
Supplementary Material:
Consistency Regularization for Certified Robustness of

Smoothed Classifiers

A Details on experimental setups

A.1 Training details

We train every model via stochastic gradient descent (SGD) with Nesterov momentum of weight
0.9 without dampening. We set a weight decay of 10−4 for all the models. We use different training
schedules for each dataset: (a) MNIST: The initial learning rate is set to 0.01; We train a model for
90 epochs with mini-batch size 256, and the learning rate is decayed by 0.1 at 30-th and 60-th epoch,
(b) CIFAR-10: The initial learning rate is set to 0.1; We train a model for 150 epochs with mini-batch
size 256, and the learning rate is decayed by 0.1 at 50-th and 100-th epoch, and (c) ImageNet: The
initial learning rate is set to 0.1; We train a model for 90 epochs with mini-batch size 200, and the
learning rate is decayed by 0.1 at 30-th and 60-th epoch. When SmoothAdv is used, we adopt the
warm-up strategy on attack radius ε [8], i.e., ε is initially set to zero, and linearly increased during
the first 10 epochs to a pre-defined hyperparameter.

A.2 Datasets

MNIST dataset [3] consists 70,000 gray-scale hand-written digit images of size 28×28, 60,000 for
training and 10,000 for testing. Each of the images is labeled from 0 to 9, i.e., there are 10 classes.
When training on MNIST, we do not perform any pre-processing except for normalizing the range
of each pixel from 0-255 to 0-1. The full dataset can be downloaded at http://yann.lecun.com/
exdb/mnist/.

CIFAR-10 dataset [2] consist of 60,000 RGB images of size 32×32 pixels, 50,000 for training
and 10,000 for testing. Each of the images is labeled to one of 10 classes, and the number of data
per class is set evenly, i.e., 6,000 images per each class. We follow the same data-augmentation
scheme used in Cohen et al. [1], Salman et al. [8] for a fair comparison, namely, we use random
horizontal flip and random translation up to 4 pixels. We also normalize the images in pixel-wise by
the mean and the standard deviation calculated from the training set. Here, an important practical
point is that this normalization is done after a noise is added to input when regarding randomized
smoothing, following Cohen et al. [1]. This is to ensure that noise is given to the original image
coordinates. In practical implementations, this can be done by placing the normalization as the first
layer of base classifiers, instead of as a pre-processing step. The full dataset can be downloaded at
https://www.cs.toronto.edu/~kriz/cifar.html

ImageNet classification dataset [7] consists of 1.2 million training images and 50,000 validation
images, which are labeled by one of 1,000 classes. For data-augmentation, we perform 224×224
random cropping with random resizing and horizontal flipping to the training images. At test
time, on the other hand, 224×224 center cropping is performed after re-scaling the images into
256×256. This pre-processing scheme is also used in Cohen et al. [1], Salman et al. [8] as well.
Similar to CIFAR-10, all the images are normalized after adding a noise in pixel-wise by the pre-
computed mean and standard deviation. A link for downloading the full dataset can be found in
http://image-net.org/download.

Table 1: Detailed specification of hyperparameters used in the best-performing SmoothAdv models.

Dataset σ Method # steps ε m

CIFAR-10
0.25 PGD 10 255 4
0.50 PGD 10 512 2
1.00 PGD 10 512 2

ImageNet 0.50 PGD 1 255 1
1.00 PGD 1 512 1
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Table 2: Comparison of approximate certified test accuracy on MNIST dataset. For each model,
training and certification are done with the same smoothing factor specified in σ. Each of the values
indicates the fraction of test samples those have `2 certified radius larger than the threshold specified
at the top row. We set our result bold-faced whenever the value improves the baseline. For ACR, we
underlined the best-performing model per each σ.

σ Models (MNIST) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian [1] 0.911 99.2 98.5 96.7 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+ Consistency (λ = 10) 0.928 99.5 98.9 98.0 96.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv [8] 0.932 99.4 99.0 98.2 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+ Consistency (λ = 1) 0.932 99.3 98.9 98.1 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Stability training [4] 0.915 99.3 98.6 97.1 93.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER [9] 0.920 99.3 98.7 97.5 94.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian [1] 1.553 99.2 98.3 96.8 94.3 89.7 81.9 67.3 43.6 0.0 0.0 0.0
+ Consistency (λ = 5) 1.657 99.2 98.6 97.6 95.9 93.0 87.8 78.5 60.5 0.0 0.0 0.0

SmoothAdv [8] 1.687 99.0 98.3 97.3 95.8 93.2 88.5 81.1 67.5 0.0 0.0 0.0
+ Consistency (λ = 1) 1.697 98.6 98.1 97.0 95.3 92.7 88.5 82.2 70.5 0.0 0.0 0.0

