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Abstract

QMIX is a popular Q-learning algorithm for cooperative MARL in the centralised
training and decentralised execution paradigm. In order to enable easy decentrali-
sation, QMIX restricts the joint action Q-values it can represent to be a monotonic
mixing of each agent’s utilities. However, this restriction prevents it from repre-
senting value functions in which an agent’s ordering over its actions can depend on
other agents’ actions. To analyse this representational limitation, we first formalise
the objective QMIX optimises, which allows us to view QMIX as an operator that
first computes the Q-learning targets and then projects them into the space repre-
sentable by QMIX. This projection returns a representable Q-value that minimises
the unweighted squared error across all joint actions. We show in particular that
this projection can fail to recover the optimal policy even with access to Q∗, which
primarily stems from the equal weighting placed on each joint action. We rectify
this by introducing a weighting into the projection, in order to place more impor-
tance on the better joint actions. We propose two weighting schemes and prove
that they recover the correct maximal action for any joint action Q-values, and
therefore forQ∗ as well. Based on our analysis and results in the tabular setting, we
introduce two scalable versions of our algorithm, Centrally-Weighted (CW) QMIX
and Optimistically-Weighted (OW) QMIX and demonstrate improved performance
on both predator-prey and challenging multi-agent StarCraft benchmark tasks [26].

1 Introduction

Many critical tasks involve multiple agents acting in the same environment. To learn good behaviours
in such problems from agents’ experiences, we may turn to multi-agent reinforcement learning
(MARL). Fully decentralised policies are often used in MARL, due to practical communication
constraints or as a way to deal with an intractably large joint action space. However, when training
in simulation or under controlled conditions we may have access to additional information, and
agents can freely share their observations and internal states. Exploiting these possibilities can greatly
improve the efficiency of learning [7, 9].

In this paradigm of centralised training for decentralised execution, QMIX [25] is a popular Q-
learning algorithm with state-of-the-art performance on the StarCraft Multi-Agent Challenge [26].
QMIX represents the optimal joint action value function using a monotonic mixing function of
per-agent utilities. This restricted function class Qmix allows for efficient maximisation during
training, and easy decentralisation of the learned policy. However, QMIX is unable to represent joint
action value functions that are characterised as nonmonotonic [16], i.e., an agent’s ordering over its
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own actions depends on other agents’ actions. Consequently, QMIX cannot solve tasks that require
significant coordination within a given timestep [27, 2]. In this work, we analyse an idealised, tabular
version of QMIX to study this representational limitation, and then develop algorithms to resolve
these limitations in theory and in practice.

We formalise the objective that QMIX optimises, which allows us to view QMIX as an operator
that first computes the Q-learning targets and then projects them into Qmix by minimising the
unweighted squared error across all joint actions. We show that, since in general Q∗ /∈ Qmix, the
projection of Q∗, which we refer to as Qtot, can have incorrect estimates for the optimal joint action,
yielding suboptimal policies. These are fundamental limitations of the QMIX algorithm independent
from exploration and compute constraints, and occur even with access to the true Q∗.

These limitations primarily arise because QMIX’s projection of Q∗ yields a Qtot that places equal
importance on approximating theQ-values for all joint actions. Our key insight is that if we ultimately
care only about the greedy optimal policy, it is more important to accurately represent the value of
the optimal joint action than the suboptimal ones. Therefore, we can improve the policy recovered
from Qtot by appropriately weighting each joint action when projecting Q∗ into Qmix.

Based on this intuition, we introduce a weighting function into our projection. In the idealised tabular
setting we propose two weighting functions and prove that the projected Qtot recovers the correct
maximal action for any Q, and therefore for Q∗ as well. Since this projection always recovers the
correct maximal joint action, we benefit from access to Q∗ (or a learned approximation of it). To
this end, we introduce a learned approximation of Q∗, from an unrestricted function class, which we
call Q̂∗. By using Qtot, now a weighted projection of Q̂∗, to perform maximisation, we show that
Q̂∗ converges to Q∗ and that Qtot thus recovers the optimal policy.

