A Supplementary Material

A. 1 Frequency Multipliers - Proofs

We skip the proof of Lemma 1 since it is elementary. We give a proof of Lemma 2 as follows.
Proof of Lemma 2. $T_{k}(t ; \alpha, \beta)$ has $4 k$ straight line segments which either increase from 0 to $\alpha \beta=$ $2 a l$ or decrease from $\alpha \beta$ to 0 . For each of these line segments, the entire set of values of $T_{l}(\cdot ; a, b)$ in $[0,2 a l]$ is repeated once. This gives us $4 k l$ triangles. The height of these triangles is the same as that of $T_{l}(\cdot ; a, b)$ which is $a b$. The domain of the triangle waveform is the same as that of $T_{k}(\cdot ; \alpha, \beta)$, which is $[-2 k \alpha, 2 k \alpha]$. From this we conclude the statement of the lemma.

A. 2 ReLU Representation for Sinusoids - Proofs

Let $\omega>0$. We want to represent $t \rightarrow \sin (\omega t)$ for $t \in[0, \pi / \omega]$ in terms of ReLU functions. The first part of the argument entails manipulation of an integral, and then the resulting identity will be applied to obtain the proofs of Lemmas 3 and 4

To start, integration by parts yields

$$
\int_{0}^{\pi / \omega} \omega^{2} \sin (\omega T) \operatorname{ReLU}(t-T) d T=\omega t-\sin (\omega t)
$$

Replacing t with $\pi / \omega-t$, we have

$$
\int_{0}^{\pi / \omega} \omega^{2} \sin (\omega T) \operatorname{ReLU}(\pi / \omega-t-T) d T=\pi-\omega t-\sin (\omega t)
$$

and adding the last two equations gives

$$
\int_{0}^{\pi / \omega} \omega^{2} \sin (\omega T)[\operatorname{ReLU}(\pi / \omega-t-T)+\operatorname{ReLU}(t-T)] d T=\pi-2 \sin (\omega t)
$$

From the case $t=0$ in the last equation, we conclude that

$$
\pi=\int_{0}^{\pi / \omega} \omega^{2} \sin (\omega T)[\pi / \omega-T] d T
$$

Combining the last two equations, we obtain the identity

$$
\sin (\omega t)=\frac{1}{2} \int_{0}^{\pi / \omega} \omega^{2} \sin (\omega T)[\pi / \omega-T-\operatorname{ReLU}(\pi / \omega-t-T)-\operatorname{ReLU}(t-T)] d T
$$

Making the transformation $S=\frac{T \omega}{\pi}$, the integral can be rewritten as

$$
\begin{equation*}
\sin (\omega t)=\frac{\pi}{2} \int_{0}^{1} \omega \sin (\pi S)\left[\frac{\pi}{\omega}(1-S)-\operatorname{ReLU}\left(\frac{\pi}{\omega}(1-S)-t\right)-\operatorname{ReLU}\left(t-\frac{\pi S}{\omega}\right)\right] d S \tag{12}
\end{equation*}
$$

Now recall the function $R_{4}(\cdot ; S, \omega)$ as defined in Section5.2. A simple calculation shows that

$$
R_{4}(t ; S, \omega)= \begin{cases}0 & \text { if } t \notin\left[0, \frac{\pi}{\omega}\right] \\ \frac{\pi}{\omega}(1-S)-\operatorname{ReLU}\left(\frac{\pi}{\omega}(1-S)-t\right)-\operatorname{ReLU}\left(t-\frac{\pi S}{\omega}\right) & \text { if } t \in\left[0, \frac{\pi}{\omega}\right]\end{cases}
$$

so if we let S be a random variable with $S \sim \operatorname{Unif}([0,1])$ we can rewrite 12 as

$$
\mathbb{E} \frac{\pi \omega}{2} \sin (\pi S) R_{4}(t ; S, \omega)= \begin{cases}0 & \text { if } t \notin\left[0, \frac{\pi}{\omega}\right] \\ \sin (\omega t) & \text { if } t \in\left[0, \frac{\pi}{\omega}\right]\end{cases}
$$

It then follows that

$$
\mathbb{E} \frac{\pi \omega}{2} \sin (\pi S)\left[R_{4}(t ; S, \omega)-R_{4}\left(t-\frac{\pi}{\omega} ; S, \omega\right)\right]= \begin{cases}0 & \text { if } t \notin\left[0, \frac{\pi}{\omega}\right] \tag{13}\\ \sin (\omega t) & \text { if } t \in\left[0, \frac{2 \pi}{\omega}\right]\end{cases}
$$

Proof of Lemma 3. The first item follows from the basic trigonometric identity $\cos (x)=\sin \left(x+\frac{\pi}{2}\right)$ and Equation (13).
For Item 2, note that because $\Gamma_{n}^{\cos }(\cdot ; S, \omega)$ is a sum of shifted versions of $\Gamma^{\sin }(\cdot ; S, \omega)$ such that the interiors of the shifted versions' supports are all disjoint, it is sufficient to upper bound the values of $\Gamma^{\sin }(\cdot ; S, \omega)$. Indeed, inspection of the form of R_{4} shows that $\left|R_{4}(t ; S, \omega)\right| \leq \frac{\pi}{\omega} \min (S, 1-S) \leq \frac{\pi}{2 \omega}$. Since $\frac{\pi \omega}{2}|\sin (\pi S)| \leq \frac{\pi \omega}{2}$, the bound follows.
Finally, Item 3 follows because $\Gamma_{n}^{\cos }(\cdot ; S, \omega)$ is implemented via summation of $4(n+1)$ shifted versions of the function $R_{4}(\cdot ; S, \omega)$. Since $R_{4}(\cdot ; S, \omega)$ by definition can be implemented via 4 ReLU functions, we conclude the result.

