
This is the appendix for “A mathematical model for automatic differentiation in machine learning”.

A A more comprehensive discussion and auxiliary results

A.1 Related work and contribution

The use of backward mode of algorithmic differentiation (AD) for neural network training expanded in
the 80’s, the most cited reference being [39]. However the theory applies to much more optimization
problems, see for example [24]. Indeed, numerical libraries implementing the backward mode of AD
were already available in the 90’s for FORTRAN code [8, 9] or C/C++ code [22], 30 years before the
emergence of python libraries. These early implementation could differentiate virtually any code,
but their domain of validity, i.e., the setting for which one could predict what the output would be,
was restricted to differentiable functions evaluated on their (open) domain of differentiability.

This was well known to the AD community, see for example [23], and exploring further the domain
of validity of AD, beyond mere differentiability, was already a vivid problem.

Let us mention [23] who used notions such as finite selection, “isolated criticalities”, stable domain
or regular arcs, and argued that “functions given by evaluation procedures are almost everywhere real
analytic or stably undefined” where “undefined” meant that a nonsmooth elementary function is used
in the evaluation process. For piecewise smooth functions which nonsmoothness can be described
using the absolute value function (abs-normal form), [25] developped a piecewis linearisation
formalism and local approximation related to AD, [26] proposed an AD based bundle type method.
These developments are based on the notion of piecewise smooth functions [40] which we use in
this work. More recently, [28] applied these techniques to single layer neural network training and
[29] proposed to avoid the usage of subgradient “oracles” in nonsmooth analysis as they are not
available in practice. In a similar vein, let us mention [2] study lexicographic derivatives, a notion
of directional derivatives which satisfy a chain rule making them compatible by forward mode AD,
and [43] who use directional derivatives in the context of local sampling stochastic approximation
algorithms for machine learning.

Constraint qualification is known in nonsmooth analysis to ensure favorable behavior of chain
rules of differential calculus for nonsmooth objects (see [38]). These already appeared in the
context of piecewise smooth functions of Scholtes with the notion of “essential selections”. Such an
approach was used in [30] to propose an AD algorithm for subgradient computation under constrant
qualification. Similarly [27] study first and second order optimality, in relation to AD using constraint
qualification.

The current work departs from all these approaches in a fundamental way. We propose to study back-
ward mode of AD, as implemented for nonsmooth functions by standard software (e.g. TensorFlow,
PyTorch), without any modification, addition of operations or hypotheses. Our theoretical results
model AD as implemented in current machine learning libraries. Contrary to previous works, our
focus is precisely on the unpredictable behavior of AD in nonsmooth context. Our main contribution
is to show that in a stochastic optimization context, this spurious behavior is essentially harmless
from a theoretical point of view, providing justifications for the use of AD outside of its original
domain of validity in machine learning.

At the time this paper was accepted, we learnt about a paper proposing an analysis close to ours
[33]. The authors show that AD applied to programs involving piecewise analytic continuous
functions, under analytic partitions, compute gradients almost everywhere. This is the counterpart of
Proposition 3, replacing log-exp elementary function in Definitions 1 and 2, by analytic functions.

A.2 Implementation of relu

The implementation of the relu function used in Figure 1 is given by the function tf.nn.relu in
Tensorflow software library [1]. This implementation corresponds to the selection function described
in Section 2 and the same result may be obtained by an explicit implementation of this branching
selection as illustrated in the following figure
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One can imagine an equivalent implementation of relu with a slightly different branching involving
a strict inequality, that would correspond to an equivalent implementation of the same function, but
the computed derivative at 0 is different due to the implementation

A.3 Auxiliary results and remarks

Remark 1 (Elementary piecewise differentiable functions)
(a) The building blocks in the construction of S in Definition 3 could be modified and adapted to
other needs. Besides, the results we present in this article would remain true if we added real analytic
functions restricted to compact sets.
(b) Note also that in Definition 3, functions are actually real analytic on their (open) domain of
definition. Yet their extension might not be analytic, as for instance the function f : x ‰ 0 Ñ
expp´1{x2q extended by fp0q “ 0.
(c) The construction of elementary piecewise functions in Definition 3, does not coincide in general
with some natural minimal o-minimal, but are contained in a larger such structure. For instance, when
the basic bricks are polynomial functions, we obtain the field of rational functions which differs from
the set of semi-algebraic functions.