Based on our analysis and results in the tabular setting, we present two scalable versions of our algo-
rithm, Centrally-Weighted (CW) QMIX and Optimistically-Weighted (OW) QMIX. We demonstrate
their improved ability to cope with environments with nonmonotonic value functions, by showing
superior performance in a predator-prey task in which the trade-offs made by QMIX prevent it from
solving the task. Additionally, we demonstrate improved robustness over QMIX to the amount of
exploration performed, by showing better empirical performance on a range of SMAC maps. Our
ablations and additional analysis experiments demonstrate the importance of both a weighting and an
unrestricted Q̂∗ in our algorithm.

2 Background

A fully cooperative multi-agent sequential decision-making task can be described as a decen-
tralised partially observable Markov decision process (Dec-POMDP) [21] consisting of a tu-
ple G = 〈S,U, P, r, Z,O, n, γ〉. s ∈ S describes the true state of the environment. At each
time step, each agent a ∈ A ≡ {1, ..., n} chooses an action ua ∈ U , forming a joint action
u ∈ U ≡ Un. This causes a transition on the environment according to the state transition function
P (s′|s,u) : S ×U× S → [0, 1]. All agents share the same reward function r(s,u) : S ×U→ R
and γ ∈ [0, 1) is a discount factor.

Due to the partial observability, each agent’s individual observations z ∈ Z are produced by the
observation function O(s, a) : S ×A→ Z. Each agent has an action-observation history τa ∈ T ≡
(Z × U)∗, on which it conditions a (potentially stochastic) policy πa(ua|τa) : T × U → [0, 1]. τ
denotes the action-observation histories of all agents (up to that timestep). The joint policy π has
a joint action-value function: Qπ(st,ut) = Est+1:∞,ut+1:∞ [Rt|st,ut], where Rt =

∑∞
i=0 γ

irt+i is
the discounted return. For our idealised tabular setting, we consider a fully observable setting in
which each agent’s observations are the full state. This is equivalent to a multi-agent MDP (MMDP)
[21] which is itself equivalent to a standard MDP with Un as the action space.

We adopt the centralised training and decentralised execution paradigm [20, 14]. During training our
learning algorithm has access to the true state s and every agent’s action-observation history, as well
as the freedom to share all information between agents. However, during testing (execution), each
agent has access only to its own action-observation history.
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2.1 QMIX

The Bellman optimality operator is defined by:

T ∗Q(s,u) := E[r + γmax
u′

Q(s′,u′)], (1)

where the expectation is over the next state s′ ∼ P (·|s,u) and reward r ∼ r(·|s,u). Algorithms
based on Q-learning [34] use samples from the environment to estimate the expectation in (1), in
order to update their estimates of Q∗.

VDN [29] and QMIX are Q-learning algorithms for the cooperative MARL setting, which estimate
the optimal joint action value function Q∗ as Qtot, with specific forms. VDN factorises Qtot into a
sum of the per-agent utilities: Qtot(s,u) =

∑n
a=1Qa(s, ua), whereas QMIX combines the per-agent

utilities via a continuous monotonic function that is state-dependent: fs(Q1(s, u1), ..., Qn(s, un)) =

Qtot(s,u), where ∂fs
∂Qa
≥ 0, ∀a ∈ A ≡ {1, ..., n}.

In the deep RL setting neural networks with parameters θ are used as function approximators, and
QMIX is trained much like a DQN [19]. Considering only the fully-observable setting for ease of
presentation, a replay buffer stores transition tuples (s,u, r, s′, d), in which the agents take joint
action u in state s, receive reward r and transition to s′ and d is a boolean indicating if s′ is a terminal
state. QMIX is trained to minimise the squared TD error on a minibatch of b samples from the replay
buffer:

∑b
i=1(Qtot(s,u; θ)− yi)2, where yi = r + γmaxu′ Qtot(s

′,u′; θ−) are the targets, and θ−
are the parameters of a target network that are periodically copied from θ. The monotonic mixing
function fs is parametrised as a feedforward network, whose non-negative weights are generated by
hypernetworks [10] that take the state as input.

3 QMIX Operator

In this section we examine an operator that represents an idealised version of QMIX in a tabular
setting. The purpose of our analysis is primarily to understand the fundamental limitations of QMIX
that stem from its training objective and the restricted function class it uses. We write this function
class as Qmix :

Qmix := {Qtot|Qtot(s,u) = fs(Q1(s, u1), ...Qn(s, un)),
∂fs
∂Qa

≥ 0, Qa(s, u) ∈ R}.

