the speed and flexibility of neural inference. In this work, we present a
neural-symbolic framework for learning entire rule systems from examples. As illustrated in Figure
1B, our key idea is to leverage techniques from the program synthesis community [8], and frame
the problem as explicit rule-learning through fast neural proposals and rigorous symbolic checking.
Instead of training a model to predict the correct output given a novel input (Figure 1A), we train our
model to induce the explicit system of rules governing the behavior of all previously seen examples
(Figure 1B; Grammar proposals). Once inferred, this rule system can be used to predict the behavior
of any new example (Figure 1B; Symbolic application).

∗Correspondence to mnye@mit.edu. Code can be found here: github.com/mtensor/rulesynthesis

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

mailto:mnye@mit.edu
https://github.com/mtensor/rulesynthesis


...

Grammar proposals:

G	=
run	->	RUN
look	->	LOOK
x	twice	->	[x][x][x]
x	thrice	->	[x][x]

G	=	
run	->	LOOK
look	->	RUN
x	twice	->	[x][x]
x	thrice	->	[x][x][x]
...	

G	=	
run	->	RUN
look	->	LOOK
x	twice	->	[x][x]
x	thrice	->	[x][x][x]

run	twice

RUN	RUN

look	thrice

LOOK	LOOK	LOOK

support examples

Neural Model

satisfies all
support
examples

Counterexample:
run	twice

RUN	RUN	RUN

Counterexample:
run	twice

LOOK	LOOK

...

run	twice

RUN	RUN

look	thrice

LOOK	LOOK	LOOK

support examples

Neural Memory
Embedding

look	twice

LOOK	LOOK

Neural
Translation

Neural inference on
query set

A. Previous Work (Lake, 2019):

B. This Paper:

Often fails on long &
complex inputs

G.apply(`look	twice`)
		=	LOOK	LOOK

Symbolic application 
on query set

Figure 1: Illustration of our synthesis-based rule learner and comparison to previous work. A)
Previous work [9]: Support examples are encoded into an external neural memory. A query output
is predicted by conditioning on the query input sequence and interacting with the external memory
via attention. B) Our model: Given a support set of input-output examples, our model produces a
distribution over candidate grammars. We sample from this distribution, and symbolically check
consistency of each sampled grammar against the support set until a grammar is found which satisfies
the input-output examples in the support set. This approach allows much more effective search than
selecting the maximum likelihood grammar from the network.

This explicit rule-based approach confers several advantages compared to a pure input-output ap-
proach. Instead of learning a blackbox input-output mapping, and applying it to each new query item
for which we would like to predict an output (Figure 1A), we instead search for an explicit program
which we can check against previous examples (the support set). This allows us to propose and check
candidate programs, sampling programs from the neural model and only terminating search when the
proposed solution is consistent with prior data.

The program synthesis framing also allows immediate and automatic generalization: once the correct
rule system is learned, it can be correctly applied in novel scenarios which are a) arbitrarily complex
and b) outside the distribution of previously seen examples. We draw on work in the neural program
synthesis literature [10, 11] to solve complex rule-learning problems that pose difficulties for both
neural and traditional symbolic methods. Our neural synthesis approach is distinctive in its ability
to simultaneously and flexibly attend over a large number of input-output examples, allowing it to
integrate different kinds of information from varied support examples.

Our training scheme is inspired by meta-learning. Assuming a distribution of rule systems, or a
“meta-grammar," we train our model by sampling grammar-learning problems and training on these
sampled problems. We can interpret this as an approximate Bayesian grammar induction, where our
goal is to maximize the likelihood of a latent program which explains the data [12].

We demonstrate that, when trained on a general meta-grammar of rule-systems, our rule-synthesis
method can outperform neural meta-learning techniques. Concretely, our main contributions are:

� We present a neuro-symbolic program synthesis model which can learn novel rule systems
from few examples. Our model employs a symbolic program representation for compo-
sitional generalization and neural program synthesis for fast and flexible inference. This
allows us to leverage search in the space of programs, for a guess-and-check approach.

� We show that our model can learn to interpret artificial languages from few examples,
solving SCAN and outperforming 10 alternative models.

� Finally, we show that our model can outperform baselines in learning how to interpret
number words in unseen languages from few examples.

2



Figure 2: Illustration of our synthesis-based rule learner neural architecture and grammar application.
Support examples are encoded via BiLSTMs. The decoder LSTM attends over the resulting vectors
and decodes a grammar, which can be symbolically applied to held out query inputs. Middle: an
example of a fully synthesized grammar which solves the task in Figure 3.

2 Related Work

Figure 3: An example of few-shot learning of in-
structions. In [13], participants learned to execute
instructions in a novel language of nonce words
by producing sequences of colored circles. Hu-
man performance is shown next to each query in-
struction, as the percent correct across participants.
When conditioned on the support set, our model
can predict the correct output sequences on the
held out query instructions by synthesizing the
grammar in Figure 2.

Previous work on theSCAN challenge has em-
ployed data augmentation [14], meta-learning
[9], and syntactic attention [15]. Lake [9] uses
meta-learning to induce a seq-to-seq model for
predicting query input-output transformations,
from a small number of support examples (Fig-
ure 1A). They show signi�cant improvements
over standard seq-to-seq methods, and demon-
strate that their model captures relevant human
biases. Using a similar training scheme, we in-
stead learn an explicit program which can be
applied to held out query items (Figure 1B).