Proposition 6 (Df has a closed graph) As k Ñ 8, assume that xk Ñ x̄ P Rp and vk P Df pxkq,
vk Ñ v̄. Then v̄ P Dpx̄q.

B Proofs

Proof of Theorem 1: Recall the operator is denoted by BA. Fix a function f , by point (a), the
operator BAf should contain

"

Rp Ñ Rp

xÑ tApP qpxq : FpP q “ f, P P Pu

Let us show that the graph of the above is Rp ˆ Rp. Assume p “ 1 for simplicity. For real numbers
r, s, consider the functions fr,s “ f ` r zerop¨ ´ sq which coincide with f but whose form induces
programs Pr,s of f . These satisfy FpPr,sq “ f and ApPr,sqpsq Q Apfqpsq ` r. Since r is arbitrary,
BAfpsq “ Rp and since s is arbitrary, we actually have

graph BAf “ Rp ˆ Rp.

Since f is arbitrary, we have shown that BA is trivial. l

Proof of Proposition 2: The proposition is a consequence of Theorem 3 and (11) but it admits a
more elementary proof which we detail here. Fix x, y P Rp. Let us admit the following claim –whose
independent proof is given in Section C.

Claim 1 There exists a finite set of numbers 0 “ a0 ă a1 ă . . . ă aN “ 1, such that for all
i P 0, . . . N ´ 1, the function t ÞÑ spx` tpy ´ xqq is constant.
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Fix i P 0 . . . , N ´ 1, and j P 1 . . .m such that f “ fj on px` aipy ´ xq, x` ai`1py ´ xqq. Since
fj P Ep, it is C1 and we have by the fundamental theorem of integral calculus

fpx` ai`1py ´ xqq ´ fpx` aipy ´ xqq “

ż ai`1

ai

x∇fjpx` tpy ´ xqq, y ´ xy dt

“

ż ai`1

ai

A

p∇fpx` tpy ´ xqq, y ´ x
E

dt.

The conclusion follows because

fpyq ´ fpxq “
N´1
ÿ

i“0

fpx` ai`1py ´ xqq ´ fpx` aipy ´ xqq

“

N´1
ÿ

i“0

ż ai`1

ai

A

p∇fpx` tpy ´ xqq, y ´ x
E

dt

“

ż 1

0

A

p∇fpx` tpy ´ xqq, y ´ x
E

dt.

l

Proof of Proposition 3: Constructs the sets Ui by considering sets Vj “ tx P Rp, spxq “ ju,
j “ 1 . . .m, the proof of the following claim is postponed to Section C.

Claim 2 The boundary of each Vj has zero measure and cl
`

Ymi“j intpVjq
˘

“ Rp.

Hence, we may define U1, . . . , UN by keeping only those sets with nonempty interior and take their
closure. On each set Ui, f is identical to fk for some k and the result follows. l

Lemma 2 Let t P I be an elementary index on Rp2 and F : Rp1 ÞÑ Rp2 with each coordinate in E ,
then t ˝ F is an elementary index on Rp1 .

