
Appendix for “When and How to Lift the Lockdown?
Global COVID-19 Scenario Analysis and Policy

Assessment using Compartmental Gaussian
Processes”

Zhaozhi Qian∗

University of Cambridge
zhaozhi.qian@maths.cam.ac.uk

Ahmed M. Alaa∗
UCLA

ahmedmalaa@ucla.edu

Mihaela van der Schaar
University of Cambridge, UCLA, The Alan Turing Institute

mv472@cam.ac.uk

Appendix A: Related Literature

In this Section, we provide a detailed comparison between different existing approaches for modeling
fatality curves. A tabulated comparison between our model and existing ones is laid out in Table A1.

Approach Training
Approach

Modeling
Scope

Policy
Effects

Model
Uncertainty

Compartmental models Exhaustive parameter
search

Individual
countries

Not
incorporated None

Machine learning-based
compartmental models

Gradient descent
optimization

Individual
countries

Not
incorporated

Ad-hoc
bootstrap
estimates

Bayesian mechanistic
hierarchical model

Posterior inference via
MCMC methods

Individual
countries Incorporated

Bayesian
credible
intervals

Curve fitting Exhaustive parameter
search

Individual
countries

Not
incorporated None

Dynamic control
modeling

Model parameters
based on expert knowledge

Individual
countries Incorporated None

Recurrent neural
networks for fatality
curve modeling [49]

Gradient descent
optimization

Individual
countries

Not
incorporated None

Compartmental
Gaussian processes

Stochastic
gradient-based

variational inference
Global Incorporated

Bayesian
credible
intervals

Table A1: Comparison between existing approaches to model fatality curves.

Because of the relative infrequency of pandemics, little related work has been done within the
machine learning community to address this problem. In what follows, we provide a brief overview
of previous works. Previous works prior to the current pandemic have been primarily focused on
learning contagion (diffusion) processes on networks, e.g., [15, 16]; unfortunately, these models do
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not apply to the pandemic as information on social network structures underlying disease spread is
hard to obtain. In response to the COVID-19 pandemic, two strands of research work have emerged:
(a) methods for devising optimal control (lockdown) policies to contain disease spread [17, 18, 19],
and (b) models for forecasting disease spread and expected fatalities [5, 6, 7, 9, 10, 20, 21]. Our
paper belongs to category (b) in that the developed model is trained to forecast the future number of
fatalities. But unlike existing models in category (b), our model predicts fatalities under different
lockdown policy choices, hence it can be used for research in category (a) to derive optimal policies.

The most prominent models in category (b) — developed by various academic institutions — have
been recognized by the CDC and used to issue national forecasts of COVID-19 fatalities within the
United States [22]. Most of these models (e.g., the “UCLA” model [9], the “MIT” model [21] and the
IHME model [5]) are SEIR models fit for individual countries, with ideas from “machine learning”
being used only to optimize the basic SEIR parameters via gradient descent. Our model differs
from these models in that it: (1) jointly models fatalities across all of the 170 countries affected
by the pandemic, (2) incorporates individual country features to learn how disease dynamics and
policy effects vary across countries, (3) enables evaluating future projections under alternative policy
scenarios, and (4) combines both mechanistic SEIR models and data-driven machine learning models.
Hierarchical modeling has been previously used in the “Imperial” model developed in [20] (which
was fit across 11 European countries). This model can be viewed as a special case of ours as it assumes
policy effects to be fixed for all countries in its upper layer with no machine learning components to
model heterogeneity, and its lower layer uses an interval distribution to predict short-term deaths only.