Proof of Lemma 4. It is sufficient to show that for $t \in\left[-r-\frac{\pi}{\beta \omega}, r+\frac{\pi}{\beta \omega}\right]$

$$
\mathbb{E} \Gamma_{n}^{\cos }\left(T_{k}(t ; \alpha, \beta) ; S, \omega\right)=\cos (\beta \omega t)
$$

Fix $t \in\left[-r-\frac{\pi}{\beta \omega}, r+\frac{\pi}{\beta \omega}\right]$. By definition, $T_{k}(\cdot ; \alpha, \beta)$ is supported in $[-2 k \alpha, 2 k \alpha]$. By our choice of k, we have $\left[-r-\frac{\pi}{\beta \omega}, r+\frac{\pi}{\beta \omega}\right] \in \subseteq[-2 k \alpha, 2 k \alpha]$. Let $t \in[2 m \alpha, 2(m+1) \alpha]$ for some $m \in \mathbb{Z}$ such that $-k \leq m \leq k-1$. We invoke Item 1 of Lemma 1 to show that $T_{k}(t ; \alpha, \beta)=T(t-2 m \alpha ; \alpha, \beta)$. Now, $T(t-2 m \alpha, \alpha, \beta) \in[0, \alpha \beta]=\left[0, \frac{(2 n+1) \pi}{\omega}\right]$. Therefore by Item 1 of Lemma 3 .

$$
\begin{equation*}
\mathbb{E} \Gamma_{n}^{\cos }\left(T_{k}(t ; \alpha, \beta) ; S, \omega\right)=\cos (\omega T(t-2 m \alpha ; \alpha, \beta)) \tag{14}
\end{equation*}
$$

It is now sufficient to show that $\cos (\omega T(t-2 m \alpha ; \alpha, \beta))=\cos (\beta \omega t)$. We consider two cases:

1) If $t-2 m \alpha \in[0, \alpha]$, then $T(t-2 m \alpha ; \alpha, \beta)=\beta t-2 m \alpha \beta$. The LHS of Equation 14] becomes

$$
\cos (\omega \beta t-2 m \alpha \beta \omega)=\cos (\omega \beta t-2 m(2 n+1) \pi)=\cos (\omega \beta t)
$$

2) If $t-2 m \alpha \in(\alpha, 2 \alpha]$, then $T(t-2 m \alpha ; \alpha, \beta)=(2 m+2) \alpha \beta-\beta t$ and hence the LHS of Equation (14) becomes

$$
\cos (-\omega \beta t+(2 m+2) \alpha \beta \omega)=\cos (-\omega \beta t+(2 m+2)(2 n+1) \pi)=\cos (\omega \beta t)
$$

This completes the proof.

B Uniform Continuity

We will give a sketch of the proof that any $f \in \mathcal{G}_{K}$ is uniformly continuous. By definition, there exists a finite complex measure μ over \mathbb{R}^{d} such that $f(x)=\int \exp (i\langle\xi, x\rangle) \mu(d \xi)$ for every $x \in \mathbb{R}^{d}$. Applying Hahn-Jordan decomposition theorem and Radon-Nikodym theorem, we conclude that $\mu(d \xi)=\exp (i \theta(\xi))|\mu|(d \xi)$ for some finite measure $|\mu|$ called the total variation measure of μ. Therefore, for arbitrary $x, y \in \mathbb{R}^{d}$ with $x-y=\delta$.

$$
\begin{align*}
|f(x)-f(y)| & =\left|\int(\exp (i\langle\xi, x\rangle)-\exp (i\langle\xi, y\rangle)) \mu(d \xi)\right| \\
& =\left|\int(\exp (i\langle\xi, x\rangle)-\exp (i\langle\xi, y\rangle)) \exp (i \theta(\xi))\right| \mu|(d \xi)| \\
& \leq \int|\exp (i\langle\xi, x\rangle)-\exp (i\langle\xi, y\rangle)||\mu|(d \xi) \\
& =\int|\exp (i\langle\xi, \delta\rangle)-1||\mu|(d \xi) \\
& \leq \int 2 \min (1,|\langle\xi, \delta\rangle|)|\mu|(d \xi) \\
& \leq \int 2 \min (1,\|\xi\|\|\delta\|)|\mu|(d \xi) \\
& :=I(\|\delta\|) \tag{15}
\end{align*}
$$

By dominated convergence theorem, we conclude that $\lim _{\|\delta\| \rightarrow 0} I(\|\delta\|)=0$. Since $I(\|\delta\|)$ depends only on $\|x-y\|$ and not on x, y, we conclude that f is uniformly continuous.