Proof : Fix an arbitrary integer i in the image of t, by Definition 2, there exists elementary functions
h1, . . . , hJ , J P N on Rp2 such that tpyq “ i if and only if y P Ki :“ tz P Rp2 , hjpzq ˛j 0, j “
1, . . . Ju where ˛j is an equality or inequality sign depending on j. Then tpF pxqq “ i if and only if
F pxq P Ki which is equivalent to say that x P K̃i :“ tx P Rp1 , hjpF pxqq ˛j 0, j “ 1, . . . Ju. By
Definition 1, hj ˝ F is an elementary function for j “ 1, . . . , J and i was an arbitrary integer, this
shows that we have an elementary index. l

Proof of Proposition 1: Let F : Rp1 ÞÑ Rp2 such that each of its coordinate fi, i “ 1 . . . p2, is in
S and g : Rp2 ÞÑ R, g P S. We establish that g ˝ F is an elementary selection, the other cases are
similar. We may consider all possible intersections of constant index domains across all coordinates
of F in t1, . . . , p2u. We obtain ps, F1, . . . , Fmq, an elementary selection for F (each Fi : Rp1 ÞÑ Rp2
has coordinates in E) . Consider g P S with elementary selection pt, g1, . . . , glq. The composition
g ˝ F may be written as

gpF pxqq “ gtpF pxqqpF pxqq “ gtpFspxqpxqqpFspxqpxqq.

For each i “ 1 . . . ,m and j “ 1, . . . , l, consider the set

Uij “ tx P Rp, spxq “ i, tpFipxqq “ ju .

Fix pi, jq in t1, . . . ,mu ˆ t1, . . . , lu, by Lemma 2, t ˝ Fi is an elementary index on Rp1 . Hence Uij
is the solution set of finitely many equalities and inequalities involving functions in E . We associate
to the bi-index pi, jq the corresponding set Uij and the function gjpFipxqq P E . Note that we assumed
that the composition is well defined. Identifying each pair pi, jq with a number in t1, . . . , nmu, we
obtain an elementary selection for g ˝ F and hence g ˝ F P S. l

Proof of Proposition 4: The derivation formula follows from the proof argument of Proposition 1,
for each pair pi, jq, the function gj ˝ Fi is the composition of two C1 functions and its gradient is
given by JFi

ˆ∇gj ˝ Fi on Uij . By construction of Uij and definition of the selection derivative,
this corresponds to (5) on Uij and the result follows. l
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Proof of Lemma 1: We actually prove a slightly stronger result, namely for each i P tp`1, . . . ,m´
1u

Pi
`

I ´ ei`1e
T
i`1 ` di`1e

T
i`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi
`

I ` di`1e
T
i`1

˘

. . .
`

I ` dme
T
m

˘

(9)

We argue by exhaustion from i “ m ´ 1 downward to i “ p, which is the result of interest. If
i “ m´ 1, we indeed have

Pm´1

`

I ´ eme
T
m ` dme

T
m

˘

“ Pm´1

`

I ` dme
T
m

˘

since Pm´1eme
T
m “ 0. Now assume that (9) holds true for an index i within tp ` 1, . . . ,m ´ 1u,

then we have

Pi´1

`

I ´ eie
T
i ` die

T
i

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi´1

`

I ´ eie
T
i ` die

T
i

˘ `

I ´ ei`1e
T
i`1 ` di`1e

T
i`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi´1

`

I ´ eie
T
i ` die

T
i

˘

Pi
`

I ´ ei`1e
T
i`1 ` di`1e

T
i`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi´1

`

I ` die
T
i

˘

Pi
`

I ` di`1e
T
i`1

˘

. . .
`

I ` dme
T
m

˘

“ Pi´1

`

I ` die
T
i

˘ `

I ` di`1e
T
i`1

˘

. . .
`

I ` dme
T
m

˘

,

where step 1 is expanding the product, step 2 is because Pi´1Pi “ Pi´1 and eTi Pi “ eTi , step 3
combines the fact that Pi´1ei “ 0 and (9) which we assumed to be true, the last step uses again the
fact that Pi´1Pi “ Pi´1 and eTi Pi “ eTi . Hence the result holds by exhaustion. l

Proof of Proposition 6: Consider the sequence sk “ Spxkq, by taking a subsequence we may as-
sume that sk is constant, say equal to t1, . . . , ru. Hence for all k, vk P conv pt∇fipxkq, i “ 1, . . . ruq
and fpxkq “ fipxkq, i “ 1, . . . , r. Passing to the limit, we have fpx̄q “ fipx̄q, i “ 1, . . . , r and
hence t1, . . . , ru P Spxq. Furthermore, v̄ P conv pt∇fipx̄q, i “ 1, . . . ruq Ă Df px̄q. l

C o-minimal structures, definability and conservative fields

C.1 pR, expq-definability

We recall here the results of geometry that we use in the present work. Some references on this topic
are [19, 21].

