
A Supplementary Material

A.1 Frequency Multipliers - Proofs

We skip the proof of Lemma 1 since it is elementary. We give a proof of Lemma 2 as follows.

Proof of Lemma 2. Tk(t;α, β) has 4k straight line segments which either increase from 0 to αβ =
2al or decrease from αβ to 0. For each of these line segments, the entire set of values of Tl( · ; a, b) in
[0, 2al] is repeated once. This gives us 4kl triangles. The height of these triangles is the same as that
of Tl( · ; a, b) which is ab. The domain of the triangle waveform is the same as that of Tk( · ;α, β),
which is [−2kα, 2kα]. From this we conclude the statement of the lemma.

A.2 ReLU Representation for Sinusoids - Proofs

Let ω > 0. We want to represent t→ sin(ωt) for t ∈ [0, π/ω] in terms of ReLU functions. The first
part of the argument entails manipulation of an integral, and then the resulting identity will be applied
to obtain the proofs of Lemmas 3 and 4.

To start, integration by parts yields∫ π/ω

0

ω2 sin(ωT )ReLU(t− T )dT = ωt− sin(ωt) .

Replacing t with π/ω − t, we have∫ π/ω

0

ω2 sin(ωT )ReLU(π/ω − t− T )dT = π − ωt− sin(ωt) ,

and adding the last two equations gives∫ π/ω

0

ω2 sin(ωT ) [ReLU(π/ω − t− T ) + ReLU(t− T )] dT = π − 2 sin(ωt) .

From the case t = 0 in the last equation, we conclude that

π =

∫ π/ω

0

ω2 sin(ωT ) [π/ω − T ] dT .

Combining the last two equations, we obtain the identity

sin(ωt) =
1

2

∫ π/ω

0

ω2 sin(ωT ) [π/ω − T − ReLU(π/ω − t− T )− ReLU(t− T )] dT .

Making the transformation S = Tω
π , the integral can be rewritten as

sin(ωt) =
π

2

∫ 1

0

ω sin(πS)

[
π

ω
(1− S)− ReLU

(π
ω

(1− S)− t
)
− ReLU

(
t− πS

ω

)]
dS . (12)

Now recall the function R4( · ;S, ω) as defined in Section 5.2. A simple calculation shows that

R4(t;S, ω) =

{
0 if t 6∈ [0, πω ]
π
ω (1− S)− ReLU

(
π
ω (1− S)− t

)
− ReLU

(
t− πS

ω

)
if t ∈ [0, πω ] ,

so if we let S be a random variable with S ∼ Unif([0, 1]) we can rewrite (12) as

E
πω

2
sin(πS)R4(t;S, ω) =

{
0 if t 6∈ [0, πω ]

sin(ωt) if t ∈ [0, πω ].

It then follows that

E
πω

2
sin(πS)[R4(t;S, ω)−R4(t− π

ω ;S, ω)] =

{
0 if t 6∈ [0, πω ]

sin(ωt) if t ∈ [0, 2π
ω ].

(13)
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Proof of Lemma 3. The first item follows from the basic trigonometric identity cos(x) = sin(x+ π
2 )

and Equation (13).

For Item 2, note that because Γcos
n ( · ;S, ω) is a sum of shifted versions of Γsin( · ;S, ω) such that the

interiors of the shifted versions’ supports are all disjoint, it is sufficient to upper bound the values of
Γsin( · ;S, ω). Indeed, inspection of the form ofR4 shows that |R4(t;S, ω)| ≤ π

ω min(S, 1−S) ≤ π
2ω .

Since πω
2 | sin(πS)| ≤ πω

2 , the bound follows.

Finally, Item 3 follows because Γcos
n ( · ;S, ω) is implemented via summation of 4(n + 1) shifted

versions of the functionR4( · ;S, ω). SinceR4( · ;S, ω) by definition can be implemented via 4 ReLU
functions, we conclude the result.

Proof of Lemma 4. It is sufficient to show that for t ∈ [−r − π
βω , r + π

βω ]

EΓcos
n (Tk(t;α, β);S, ω) = cos(βωt) .

Fix t ∈ [−r− π
βω , r+ π

βω ]. By definition, Tk( · ;α, β) is supported in [−2kα, 2kα]. By our choice of
k, we have [−r − π

βω , r + π
βω ] ∈⊆ [−2kα, 2kα]. Let t ∈ [2mα, 2(m+ 1)α] for some m ∈ Z such

that −k ≤ m ≤ k − 1. We invoke Item 1 of Lemma 1 to show that Tk(t;α, β) = T (t− 2mα;α, β).
Now, T (t− 2mα,α, β) ∈ [0, αβ] = [0, (2n+1)π

ω ]. Therefore by Item 1 of Lemma 3,

EΓcos
n (Tk(t;α, β);S, ω) = cos(ωT (t− 2mα;α, β)) . (14)

It is now sufficient to show that cos(ωT (t− 2mα;α, β)) = cos(βωt). We consider two cases:

1) If t− 2mα ∈ [0, α], then T (t− 2mα;α, β) = βt− 2mαβ. The LHS of Equation (14) becomes

cos(ωβt− 2mαβω) = cos(ωβt− 2m(2n+ 1)π) = cos(ωβt) .

2) If t − 2mα ∈ (α, 2α], then T (t − 2mα;α, β) = (2m + 2)αβ − βt and hence the LHS of
Equation (14) becomes

cos(−ωβt+ (2m+ 2)αβω) = cos(−ωβt+ (2m+ 2)(2n+ 1)π) = cos(ωβt) .

This completes the proof.

B Uniform Continuity

We will give a sketch of the proof that any f ∈ GK is uniformly continuous. By definition, there
exists a finite complex measure µ over Rd such that f(x) =

∫
exp(i〈ξ, x〉)µ(dξ) for every x ∈ Rd.

Applying Hahn-Jordan decomposition theorem and Radon-Nikodym theorem, we conclude that
µ(dξ) = exp(iθ(ξ))|µ|(dξ) for some finite measure |µ| called the total variation measure of µ.
Therefore, for arbitrary x, y ∈ Rd with x− y = δ.

|f(x)− f(y)| =
∣∣∣∣ ∫ (exp(i〈ξ, x〉)− exp(i〈ξ, y〉))µ(dξ)

∣∣∣∣
=

∣∣∣∣ ∫ (exp(i〈ξ, x〉)− exp(i〈ξ, y〉)) exp(iθ(ξ))|µ|(dξ)
∣∣∣∣

≤
∫ ∣∣ exp(i〈ξ, x〉)− exp(i〈ξ, y〉)

∣∣|µ|(dξ)
=

∫ ∣∣ exp(i〈ξ, δ〉)− 1
∣∣|µ|(dξ)

≤
∫

2 min(1, |〈ξ, δ〉|)|µ|(dξ)

≤
∫

2 min(1, ‖ξ‖‖δ‖)|µ|(dξ)

:= I(‖δ‖) (15)

By dominated convergence theorem, we conclude that lim‖δ‖→0 I(‖δ‖) = 0. Since I(‖δ‖) depends
only on ‖x− y‖ and not on x, y, we conclude that f is uniformly continuous.
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