This is the space of all Qtot that can be represented by monotonic funtions of tabular Qa(s, u). At
each iteration of our idealised algorithm, we constrain Qtot to lie in Qmix by solving the following
optimisation problem:

argmin
q∈Qmix

∑
u∈U

(T ∗Qtot(s,u)− q(s,u))2. (2)

To avoid any confounding factors regarding exploration, we assume this optimisation is performed
for all states and joint actions at each iteration, as in planning algorithms like value iteration [24].
We also assume the optimisation is performed exactly. However, since it is not guaranteed to have a
unique solution, a random q is returned from the set of objective-minimising candidates.

By contrast, the original QMIX algorithm in the deep RL setting interleaves exploration and approx-
imate optimisation of this objective, using samples from the environment to approximate T ∗, and
a finite number of gradient descent steps to estimate the argmin. Additionally, sampling uniformly
from a replay buffer of the most recent experiences does not strictly lead to a uniform weighting
across joint actions. Instead the weighting is proportional to the frequency at which a joint action was
taken. Incorporating this into our analysis would introduce significant complexity and detract from
our main focus: to analyse the limitations of restricting the representable function class to Qmix.

The optimisation in (2) can be separated into two distinct parts: the first computes targets using T ∗,
and the second projects those targets into Qmix. We define the corresponding projection operator
ΠQmix as follows:

ΠQmixQ := argmin
q∈Qmix

∑
u∈U

(Q(s,u)− q(s,u))2

We can then define T ∗Qmix := ΠQmixT ∗ as the QMIX operator, which exactly corresponds to the
objective in (2).
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There is a significant literature studying projections of value functions into linear function spaces for
RL (see [30] for a detailed introduction and overview). However, despite some superficial similarities,
our focus is considerably different in several ways. First, we consider a nonlinear projection, rendering
many methods of analysis inapplicable. Second, as the Qa(s, u) are tabular, there is no tradeoff
in the quality of representation across different states, and consequently no need to weight the
different states in the projection. By contrast, unlike linear Q-functions, our restricted space does
induce tradeoffs in the quality of represenation across different joint actions, and weighting them
differently in the projection is central to our method. Third, the targets in our optimisation are fixed to
T ∗Qtot(s,u) at each iteration, rather than depending on q as they would in a minimisation of Mean
Squared Bellman Error (MSBE) or Mean Squared Projected Bellman Error (MSPBE) in linear RL.
This makes our setting closer to that of fitted Q-iteration [6] in which a regression problem is solved
at each iteration to fit a function approximator from a restricted class to Q-learning-style targets. Our
focus of study is the unique properties of the particular function space Qmix, and the tradeoffs in
representation quality induced by projection into it.

3.1 Properties of T ∗Qmix

To highlight the pitfalls of the projection ΠQmix intoQmix, we consider the effect of applying ΠQmix to
the true Q∗, which is readily available in deterministic normal form games where Q∗ is just the
immediate reward.

1 0
0 1

1 1/3
1/3 1/3

1/3 1/3
1/3 1

Table 1: Non-monotonic payoff matrix
(Left) and the two possible Qtot’s re-
turned by ΠQmix (Middle and Right).

T ∗Qmix is not a contraction. The payoff matrix in Table 1
(Left) is a simple example of a value function that cannot
be perfectly represented in Qmix. Table 1 (Middle) and
(Right) show two distinct Qtot, both of which are global
minima of the optimisation solved by ΠQmixQ

∗. Hence,
T ∗Qmix is not a contraction, which would have a unique fixed
point.

QMIX’s argmax is not always correct. There exist Q-functions such that argmax ΠQmixQ 6=
argmax Q. For example, the payoff matrix in Table 2 (Left) (from Son et al. [27]) produces a value
function for which QMIX’s approximation (Right) does not result in the correct argmax.

8 -12 -12
-12 0 0
-12 0 0

-12 -12 -12
-12 0 0
-12 0 0

Table 2: Payoff matrix (Left) in which
Qtot returned from ΠQmix has an incor-
rect argmax (Right).