Appendix B: Learning via Stochastic Variational Inference

Accurate posterior inferences of Yi[t : t+T ] require training the CGP model by optimizing the param-
eter α of the upper-layer GP using the observed data DN,t by maximizing the model’s log-likelihood:

L(DN,t |α) , log

∫ N∏
i=1

P
(
Yi[1 : t]

∣∣ θi) · P( θi ∣∣Xi,Pi[1 : t], α
)
dθi, (1)

with α∗ = argmaxα L(DN,t |α). Because the integral in (1) is intractable, we resort to a variational
inference approach for optimizing the model’s likelihood [32, 33, 34, 35]. That is, to train our model,
we minimize the Evidence lower bound (ELBO) on (1) given by:

logP
(
Yi[1 : t]

∣∣α) ≥ ELBOi(α, φ) = EQ
[
logP

(
Yi[1 : t], θi

∣∣α)− logQ
(
θi
∣∣Yi[1 : t], φ

)]
,

where Q(.) is the variational distribution with parameters φ, and conditioning on Xi and Pi[1 : t] is
suppressed for notational brevity. We choose a normal distribution for Q(.) — this renders analytic
evaluation of the ELBO objective and its gradients possible. We use stochastic gradient descent via
ADAM algorithm to optimize the ELBO objective [36], and update the lower-layer parameters in
each gradient iteration by solving the SEIR differential equations using Euler’s method [37].

The pseudo-code for the learning algorithm is provided below:

1. Sample θ(j)i ∼ Q
(
θi
∣∣Yi[1 : t], φ

)
, i = 1, . . . , N , j = 1, . . . ,m.

2. Estimate L(DN,t |α) = log
∑m

j=1

∏N
i=1 P

(
Yi[1 : t]

∣∣ θ(j)i

)
· P
(
θ
(j)
i

∣∣Xi,Pi[1 : t], α
)
dθ

(j)
i .

3. Estimate the gradients∇θL and∇φL.
4. Solve the SEIR differential equations using Euler’s method.
5. Update θ and φ.

Appendix C: Experiments

Model Variables

We collated the data set DN,t = {Xi,Yi,Pi}Ni=1 for N = 170 countries affected by the COVID-19
pandemic using three data sources: (1) published World Bank reports were used to extract a set of
d = 35 features Xi for each country, (2) the COVID-19 CSSE data repository at Johns Hopkins
University [38] was used to extract each country’s fatality time-series Yi, and (3) the Oxford COVID-
19 Government Response Tracker (OxCGRT) — curated by the Blavatnik School of Government at

2



Oxford University [39] — was used to extract K = 9 policy indicators Pi for each country over time.
Our data set covered the period spanning from January 22, 2020 to May 8, 2020.

Each country’s features included a comprehensive set of economic, demographic, environmental, so-
cial and health indicators (e.g., population density, prevalence of obesity, air transport frequency, me-
dian age, prevalence of hand-washing facilities, health expenditure, etc). Policy indicators included:
information on school and workplace closure, public events’ cancellation, travel restrictions, public
transport closure, etc. All variables inlcuded in our model are listed in Tables C1 and C2.

I0: School closure I1: Stay-at-home
requirements

I2: Restrictions on
gathering size

I3: Workplace closure I4: Restrictions on domestic
or internal movement

I5: Public transport
closures

I6: Cancellation of
public events

I7: Restrictions on
international travel

I8: Public information
campaign

Table C1: Individual policy indicators used in our model.

Economic Indicators

GDP per capita, GNI per capita, Income share held by lowest 20%

Social and Demographic Indicators

Population, Life expectancy, Birth rate, Death rate, Infant mortality rate, Land Area,
% People with basic hand-washing facilities including soap and water, Smoking prevalence,

Prevalence of undernourishment, Prevalence of overweight, Urban population,
Population density, Population ages 65 and above, Access to electricity (% of population),

UHC service coverage index, Total alcohol consumption per capita,
Air transport (passengers carried)

Environmental Indicators

Forest Area, PM2.5 air pollution (mean annual exposure in micrograms per cubic meter)

Public Health Indicators

Immunization for measles, % deaths by communicable diseases, Current health expenditure,
Current health expenditure per capita, Diabetes prevalence, Immunization for DPT,