Stability training [4] 1.570 99.2 98.5 97.1 94.8 90.7 83.2 69.2 45.4 0.0 0.0 0.0
MACER [9] 1.594 98.5 97.5 96.2 93.7 90.0 83.7 72.2 54.0 0.0 0.0 0.0

1.00

Gaussian [1] 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8
+ Consistency (λ = 5) 1.740 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3
SmoothAdv [8] 1.779 95.8 93.9 90.6 86.5 80.8 73.7 64.6 53.9 43.3 32.8 22.2
+ Consistency (λ = 1) 1.819 94.2 92.0 88.6 84.3 79.0 72.1 64.0 54.6 45.5 37.2 28.0
Stability training [4] 1.634 96.5 94.6 91.7 87.4 80.6 72.0 60.5 46.8 33.1 20.0 11.2
MACER [9] 1.570 92.0 88.5 84.0 78.1 71.5 63.8 55.3 46.3 36.5 26.2 16.3
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Figure 1: Comparison of approximate certified accuracy via randomized smoothing for various
training methods on MNIST. A sharp drop of certified accuracy in the plots exists since there is a
hard upper bound that CERTIFY can output for a given σ and n = 100, 000.

A.3 Detailed configurations of SmoothAdv models

In Table 1, we specify the exact configurations used in our evaluation for the best-performing
SmoothAdv models. These configurations have originally explored by Salman et al. [8] via a grid
search over 4 hyperparameters: namely, (a) attack method (Method): PGD [5] or DDN [6], (b) the
number of steps (# steps), (c) the maximum allowed `2 perturbation on the input (ε), and (d) the
number of noise samples (m). We choose one pre-trained model per σ for CIFAR-10 and ImageNet,
among those officially released and classified as the best-performing models by Salman et al. [8]. The
link to download all the pre-trained models can be found in https://github.com/Hadisalman/
smoothing-adversarial.

B Results on MNIST

We train every MNIST model for 90 epochs. We consider a fixed configuration of hyperparameters
when SmoothAdv is used in MNIST: specifically, we perform a 10-step projected gradient descent
(PGD) attack constrained in `2 ball of radius ε = 1.0 for each input, while the objective is approxi-
mated with m = 4 noise samples. For the MACER models, on the other hand, we generally follow
the hyperparameters specified in the original paper [9]: we set m = 16, λ = 16.0, γ = 8.0 and
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β = 16.0.1 In σ = 1.0, however, we had to reduce λ to 6 for a successful training. Nevertheless, we
have verified that the ACRs computed from the reproduced models are comparable to those reported
in the original paper. We use λ = 2 when stability training [4] is applied in this section.

We report the results in Table 2 and Figure 1. Overall, we observe that our consistency regularization
stably improve Gaussian and SmoothAdv baselines in ACR, except when applied to SmoothAdv on
σ = 0.25. This corner-case is possibly due to that the model is already achieve to the best capacity
via SmoothAdv, regarding that MNIST on σ = 0.25 is relatively a trivial task. For the rest non-trivial
cases, nevertheless, our regularization shows a remarkable effectiveness in two aspects: (a) applying
our consistency regularization on Gaussian, the simplest baseline, dramatically improves the certified
test accuracy and ACR even outperforming the recently proposed MACER by a large margin, and
(b) when applied to SmoothAdv, our method could further improve ACR. In particular, one could
observe that our regularization significantly improves the certified accuracy especially at large radii,
where a classifier should attain a high value of p(1) (5), i.e., a consistent prediction is required.

C Variance of results over multiple runs

In our experiments, we compare single-run results following other baselines considered in this paper
[1, 8, 4, 9]. In Table 3, we report the mean and standard deviation of ACRs across 5 seeds for the
MNIST results reported in Table 2. In general, we observe ACR of a given training method is fairly
robust to network initialization.

Table 3: Comparison of ACR for various training methods on MNIST. The reported values are
the mean and standard deviation across 5 seeds. We set our result bold-faced whenever the value
improves the baseline, and the underlined are best-performing model per σ.

ACR (MNIST) σ = 0.25 σ = 0.50 σ = 1.00

Gaussian [1] 0.9108±0.0003 1.5581±0.0016 1.6184±0.0021

+ Consistency 0.9279±0.0003 1.6549±0.0011 1.7376±0.0017

SmoothAdv [8] 0.9322±0.0005 1.6872±0.0007 1.7786±0.0017

+ Consistency 0.9323±0.0001 1.6957±0.0005 1.8163±0.0020

Stability [4] 0.9152±0.0007 1.5719±0.0028 1.6341±0.0018

MACER [9] 0.9201±0.0006 1.5899±0.0069 1.5950±0.0051

D Detailed results in ablation study

We report the detailed results for the experiments performed in ablation study (see Section 4.6 in
the main text). Table 4, 5, and 6 are corresponded to Figure 4(a), 4(b), and 4(c) in the main text,
respectively.