QMIX can underestimate the value of the optimal
joint action. Furthermore, if it has an incorrect argmax,
the value of the true optimal joint action can be underesti-
mated, e.g.,−12 instead of 8 in Table 2. If QMIX gets the
correct argmax then it represents the maximum Q-value
perfectly (proved formally in Appendix B). However, if
QMIX’s argmax joint action is not the true optimal joint
action then QMIX can underestimate the value of that action.

These failure modes are problematic because they show fundamental limitations of QMIX, that
are independent from: 1) compute constraints, since we exactly minimise the objectives posed; 2)
exploration, since we update every state-action pair; and 3) parametrisation of the mixing function
and agent utilities, since we are assume that Qtot can be any member of Qmix, whereas in practice
we can only represent a subset of Qmix.

4 Weighted QMIX Operator

In this section we introduce an operator for an idealised version of our algorithm, Weighted QMIX
(WQMIX), in order to compare it to the operator we introduced for QMIX.

The negative results in Section 3.1 concern the scenario in which we optimise QMIX’s loss function
across all joint actions for every state. We argue that this equal weighting over joint actions when
performing the optimisation in (2) is responsible for the possibly incorrect argmax of the objective-
minimising solution. Consider the example in Table 2. A monotonic Qtot ∈ Qmix cannot increase
its estimate of the value of the single optimal joint action above -12 without either increasing the
estimates of the value of the bad joint actions above their true value of -12, or decreasing the estimates
of the zero-value joint actions below -12. The error for misestimating several of the suboptimal joint
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actions would outweigh the improvement from better estimating the single optimal joint action. As a
result the optimal action value is underestimated and the resulting policy is suboptimal.

By contrast, consider the extreme case in which we only optimise the loss for the single optimal
joint action u∗. For a single action, the representational limitation of QMIX has no effect so we can
optimise the objective perfectly, recovering the value of the optimal joint action.

However, we still need to learn that the other action values are lower than Qtot(u∗) in order to
recover the optimal policy. To prioritise estimating Qtot(u∗) well, while still anchoring down the
value estimates for other joint actions, we can add a suitable weighting function w into the projection
operator of QMIX:

ΠwQ := argmin
q∈Qmix

∑
u∈U

w(s,u)(Q(s,u)− q(s,u))2. (3)

The weighting function w : S ×U→ (0, 1] weights the importance of each joint action in QMIX’s
loss function. It can depend on more than just the state and joint action, but we omit this from the
notation for simplicity. Setting w(s,u) = 1 recovers the projection operator ΠQmix.

4.1 Weightings

The choice of weighting is crucial to ensure that WQMIX can overcome the limitations of QMIX. As
shown in Section 3, even if we have access to Q∗, if we use a uniform weighting then we can still
end up with the wrong argmax after projection into the monotonic function space. We now consider
two different weightings and show in Theorems 1 and 2 that these choices of w ensure that the Qtot
returned from the projection has the correct argmax. The proofs of these theorems can be found in
Appendix B. For both weightings, let α ∈ (0, 1] and consider the weighted projection of an arbitrary
joint action value function Q.

Idealised Central Weighting The first weighting, which we call Idealised Central Weighting, is
quite simple:

w(s,u) =

{
1 u = u∗ = argmaxuQ(s,u)

α otherwise.
(4)

To ensure that the weighted projection returns aQtot with the correct argmax, we simply down-weight
every suboptimal action. However, this weighting requires computing the maximum across the joint
action space, which is often infeasible. In Section 5 we discuss an approximation to this weighting in
the deep RL setting.
Theorem 1. Let w be the Idealised Central Weighting from (4). Then ∃α > 0 such that
argmax ΠwQ = argmaxQ for any Q.

Theorem 1 provides a sanity check that this choice of weighting guarantees we recover a Qtot with
the correct argmax in this idealised setting, with a nonzero weighting for suboptimal actions.

Optimistic Weighting The second weighting, which we call Optimistic Weighting, affords a
practical implementation:

w(s,u) =

{
1 Qtot(s,u) < Q(s,u)

α otherwise.
(5)

This weighting assigns a higher weighting to those joint actions that are underestimated relative to Q,
and hence could be the true optimal actions (in an optimistic outlook).
Theorem 2. Let w be the Optimistic Weighting from (5). Then ∃α > 0 such that, argmax ΠwQ =
argmaxQ for any Q.

Theorem 2 shows that Optimistic Weighting also recovers a Qtot with the correct argmax.