Immunization for HepB3, Incidence of HIV, Incidence of malaria, Incidence of tuberculosis,
% deaths by CVD/cancer/diabetes/CRD , % deaths due to household and ambient air pollution,
% deaths due to unsafe water/unsafe sanitation/lack of hygiene, Physicians (per 1,000 people)

Table C2: Economic, social, demographic, environmental and health indicators for each country considered in our
analysis. Data on these indicators was obtained from the World Bank (https://data.worldbank.org/).
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Model Implementation Details

We implemented our CGP model using Pyro [40], a universal probabilistic programming language
in Python supported by a PyTorch backend. The variational inference algorithm was implemented
using ADAM with 1000 iterations and a learning rate of 0.01. The Gaussian process hyper-parameters
were tuned by keeping the last 14 days worth of fatality data as a validation set, and grid search was
used to tune the kernel hyper-parameters (length-scale). Projections from all baselines involved in
our comparisons were obtained from the official CDC website [22].

Results

In this Section, we provide further experimental results in addition to those presented in Section 4. In
what follows, we list the results provided in this appendix.

� Table C3: Performance of our model with and without cross-country joint modeling.
� Table C4: Correlation between country features and effect of lockdown on R0.
� Table C5: Correlation between country features and R0 before lockdown.
� Table C8: The difference in total deaths by April 25 as reported at April 25 and May 8.
� Figure C6: Policy stringency index (defined by te Oxford policy tracker [3]) and R0 over

time within different countries.
� Figure C7: Counterfactual scenario analysis for France. The blue curve corresponds to the

current lockdown measures continuing, whereas the red curve corresponds to the current
re-opening plan.
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Country features Correlations p-values

Cause of death, by communicable diseases
and maternal, prenatal
and nutrition conditions (% of total)

0.732615 1.25E-06

Mortality rate attributed to unsafe
water, unsafe sanitation and lack
of hygiene (per 100,000 population)

0.667864 2.17E-05

Incidence of tuberculosis
(per 100,000 people) 0.665138 2.41E-05

Prevalence of undernourishment
(% of population) 0.659093 3.03E-05

Mortality rate, adult, female
(per 1,000 female adults) 0.648255 8.03E-05

Mortality rate attributed to household
and ambient air pollution,
age-standardized (per 100,000 population)

0.642676 5.51E-05

Mortality rate, under-5
(per 1,000 live births) 0.60216 0.000209

Mortality rate, adult, male
(per 1,000 male adults) 0.570695 0.000801

Mortality rate attributed to
unintentional poisoning
(per 100,000 population)

0.49254 0.003593

Mortality from CVD, cancer, diabetes or
CRD between exact ages 30 and 70 (%) 0.459674 0.007117

Population, total 0.401973 0.0204
Birth rate, crude (per 1,000 people) 0.389252 0.025156
Mortality caused by road traffic injury
(per 100,000 people) 0.36984 0.03414

PM2.5 air pollution, mean annual exposure
(micrograms per cubic meter) 0.347458 0.047564

Urban population (% of total population) -0.35538 0.042399
Current health expenditure per capita
(current US$) -0.37345 0.032298

Nurses and midwives (per 1,000 people) -0.40256 0.020202
Current health expenditure (% of GDP) -0.40361 0.019846
GNI per capita, Atlas method (current US$) -0.40771 0.018513
GDP per capita (current US$) -0.41523 0.016262
Immunization, HepB3
(% of one-year-old children) -0.42523 0.024084

Physicians (per 1,000 people) -0.48562 0.005616
Immunization, DPT
(% of children ages 12-23 months) -0.49294 0.003562

Immunization, measles
(% of children ages 12-23 months) -0.51081 0.002385

Life expectancy at birth, total (years) -0.57085 0.000522
UHC service coverage index -0.58407 0.000359
Prevalence of overweight (% of adults) -0.61696 0.000131
Access to electricity (% of population) -0.62433 0.000103
Cause of death, by non-communicable
diseases (% of total) -0.68116 1.28E-05

People with basic handwashing facilities
including soap and water (% of population) -0.8102 0.014751