Our approach builds on work in neural program
synthesis. We are inspired by work such as Ro-
bustFill [11], enumerative approaches [16], exe-
cution guided work [17, 18, 10, 19], and hybrid
models [20, 21]. A key difference in our work
is the number and diversity of input-output ex-
amples provided to the system. Previous neural
program synthesis systems, such as RobustFill
[11], are not able to handle the large number
of diverse of examples in our problems. Tech-
niques exist for selecting examples, but they are
expensive, requiring an additional outer loop of
meta-learning [22], or repeating search every time a new counterexample is found (as in CEGIS [23]).
Our approach uses neural attention to �exibly condition on many examples at once, without the need
for an additional outer search or learning loop. This is especially relevant for our domains, given the
diversity of examples, and the fact that different subsets of examples inform each rule. For a more
detailed discussion of the differences between our approach and RobustFill, see Section 4.1.

There is also related work from the programming languages community, such as Sketch [23], PROSE
[24], and a large class of synthesizers from the SyGuS competition [25]. However, our problems are
outside the scope of domains these systems can support (integer, bit-vector and FlashFill-style string
editing). Our problems are also outside the scope of functional synthesizers such as Lambda2 [26] or
Synquid [27]. We compare against alternative synthesis approaches in our experiments onSCAN.

3 Our Approach

Overview: Given a small support set of input-output examples,X = f (x i ; yi )gi =1 ::n , our goal is to
produce the outputs corresponding to a query set of inputsf qi gi =1 ::m (see Figure 3). To do this, we
build a neural program synthesis modelp� (�jX ) which accepts the given examples and synthesizes
a symbolic programG, which we can execute on query inputs to predict the desired query outputs,
r i = G(qi ). Our symbolic program consists of an “interpretation grammar," which is a sequence
of rewrite rules, each of which represents a transformation of token sequences. The details of the

3



interpretation grammar are discussed below. At test time, we employ our neural program synthesis
model to drive a simple search process. This search process proposes candidate programs by sampling
from the program synthesis model and symbolically checks whether candidate programs satisfy the
support examples by executing them on the support inputs, i.e., checking thatG(x i ) = yi for all
i = 1 ::n. During each training episode, our model is given a support setX and is trained to infer an
underlying programG which explains the support and held-out query examples.

Model: A schematic of our architecture is shown in Figure 2. Our neural modelp� (GjX ) is a
distribution over programsG given the support setX . Our implementation is quite simple and
consists of two components: an encoderEnc(�), which encodes each support example(x i ; yi ) into a
vectorhi , and a decoderDec(�), which decodes the program while attending to the support examples:

p� (�jX ) = Dec(f hi gi =1 ::n );
wheref hi gi =1 ::n = Enc(X )

Encoder: For each support example(x i ; yi ), the input sequencex i and output sequenceyi are each
encoded into a vector by taking the �nal hidden state of an input BiLSTM encoderf I (x i ) and an
output BiLSTM encoderf O (yi ), respectively (Figure 2; left). These hidden states are then combined
via a single feedforward layer with weightsW to produce one vectorhi per support example:

hi = ReLU (W [f I (x i ); f O (yi )])

Decoder: We use an LSTM for our decoder (Figure 2; center). The decoder hidden stateu0 is
initialized with the sum of all of the support example vectors,u0 =

P
i hi , and the decoder produces

the program token-by-token while attending to the support vectorshi via attention [28]. The decoder
outputs a tokenized program, which is then parsed into an interpretation grammar.

Interpretation Grammar: The programs in this work are instances of aninterpretation grammar,
which is a form of term rewriting system [29]. The interpretation grammar used in this work consists
of an ordered list of rules. Each rule consists of a left hand side (LHS) and a right hand side (RHS).
The left hand side consists of the input words, string variablesx (regexes that match entire strings),
and primitive variablesu (regexes that match single words). Evaluation proceeds as follows: An
input sequence is checked against the rules in order of the rule priority. If the rule LHS matches the
input sequence, then the sequence is replaced with the RHS. If the RHS contains bracketed variables
(i.e., [x] or [u] ), then the contents of these variables are evaluated recursively through the same
process. In Figure 2 (right), we observe grammar application on the input sequencezup blicket
wif kiki dax fep . The �rst matching rule is thekiki rule,2 so its RHS is applied, producing
[dax fep] [zup blicket wif] , and the two bracketed strings are recursively evaluated using
thefep andblicket rules, respectively.

Search: At test time, we sample candidate programs from our neural program synthesis model. If
the new candidate programG satis�es the support set —i.e., ifG(x i ) = yi for all i = 1 ::n —then
search terminates and the candidate programG is returned as the solution. The programG is then
applied to the held-out query set to produce �nal query predictionsr i = G(qi ). During search, we
maintain the best program so far, de�ned as the program which satis�es the largest number of support
examples.3 If the search timeout is exceeded and no program has been found which solves all of the
support examples, then the best program so far is returned as the solution.

This search procedure confers major advantages compared to pure neural approaches. In a pure
neural induction model (Figure 1A), given a query input and corresponding output prediction, there
is no way to check consistency with the support set. Conversely, casting the problem as a search for
a satisfying program allows us to explicitly check each candidate program against the support set,
to ensure that it correctly maps support inputs to support outputs. The bene�t of such an approach
is shown in Section 4.2, where we can achieve perfect accuracy onSCAN by increasing our search
budget and searching until a program is found which satis�es all of the support examples.

Training: We train our model in a similar manner to [9]. During each training episode, we randomly
sample an interpretation grammarG from a distribution over interpretation grammars, or “meta-
grammar"M . We then sample a set of input sequences consistent with the sampled interpretation
grammar, and apply the interpretation grammar to each input sequence to produce the corresponding

2Note that thefep rule is not applied �rst becauseu2 is a primitive variable, so it only matches whenfep is
preceded by a single primitive word.

3Sequences which do not parse into a valid programs are simply discarded.

4




	Introduction
	Related Work
	Our Approach
	Experiments
	Miniscan
	scan Challenge
	Learning Number Words

	Conclusion