4.2 Weighted QMIX Operators

We have shown that these two weightings are guaranteed to recover the correct maximum joint action
for any Q, and therefore for Q∗ as well. This is in contrast to the uniform weighting (w = 1) of

5



QMIX, which can fail to recover the correct optimal joint action even for simple matrix games. The
weighted projection now allows us to fully take advantage of Q∗.

Since we do not have access to the true optimal value function in general, we learn an approximation
to it: Q̂∗, which does not need to lie in the restricted monotonic function space Qmix. Performing
an exact maximisation of Q̂∗ requires a search over the entire joint action space, which is typically
intractable and does not admit decentralisation. We instead use our QMIX approximation Qtot to
suggest the maximum joint action(s), which can then be evaluated by Q̂∗.

Learning Q̂∗ instead of using Qtot in its place brings some advantages. First, it allows us a richer
representational class to approximate Q∗ with, since we place no restrictions on the form of Q̂∗. In
the idealised tabular setting, Q∗ is exactly representable by Q̂∗. Second, since we are weighting each
joint action in Πw, Qtot (unlike Q̂∗) likely has less accurate estimates for those joint actions with
a low weighting. Due to these factors, we may bootstrap using more accurate estimates by using
Q̂∗ instead of Qtot. These properties are necessary to ensure that WQMIX converges to the optimal
policy. The operator used to update Q̂∗ is:

T ∗w Q̂∗(s,u) := E[r + γQ̂∗(s′, argmax
u′

Qtot(s
′,u′))]. (6)

Since Qtot is monotonic, the argmax in (6) is tractable. Similarly Qtot is updated in tandem using:

T ∗WQMIXQtot := ΠwT ∗w Q̂∗ (7)

T ∗w is similar to the Bellman Optimality Operator in (1) but does not directly maximise over Q̂∗.
Instead it uses Qtot ∈ Qmix to suggest a maximum joint action. Setting w to be uniform (w = 1)
here does not recover QMIX since we are additionally learning Q̂∗.

Finally, using our previous results, we show that Q̂∗ converges to Q∗ and that Qtot recovers an
optimal policy. This provides a firm theoretical foundation for Weighted QMIX: in an idealised
setting it converges to the optimal policy, whereas QMIX does not.
Corollary 1. Letting w be the Idealised Central or Optimistic Weighting, then ∃α > 0 such that
the unique fixed point of T ∗w is Q∗. Furthermore, ΠwQ

∗ ⊆ Qmix recovers an optimal policy, and
max ΠwQ

∗(s, ·) = maxQ∗(s, ·).

In this section we have shown that an idealised version of Weighted QMIX can converge to Q∗ and
recover an optimal policy. Restricting Qtot to lie in Qmix does not prevent us from representing an
optimal policy, since there is always an optimal deterministic policy [24] and all deterministic policies
can be derived from the argmax of a Q that lies in Qmix. Thus, we do not expand the function
class that we consider for Qtot. Instead, we change the solution of the projection by introducing a
weighting.

5 Deep RL Algorithm

So far, we have only considered an idealised setting in order to analyse the fundamental properties of
QMIX and Weighted QMIX. However, the ultimate goal of our analysis is to inform the development
of new scalable RL algorithms, in combination with, e.g., neural network function approximators.
We now describe the realisation of Weighted QMIX for deep RL, in a Dec-POMDP setting in which
each agent does not observe the full state, as described in Section 2.

There are three components to Weighted QMIX: 1) Qtot, i.e., the per-agent utilities Qa (from which
the decentralised policies are derived) and the mixing network, 2) an unrestricted joint action Q̂∗, and
3) a weighting function w, as in Πw.
Qtot The Qtot component is largely the same as that of Rashid et al. [25], using the architecture
from Samvelyan et al. [26]. Qtot is trained to minimise the following loss:

b∑
i=1

w(s,u)(Qtot(τ ,u, s)− yi)2, (8)

where yi := r+ γQ̂∗(s′, τ ′, argmaxu′ Qtot(τ
′,u′, s′)) is treated as a fixed target. This differs from

the idealised setting considered in Sections 3 and 4 because we are now only optimising the Q-values
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Figure 1: Deep RL Weighted QMIX setup. Left: The architecture used for Q̂∗ . Right: How the
targets yi for each transition in the minibatch are computed and used.

for the state-action pairs present in the minibatch sampled from the replay buffer, as opposed to every
state-action pair.