Table C4: Correlation between country features and effect of lockdown on R0.
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Country feature Correlation p-value
People with basic handwashing facilities
including soap and water (% of population) 0.73285 0.038626

Prevalence of overweight (% of adults) 0.576361 0.000447
UHC service coverage index 0.56557 0.000604
Cause of death, by non-communicable
diseases (% of total) 0.546701 0.000995

Access to electricity (% of population) 0.503035 0.002847
Life expectancy at birth, total (years) 0.49019 0.003781
Physicians (per 1,000 people) 0.481126 0.006143
Current health expenditure (% of GDP) 0.448501 0.00885
Urban population (% of total population) 0.429586 0.012597
Immunization, measles
(% of children ages 12-23 months) 0.419842 0.014999

Table C5: Correlation between country features and R0 before lockdown.

Country Percentage Difference Difference
US 0.88% 456
France 0.14% 31
United Kingdom 0.00% 0
Pakistan 0.00% 0
Japan 0.00% 0
Italy 0.00% 0
Germany 0.00% 0
Spain 0.00% 0
Belgium 0.00% 0
Korea, South 0.00% 0
Brazil 0.00% 0
Iran 0.00% 0
Netherlands 0.00% 0
Turkey 0.00% 0
Romania 0.00% 0
Portugal 0.00% 0
Sweden 0.00% 0
Switzerland 0.00% 0
Ireland 0.00% 0
Hungary 0.00% 0
Denmark 0.00% 0
Austria 0.00% 0
India 0.00% 0
Ecuador 0.00% 0
Russia 0.00% 0
Peru 0.00% 0
Indonesia 0.00% 0
Poland 0.00% 0
Philippines 0.00% 0
Canada -0.76% -18

Table C8: The difference in total deaths by April 25 reported at April 25 and May 8. The difference is exactly
zero for most countries; for countries with a difference, the difference is negligible percentage-wise. The models
in our experiments were trained based on data captured at May 8 while the benchmarks were probably trained
using data capture at April 25. As the data are routinely updated, we are expecting to see some occasional
retrospective changes (e.g. correcting reporting errors). However, the vast majority of countries are unchanged
between the two reporting dates, which suggests that our training scheme is valid.
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Figure C7: Counterfactual scenario analysis for France.

9



References
[1] K. Prem, et al. “The effect of control strategies to reduce social mixing on outcomes of the

COVID-19 epidemic in Wuhan, China: a modelling study.” The Lancet Public Health, 2020.
[2] N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, et al. “Impact of non-pharmaceutical inter-

ventions (NPIs) to reduce COVID-19 mortality and healthcare demand.” Imp Coll COVID-19
Response Team, 2020.

[3] T. Hale, A. Petherick, T. Phillips, and S. Webster. “Variation in government responses to
COVID-19.” Blavatnik School of Government Working Paper, 2020.

[4] F. E. Alvarez, D. Argente, and F. Lippi. “A simple planning problem for covid-19 lockdown.”
National Bureau of Economic Research, 2020.

[5] IHME COVID-19 health service utilization forecasting team and Christopher J. Murray. “Fore-
casting the impact of the first wave of the COVID-19 pandemic on hospital demand and deaths
for the USA and European Economic Area countries.” medRxiv, 2020.

[6] J. Lourenço, et al. “Fundamental principles of epidemic spread highlight the immediate need
for large-scale serological surveys to assess the stage of the SARS-CoV-2 epidemic.” medRxiv,
2020.

[7] P. Teles. “A time-dependent SEIR model to analyse the evolution of the SARS-covid-2 epidemic
outbreak in Portugal.” Bull World Health Organ, 2020.

[8] D. S. W. Ting, L. Carin, V. Dzau, and T. Y. Wong. “Digital technology and COVID-19.” Nature
Medicine, no. 26, vol. 4, pp. 459-461, 2020.