An o-minimal structure on pR,`, ¨q is a collection of sets O “ pOpqpPN where each Op is itself a
family of subsets of Rp, such that for each p P N:

(i) Op is stable by complementation, finite union, finite intersection and contains Rp.
(ii) if A belongs to Op, then both Aˆ R and RˆA belong to Op`1;

(iii) if π : Rp`1 Ñ Rp is the canonical projection onto Rp then, for any A P Op`1, the set πpAq
belongs to Op;

(iv) Op contains the family of real algebraic subsets of Rp, that is, every set of the form

tx P Rp | gpxq “ 0u

where g : Rp Ñ R is a polynomial function;
(v) the elements of O1 are exactly the finite unions of intervals.

A subset of Rp which belongs to an o-minimal structure O is said to be definable in O. A function is
definable in O whenever its graph is definable in O). A set valued mapping (or a function) is said to
be definable in O whenever its graph is definable in O. The terminology tame refers to definability in
an o-minimal structure without specifying which structure.

The simplest o-minimal structure is given by the class of real semialgebraic objects. Recall that a set
A Ă Rp is called semialgebraic if it is a finite union of sets of the form

k
č

i“1

tx P Rp | gipxq ă 0, hipxq “ 0u
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where the functions gi, hi : Rp Ñ R are real polynomial functions and k ě 1. The key tool to show
that these sets form an o-minimal structure is Tarski-Seidenberg principle which ensures that (iii)
holds true.

According to [42], there is an o-minimal structure which contains all semialgebraic sets and the
graph of the exponential function, we fix this o-minimal structure and call it O. As a consequence,
all functions which can be described by a finite compositional expression involving polynomials,
quotients, exponential and logarithms are definable inO. In particular any function f P S is definable
in O, which opens the use of powerful geometric tools [19, 21] for functions in S . From now on, we
call an object definable if it is definable in O.

As detailed in [19] the following holds true

Proposition 7 (Quantifier elimination) Any first order formula (quantification on variables only)
involving definable functions and definable sets describes a definable set.

This allows to prove Claim 1

Proof of Claim 1: The function t ÞÑ spx` tpy´ xqq is definable and has values in t1, . . . ,mu. For
each j P t1, . . . ,mu, the set Sj “ tt P r0, 1s, spx` tpy ´ xqq “ ju is definable, and by (v), it is a
finite union of intervals. For each j consider only the endpoints of those intervals with nonempty
interior, this provides the desired partition. l

C.2 Properties of definable sets

The tangent space at a point x of a manifold M is denoted by TxM . Given a submanifold6 M of
a finite dimensional Riemannian manifold, it is endowed by the Riemanninan structure inherited
from the ambient space. Given f : Rp Ñ R and M Ă Rp a differentiable submanifold on which f is
differentiable, we denote by gradMf its Riemannian gradient or even, when no confusion is possible,
grad f .

A Cr stratification of a (sub)manifold M (of Rp) is a partition S “ pM1, . . . ,Mmq of M into Cr
manifolds having the property that clMi XMj ‰ H implies that Mj is entirely contained in the
boundary of Mi whenever i ‰ j. Assume that a function f : M Ñ R is given and that M is stratified
into manifolds on which f is differentiable. For x in M , we denote by Mx the strata containing x
and we simply write grad fpxq for the gradient of f with respect to Mx.