Table 4: Comparison of approximate certified test accuracy (%) on MNIST, for varing loss functions
and λ. We set our result bold-faced whenever the value improves the baseline. For ACR, we
underlined the best-performing model.

Model λ ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 0 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

MSE
5 1.732 94.9 92.9 89.3 85.0 79.3 71.7 62.7 52.5 41.5 31.2 21.3

20 1.677 93.6 91.0 87.5 83.0 77.1 69.9 60.8 50.3 39.5 28.6 18.4
50 1.603 92.5 90.0 86.1 81.3 75.5 67.7 58.6 47.4 35.7 24.1 14.5

KL-divergence
5 1.729 95.2 93.0 89.9 85.4 79.6 72.4 62.9 52.2 41.1 30.3 19.6

20 1.713 94.0 91.7 88.2 83.5 77.7 70.5 61.5 51.4 41.2 31.1 21.4
50 1.707 93.4 90.7 87.1 82.3 76.8 69.4 60.6 50.9 41.3 31.8 22.6

Cross-entropy 5 1.740 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3
20 1.720 93.0 90.3 86.6 82.3 77.1 70.2 61.6 52.0 42.1 32.5 23.4

1We refer the readers to Zhai et al. [9] for the details on each hyperparemeter.
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Table 5: Comparison of approximate certified test accuracy on MNIST for varying m ∈ {2, 4, 8}.
For each model, training and certification are done with the same smoothing factor specified in σ.

σ m ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25
2 0.926 99.4 98.9 97.8 95.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.928 99.5 98.9 97.9 96.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.929 99.4 99.0 98.0 96.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50
2 1.657 99.2 98.6 97.6 95.9 93.0 87.8 78.5 60.5 0.0 0.0 0.0
4 1.666 99.2 98.6 97.7 96.0 93.3 88.2 79.4 62.3 0.0 0.0 0.0
8 1.667 99.2 98.7 97.6 95.9 93.3 88.6 79.5 62.1 0.0 0.0 0.0

1.00
2 1.740 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3
4 1.756 94.9 92.9 89.8 85.6 80.2 73.3 64.5 54.0 42.7 31.9 21.0
8 1.762 95.0 93.1 90.0 85.8 80.3 73.7 64.6 54.2 43.1 32.2 21.5

Table 6: Comparison of approximate certified test accuracy on MNIST for varying λ. We set our
result bold-faced whenever the value improves the baseline (λ = 0.0). For ACR, we underlined the
best-performing model.

λ ACR 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

0.0 1.619 96.3 91.4 79.8 59.4 32.5 10.9 2.4 0.0

1.0 1.714 96.0 91.2 81.1 63.5 39.2 16.2 4.2 0.4
5.0 1.740 95.0 89.7 79.9 63.7 41.9 20.0 5.4 0.6

10.0 1.735 94.1 88.6 78.5 62.8 42.4 22.1 5.9 0.9
15.0 1.731 93.6 87.7 77.8 62.3 42.6 22.9 6.3 1.0
20.0 1.720 93.0 86.6 77.1 61.6 42.1 23.4 6.7 1.2
25.0 1.226 73.2 64.4 53.9 42.4 27.4 14.5 6.5 1.2
30.0 0.846 44.9 40.1 33.7 25.1 17.1 13.6 10.6 6.9
50.0 0.456 15.2 14.6 13.8 12.8 11.8 10.6 9.8 9.3

Table 7: Comparison of our method to stability training [4] on CIFAR-10 dataset. Each of the values
indicates the fraction of test samples those have `2 certified radius larger than the threshold specified
at the top row. We set our result bold-faced whenever the value improves the baseline.

σ Models (CIFAR-10) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.25

Gaussian [1] 0.424 76.6 61.2 42.2 25.1 0.0 0.0 0.0 0.0 0.0 0.0
+ Consistency (λ = 20) 0.552 75.8 67.6 58.1 46.7 0.0 0.0 0.0 0.0 0.0 0.0

Stability [4] (λ = 1) 0.408 71.6 57.8 40.7 27.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability [4] (λ = 2) 0.421 72.3 58.0 43.3 27.3 0.0 0.0 0.0 0.0 0.0 0.0
Stability [4] (λ = 5, 10, 20) 0.102 10.7 10.7 10.7 10.7 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian [1] 0.525 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9 0.0 0.0
+ Consistency (λ = 10) 0.720 64.3 57.5 50.6 43.2 36.2 29.5 22.8 16.1 0.0 0.0

Stability [4] (λ = 1) 0.496 61.1 51.5 40.9 29.8 21.1 14.0 8.3 3.6 0.0 0.0
Stability [4] (λ = 2) 0.521 60.6 51.5 41.4 32.5 23.9 15.3 9.6 5.0 0.0 0.0
Stability [4] (λ = 5, 10, 20) 0.206 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 0.0 0.0