[9] D. Zou, L. Wang, P. Xu, J. Chen, W. Zhang and Q. Gu. “Epidemic Model Guided Machine
Learning for COVID-19 Forecasts in the United States.” medRxiv, 2020.

[10] Y. Gu. “COVID-19 Projections Using Machine Learning.” covid19-projections.com,
2020.

[11] A. L. Andersen, et al. “Pandemic, Shutdown and Consumer Spending: Lessons from Scandina-
vian Policy Responses to COVID-19.” arXiv preprint arXiv:2005.04630, 2020.

[12] M. Gilbert, M. Dewatripont, E. Muraille, J. P. Platteau and M. Goldman. “Preparing for a
responsible lockdown exit strategy.” Nature Medicine, vol. 26, no. 5, pp. 643-644, 2020.

[13] M. Y. Li and J. S. Muldowney. “Global stability for the SEIR model in epidemiology.” Mathe-
matical biosciences, vol. 125, no .2, pp. 155-164, 1995.

[14] K. Dietz. “The estimation of the basic reproduction number for infectious diseases.” Statistical
methods in medical research, pp. 23-41, 1993.

[15] R. Lemonnier, et al. “Tight bounds for influence in diffusion networks and application to bond
percolation and epidemiology.” Advances in Neural Info. Process. Systems (NeurIPS), 2014.

[16] D. B. Neill, and A. W. Moore. “A fast multi-resolution method for detection of significant
spatial disease clusters.” Advances in Neural Information Processing Systems (NeurIPS), 2004.

[17] G. Zaman, Y. H. Kang and I. H. Jung. “Optimal treatment of an SIR epidemic model with time
delay.” BioSystems, vol. 98, no. 1, pp. 43-50, 2009.

[18] D. M. Dave, A. I. Friedson, K. Matsuzawa and J. J. Sabia. “When do shelter-in-place orders
fight COVID-19 best? Policy heterogeneity across states and adoption time.” National Bureau
of Economic Research, 2020.

[19] D. Acemoglu, V. Chernozhukov, I. Werning and M. D. Whinston. “A Multi-Risk SIR Model
with Optimally Targeted Lockdown.” National Bureau of Economic Research, 2020.

[20] S. Flaxman, et al. “Estimating the number of infections and the impact of non-pharmaceutical
interventions on COVID-19 in 11 European countries.”, arXiv preprint, 2020.

[21] COVIDAnalytics Team, “Overview of DELPHI Model V2.0.” covidanalytics.io/
DELPHI_documentation_pdf, 2020.

[22] www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html, last accessed: June 1,
2020.

[23] R. Li, S. Pei, B. Chen, et al. “Substantial undocumented infection facilitates the rapid dissemi-
nation of novel coronavirus (SARS-CoV2).” Science, 2020.

10

covid19-projections.com
covidanalytics.io/DELPHI_documentation_pdf
covidanalytics.io/DELPHI_documentation_pdf
www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html


[24] C. E. Rasmussen, “Gaussian processes in machine learning.” Springer, 2003.
[25] J. Q. Shi, R. Murray-Smith, and D. M. Titterington. “Hierarchical Gaussian process mixtures

for regression.” Statistics and computing, 2005.
[26] W. O. Kermack, and A. G. McKendrick. “A contribution to the mathematical theory of epi-

demics.” Proceedings of the Royal Society of London, pp. 700-721, 1927.
[27] J. T. Wu, et al. “Nowcasting and forecasting the potential domestic and international spread of

the 2019-nCoV outbreak originating in Wuhan, China: a modelling study.” The Lancet, 2020.
[28] H. W. Hethcote, “The mathematics of infectious diseases.” SIAM review, pp. 599-653, 2000.
[29] A. Osemwinyen and A.Diakhaby. “Mathematical Modelling of the Transmission Dynamics of

Ebola Virus.” Applied and Computational Mathematics, 2015.
[30] S. A. Lauer, et al. “The incubation period of coronavirus disease 2019 (COVID-19) from

publicly reported confirmed cases: estimation and application.” Annals of internal medicine,
vol. 172, no. 9, pp. 577-582, 2020.