Stratifications can have many properties, we refer to [21] and references therein for an account on this
question and in particular for more on the idea of a Whitney stratification that we will use repeatedly.
We pertain here to one basic definition: a Cr-stratification S “ pMiqiPI of a manifold M has the
Whitney-(a) property, if for each x P clMi XMj (with i ‰ j) and for each sequence pxkqkPN ĂMi

we have:
lim
kÑ8

xk “ x

lim
kÑ8

Txk
Mi “ T

,

/

.

/

-

ùñ TxMj Ă T

where the second limit is to be understood in the Grassmanian, i.e., “directional”, sense. In the
sequel we shall use the term Whitney stratification to refer to a C1-stratification with the Whitney-(a)
property. The following can be found for example in [21].

Theorem 5 (Whitney stratification) Let A1, . . . , Ak be definable subsets of Rp, then there exists a
definable Whitney stratification pMiqiPI compatible with A1, . . . , Ak, i.e. such that for each i P I ,
there is t P t1, . . . ku, such that Mi Ă At.

This allows for example to prove Claim 2

Proof of Claim 2: The sets V1, . . . , Vm form a definable partition of Rp. Consider a Whitney
stratification of Rp, pMiqiPI compatible with the closure of V1, . . . , Vm. The boundary of each Vi is a
finite union of strata of dimension strictly smaller than p and hence has measure zero. The remaining
strata (open of maximal dimension) have to be dense in Rp since we started with a partition. l

6We only consider embedded submanifolds
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C.3 Variational stratification and projection formulas

Definition 6 (Variational stratification) Let f : Rp Ñ R, be locally Lipschitz continuous, let
D : Rp Ñ Rp be a set valued map and let r ě 1. We say that the couple pf,Dq has a Cr variational
stratification if there exists a Cr Whitney stratification S “ pMiqiPI of Rp, such that f is Cr on each
stratum and for all x P Rp,

ProjTMx pxq
Dpxq “ tgrad fpxqu , (10)

where grad fpxq is the gradient of f restricted to the active strata Mx containing x.

The equations (10) are called projection formulas and are motivated by Corollary 9 in [11] which
states that Clarke subgradients of definable functions have projection formulas.

Let us recall the definition of conservative set-valued mappings from [12] and one of its characteriza-
tion.

Definition 7 (Conservative set-valued mappings) Let f be a Lipschitz continuous function. A set
valued vector field D is called conservative if for any absolutely continuous path γ : r0, 1s ÞÑ R, we
have

fpγp1qq ´ fpγp0qq “

ż 1

0

min
vPDpγptqq

xv, 9γptqy dt “

ż 1

0

max
vPDpγptqq

xv, 9γptqy dt. (11)

Equivalently D is conservative for f , if for all absolutely continuous curves γ : r0, 1s ÞÑ Rp, for
almost all t P r0, 1s, f ˝ γ is differentiable and

d

dt
fpγptqq “ xv, 9γptqy , @v P Dpγptqq.

The following combines other results from [12], where one implication is essentially due to [20]
based on [11].

Theorem 6 (Characterization of conservativity) Let D : Rp Ñ Rp be a definable, nonempty com-
pact valued, graph closed set valued field and f : Rp ÞÑ R be a definable locally Lipschitz function.
Then the following are equivalent

• D is conservative for f .

• For any r ě 1, pf,Dq admit a Cr variational stratification.

This result allows to prove the following

Proof of Theorem 3: We prove that there is a C1 projection formula (see Theorem 6). For each
I Ă t1, . . . ,mu, set VI “ tx P Rp, Spxq “ Iu. On each set VI , fpxq “ fipxq for all i P I . These
sets are definable, hence, there is a definable Whitney stratification of Rp which is compatible with
them (Theorem 5). For any C1 manifold M in the stratification there is an index set I Ă t1, . . . ,mu
such that for all i P I and all x P M , fpxq “ fipxq and Spxq “ I . Since each fi, i P I is C1 and
they agree on M , they represent the same function when restricted to M . Hence they have the same
differential on M and since they are all globally C1 this agrees with the projection of their gradient
on the tangent space of M . Hence the projection of Df pxq to the tangent space to M at x is single
valued and corresponds to the derivative of f restricted to M . This is sufficient to conclude as this is
precisely the variational stratification required by Theorem 6. l