1.00

Gaussian [1] 0.542 47.2 39.2 34.0 27.8 21.6 17.4 14.0 11.8 10.0 7.6
+ Consistency (λ = 10) 0.756 46.3 42.2 38.1 34.3 30.0 26.3 22.9 19.7 16.6 13.8
Stability [4] (λ = 1) 0.526 43.5 38.9 32.8 27.0 23.1 19.1 15.4 11.3 7.8 5.7
Stability [4] (λ = 2) 0.414 17.0 16.3 15.4 14.6 13.7 12.6 12.1 11.2 10.3 9.8
Stability [4] (λ = 5, 10, 20) 0.381 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
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E Overview on prior works

For completeness, we present a brief introduction to the prior works mainly considered in our
experiments. We use the notations defined in Section 2 of the main text throughout this section.

E.1 SmoothAdv

Recall that a smoothed classifier f̂ is defined from a hard classifier f : Rd → Y , namely:

f̂(x) := arg max
k∈Y

Pδ∼N (0,σ2I) (f(x+ δ) = k) . (1)

Here, SmoothAdv [8] attempts to perform adversarial training [5] directly on f̂ :

min
f̂

max
||x′−x||2≤ε

L(f̂ ;x′, y), (2)

where L denotes the standard cross-entropy loss. As mentioned in the main text, however, f̂ is
practically a non-differentiable object when (1) is approximated via Monte Carlo sampling, making
it difficult to optimize the inner maximization of (2). To bypass this, Salman et al. [8] propose to
attack the soft-smoothed classifier F̂ := Eδ[Fy(x+ δ)] instead of f̂ , as F̂ : Rd → ∆K−1 is rather
differentiable. Namely, SmoothAdv finds an adversarial example via solving the following:

x̂ = arg max
||x′−x||2≤ε

L(F̂ ;x′, y) = arg max
||x′−x||2≤ε

(− logEδ [Fy(x′ + δ)]) . (3)

In practice, the expectation in this objective (3) is approximated via Monte Carlo integration with m
samples of δ, namely δ1, · · · , δm ∼ N (0, σ2I):

x̂ = arg max
||x′−x||2≤ε

(
− log

(
1

m

∑
i

Fy(x′ + δi)

))
. (4)

To optimize the outer minimization objective in (2), on the other hand, SmoothAdv simply minimize
the averaged loss over (x̂+ δ1, y), · · · , (x̂+ δm, y), i.e., minF

1
m

∑
i L(F ; x̂+ δi, y). Notice that

the noise samples δ1, · · · , δm are re-used for the outer minimization as well.

E.2 MACER

On the other hand, MACER [9] attempts to improve robustness of f̂ via directly maximizing the
certified lower bound over `2-adversarial perturbation [1] for (x, y) ∈ D:

min
f̂(x′)6=y

||x′ − x||2 ≥
σ

2

(
Φ−1(p(1))− Φ−1(p(2))

)
, (5)

where p(1) := P(f(x+ δ) = f̂(x)) and p(2) := maxc 6=f̂(x) P(f(x+ δ) = c), as defined in Section 2

in the main text. Again, directly maximizing (5) is difficult due to the non-differentiability of f̂ ,
thereby MACER instead maximizes the certified radius of F̂ , in a similar manner to SmoothAdv [8]:

CR(F̂ ;x, y) :=
σ

2

(
Φ−1(Eδ[Fy(x+ δ)])− Φ−1(max

c 6=y
Eδ[Fc(x+ δ)])

)
. (6)

Motivated from the 0-1 robust classification loss (7), Zhai et al. [9] propose a robust training objective
for maximizing CR(F̂ ;x, y) along with the standard cross-entropy loss L on F̂ as a surrogate loss
for the natural error term:

Lε(f) := E(x,y)∈D

[
1− 1CR(f̂ ;x,y)≥ε

]
= E

[
1f̂(x)6=y

]
︸ ︷︷ ︸

natural error

+E
[
1f̂(x)=y, CR(f̂ ;x,y)<ε

]
︸ ︷︷ ︸

robust error

(7)

LMACER(F ;x, y) := L(F̂ (x), y)︸ ︷︷ ︸
natural error

+ λ · σ
2

max{γ − CR(F̂ ;x, y), 0} · 1F̂ (x)=y︸ ︷︷ ︸
robust error

, (8)

where γ, λ are hyperparameters. Here, notice that (8) uses the hinge loss to maximize CR(F̂ ;x, y),
only for the samples that F̂ (x) is correctly classified to y. In addition, MACER uses an inverse
temperature β > 1 to calibrate F̂ as another hyperparameter, mainly for reducing the practical gap
between F̂ and f̂ .
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