[31] A. J. Kucharski, T. W. Russell, C. Diamond, et al. “Early dynamics of transmission and control
of COVID-19: a mathematical modeling study.” Lancet Infect Dis, 2020.

[32] M. D. Hoffman, D. M. Blei, C. Wang and J. Paisley. “Stochastic variational inference.” The
Journal of Machine Learning Research, vol. 14, no. 1, pp. 1303-1347, 2013.

[33] D. Wingate and T. Weber. “Automated variational inference in probabilistic programming.”
arXiv preprint arXiv:1301.1299, 2013.

[34] R. Ranganath, S. Gerrish, and D. M. Blei. “Black Box Variational Inference.” In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS), 2014.

[35] D. P. Kingma and M. Welling. “Auto-encoding Variational Bayes.” arXiv preprint, 2013.
[36] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.” arXiv preprint, 2014.
[37] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden. “Strong and weak divergence in finite time

of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous
coefficients.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 467, no. 2130, pp. 1563-1576, 2011.

[38] JHU CSSE. 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns
Hopkins CSSE. GitHub. 2020 (https://github.com/CSSEGISandData/COVID-19).

[39] T. Hale, A. Petherick, T. Phillips, and S. Webster. “Variation in government responses to
COVID-19.” Blavatnik School of Government Working Paper, 2020.

[40] E. Bingham, et al. “Pyro: Deep universal probabilistic programming.” The Journal of Machine
Learning Research, vol. 20, no .1, pp. 973-978, 2019.

[41] C. P. Winsor. “The Gompertz curve as a growth curve.” Proceedings of the National Academy
of Sciences of the United States of America, vol. 18, no. 1, 1932.

[42] www.economist.com/early-projections-of-covid-19-in-america-underestimated-its-severity
[43] https://covid-19.bsvgateway.org/, last accessed: June 1, 2020.
[44] A Azad. “Model cited by white house says 82,000 people could die from coronavirus by august,

even with social distancing.”, CNN, 2020. https://www.cnn.com/2020/03/30/health/coronavirus-
us-ihme-model-us/index.html, last accessed: June 1, 2020.

[45] https://www.bbc.co.uk/news/health-52849691, last accessed: June 1, 2020.
[46] https://www.bbc.co.uk/news/uk-52858392, last accessed: June 1, 2020.
[47] https://www.telegraph.co.uk/global-health/science-and-disease/road-lockdown-sage-minutes-

reveal-best-worst-whitehall/ , last accessed: June 1, 2020.
[48] https://www.gov.uk/government/publications/our-plan-to-rebuild-the-uk-governments-covid-

19-recovery-strategy/, last accessed: June 2, 2020.
[49] S. K. Bandyopadhyay and S. Dutta. “Machine learning approach for confirmation of covid-19

cases: Positive, negative, death and release.” medRxiv, 2020.

11

https://www.economist.com/graphic-detail/2020/05/23/early-projections-of-covid-19-in-america-underestimated-its-severity
https://covid-19.bsvgateway.org/
https://www.cnn.com/2020/03/30/health/coronavirus-us-ihme-model-us/index.html
https://www.cnn.com/2020/03/30/health/coronavirus-us-ihme-model-us/index.html
https://www.bbc.co.uk/news/health-52849691
https://www.bbc.co.uk/news/uk-52858392
https://www.telegraph.co.uk/global-health/science-and-disease/road-lockdown-sage-minutes-reveal-best-worst-whitehall/ 
https://www.telegraph.co.uk/global-health/science-and-disease/road-lockdown-sage-minutes-reveal-best-worst-whitehall/ 
https://www.gov.uk/government/publications/our-plan-to-rebuild-the-uk-governments-covid-19-recovery-strategy/
https://www.gov.uk/government/publications/our-plan-to-rebuild-the-uk-governments-covid-19-recovery-strategy/