D Convergence to selection critical points

Proof of Theorem 4, first part: We use here the results on conservative fields developed in [12].
To prove the theorem it suffices to establish that:

• DJ is a conservative field for J
• the number of DJ critical values are finite.
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The first point is Theorem 6 while the second one is the consequence of the latter and the definability
of the couple f,Df , see Proposition 8 (ii). To conclude it suffices to apply the convergence results in
[12, Theorem 9]. l

Proof of Theorem 4, second part: This result is a consequence of the more general Theorem 7
established in Section E. Let F be the finite set given in Theorem 7, the set

tc P p0, 1s, Dk P N, cγk P F u,
is countable, and hence has zero measure. So for almost all c P p0, 1s, tcγkukPN does not intersect
F . Using Theorem 7, there is a zero measure set N such that any initialization outside N provides
almost surely a subgradient sequence. By hypothesis, for almost every x0 P KzN , the sequence is
bounded almost surely and the result follows from Theorem 7. l

E Artificial critical points

Being given a Lipschitz continuous function on Rp and a conservative field D, one has two types of
D-critical points:

• Clarke critical points: Bcfpxq Q 0, we denote the set of these points by critcf

• Artificial critical points Bcfpxq S 0 and Dpxq Q 0, we denote this set by critaf

Critical values are defined accordingly as images of critical points.

Proposition 8 (Artificial critical points) Assume f : Rp Ñ R and D : Rp Ñ Rp are definable in
a common o-minimal structure. The connected components Ci of critaf , which are in finite number,
satisfy

(i) dimCi ă p

(ii) fpCiq is a singleton, and as a consequence the D critical values of f are in finite number,

(iii) critaf does not contain local minimum (nor local maximum)

Proof : By definability of critaf , the number of connected components is finite.

If Ci had full dimension it would contain a non trivial ball on which f should be constant by the
integral property. This would in turn imply that the points in the ball would also be local minimum
and thus Clarke critical, which is impossible.

To see that the critical values are in finite number it suffices to evoke the fact that Clarke critical
values are finite [11] and use that artificial critical values are in finite number.

By definability the connected components are arcwise-connected with piecewise C1 paths. Using the
integral property this shows f is constant on Ci.

(iii) is obvious since local minimum or maximum are Clarke critical. l

As explained in the introduction, artificial critical points are “computing artefacts”, whence their
names. For algorithmic differentiation the “gradient” provided by a program is zero while the point
might even be a smooth non critical point. We consider the setting of the mini-batch algorithm of the
last section.

Theorem 7 Assume that each f1, . . . , fn belongs to S. There exists a finite subset of steps F Ă

p0,`8q and a zero measure meager subset N of Rp, such that for any positive sequence γk “
op1{ log kq avoiding values in F , and any almost surely bounded sequence with initial condition in
RpzN , we have

• Jpxkq converges towards a Clarke critical value almost surely,

• the cluster points of xk are Clarke critical point almost surely.

Proof : The proof is twofold. We first prove that the set of initial conditions leading to an artificial
critical point or more generally to a non differentiability point within a finite time is “small”. We then
use this fact to conclude.
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Claim 3 Let g : Rp Ñ R be a definable differentiable function. Set, for λ ą 0,

Φλ “ λId´∇g,

where Id denotes the identity. There exists a finite set F in p0,`8q such that,

@λ P p0,`8qzF, @Z Ă Rp definable ,dimZ ă pñ dim Φ´1
λ pZq ă p. (12)

Proof of the claim. Denote by L the set of points where g is twice differentiable so that L is dense
and definable. Denote by λ1, . . . , λp : LÑ R a representation of the eigenvalues of∇2g. Refine L
to be contained in the common domain of differentiability for each λi, L remains open and dense. By
the definable Sard’s theorem the critical values of each function λi is finite, so that the set of all these
values which we denote by F is itself finite.

Take a positive real λ R F and consider the set

Kλ :“ tx P L : Φ1λpxq “ λId´∇2gpxq is not invertibleu.

By diagonalization, we see that the determinant of Φ1λpxq is
d
ź

i“1

pλ´ λipxqq for any x, thence

Kλ Ă

m
ď

i“1

tx P L, λipxq “ λu.

Since λ is a regular value for each λi the previous set is a finite union of manifolds of dimension p´1,
see e.g., [19]. This implies that the set RpzKλ “ tx P L : Φ1λpxq is invertible u is dense. Using the
above, we deduce that there exists finitely many open connected subsets U1, . . . , Ur Ă L of RpzKλ

such that U1 Y . . .Y Ur is dense in L and thus in Rp. Take now Z Ă Rp definable with dimZ ă p.
Assume towards a contradiction that there exists a nonempty open ball B in Φ´1

λ pZq. In that case B
must have a nonempty intersection with some Ui0 . The set ΦλpB X Ui0q is open because Φλ is a
diffeomorphism on Ui on its image. Since on the other hand we have ΦλpB X Ui0q Ă Z, we have a
contradiction and the claim is proved. l

For each I Ă t1, . . . , nu, we denote by fI,1, . . . , fI,mI
the bricks attached to fI where mI ě 1.

Denote by Sing the set of points on which at least one fI is non differentiable and C the set of points
for which p∇fI ‰ ∇fI for at least one I . By Proposition 3 and definability, Sing and C are finite
unions of manifolds of dimension at most p´ 1.

Set ΦkI,j “ Id ´ γk∇fI,j , with I Ă t1, . . . ,mu, j P t1, . . . ,mIu and Id denotes the identity.
Applying Claim 3, we can find a finite set F for which γk R F implies that each ΦkI,j has the
property (12). Indeed, for each I Ă t1, . . . ,mu, j P t1, . . . ,mIu, there is FI,j Ă R finite such
that fI,j has property (12). Since the subsets I are in finite number and each mI is finite, the set
F “

Ť

IĂt1,...,mu

Ť

jPt1,...,mIu
FI,j , is also finite. For each k P N, I Ă t1, . . . ,mu, j P t1, . . . ,mIu.

Remark that if γk R F then ΦkI,j has property (12).

For k ď k0 fixed, let us consider the finite set of definable mappings defined by

Ψk0 :“

#

k
ź

j“1

ΦjIj ,ij : k ď k0, Ij Ă t1, . . . , nu, ij P t1, . . . ,mIju

+

.

We now assume that γk R F,@k ě 0, so that each mapping in Ψk0 has the property (12) and

Nk0 :“ tx P Rp : Dk ď k0, DΦ P Ψkpxq P C Y Singu

These are initial conditions in U leading to an artificial critical or a non-differentiability point within
U before time k0.

We can also write
Nk0 Ă

ď

ΦPΨk0

Φ´1 pC Y Singq .

From stratification arguments we know that Sing has a dimension lower than p ´ 1. On the
other hand, C has dimension strictly lower than p by Proposition 3. Claim 3 applies and yields
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dim Φ´1 pC Y Singq ă p for all Φ P Φk0 . As a consequence Nk0 is closed with nonempty interior
and so does N :“ YkPNNk by Baire’s theorem. Similarly N has zero measure as a countable union
of zero measure sets.

This proves that any sequence with initial condition out of N must remain in the zone of differentia-
bility of J as well as all fI . In particular if I is taken uniformly at random among possible subsets,
for all x R N , we have EI rp∇fIpxqs “ p∇Jpxq “ ∇Jpxq “ BcJpxq, so that these specific sequences
can also be seen as stochastic subgradient sequences for J . To be more specific, the sequence xk can
be seen as one of the sequence generated by the algorithm

yk`1 P yk ´ γkB
cJpykq ` εk

where εk is a random noise with zero mean. Using general results [20, 5], we know that yk sequences,
when bounded almost surely, have limit points which are Clarke critical. l
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