Centralised Q̂∗ We use a similar architecture to Qtot to represent Q̂∗: agent networks whose
chosen action’s utility is fed into a mixing network. Q̂∗ is thus conditioned on the state s and the
agents’ action-observation histories τ . For the agent networks we use the same architecture as QMIX.
They do not share parameters with the agents used in representing Qtot. The mixing network for
Q̂∗ is a feed-forward network that takes the state and the appropriate actions’ utilities as input. This
mixing network is not constrained to be monotonic by using non-negative weights. Consequently, we
can simplify the architecture by having the state and agent utilities be inputs to Q̂∗’s mixing network,
as opposed to having hypernetworks take the state as input and generate the weights. The architecture
of Q̂∗ is shown in Figure 1 (Left). Q̂∗ is trained to minimise the following loss, using yi from (8):

b∑
i=1

(Q̂∗(s, τ ,u)− yi)2. (9)

Weighting Function Idealised Central Weighting requires knowing the maximal joint action over
Q̂∗, which is computationally infeasible. In order to derive a practical algorithm, we must make
approximations. For each state-action pair in the sampled minibatch, the weighting we use is:

w(s,u) =

{
1 yi > Q̂∗(s, τ , û∗) or u = û∗

α otherwise,
(10)

where û∗ = argmaxuQtot(τ ,u, s). Since we do not know the maximal joint action for each state,
we make a local approximation: if yi > Q̂∗(s, τ , û∗), then u might be the best joint action. We use
Q̂∗(s, τ , û∗) instead of T ∗w Q̂∗(s, τ , û∗) since we do not have direct access to it. We refer to this
weighting function as Centrally-Weighted QMIX (CW).

The Optimistic Weighting presented in (5) does not require any approximations. The exact weighting
we use is:

w(s,u) =

{
1 Qtot(τ ,u, s) < yi
α otherwise.

We refer to it as Optimistically-Weighted QMIX (OW).

In a deep RL setting, QMIX implicitly weights the joint-actions proportional to their execution by
the behaviour policies used to fill the replay buffer. This forces QMIX to make trade-offs in its
Q-value approximation that are directly tied to the exploration strategy chosen. However, as we have
shown earlier, this can lead to poor estimates for the optimal joint action and thus yield suboptimal
policies. Instead, Weighted QMIX separates the weighting of the joint actions from the behaviour
policy. This allows us to focus our monotonic approximation of Q∗ on the important joint actions,
thus encouraging better policies to be recovered irrespective of the exploration performed.
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6 Results

In this section we present our experimental results on the Predator Prey task considered by Bohmer
et al. [2] and on a variety of SMAC2 scenarios. More details about the implementation of each are
included in Appendix C, as well as additional ablation experiments (Appendix E). For every graph
we plot the median and shade the 25%-75% quartile. Code is available at https://github.com/
oxwhirl/wqmix.

6.1 Predator Prey

Figure 2: Median test return for the predator
prey environment, comparing Weighted QMIX and
baselines.

We first consider a partially-observable Preda-
tor Prey task involving 8 agents [2], which was
designed to test coordination between agents by
providing a punishment of -2 reward when only
a single agent (as opposed to two agents) attempt
to capture a prey. Algorithms which suffer from
relative overgeneralisation [23, 35], or which
make poor trade-offs in their representation (as
VDN and QMIX do) can fail to solve this task.

As shown in [2], QMIX fails to learn a policy
that achieves positive test reward, and our results
additionally show the same negative results for
MADDPG and MASAC. Interestingly, QPLEX
also fails to solve the task despite not having any restrictions on the joint-action Q-values it can
represent, suggesting difficulties in learning certain value functions. Figure 2 shows that both
CW-QMIX and OW-QMIX solve the task faster than QTRAN.

6.2 SMAC

6.2.1 Robustness to increased exploration

Figure 3: Median test win % with an increased rate of exploration.
QMIX is particularly brittle when there is significant exploration being done, since it then tries (and
fails) to represent the value of many suboptimal joint actions. We would like our algorithms to
efficiently learn from exploratory behaviour. Hence, we use two of the easier SMAC maps, 3s5z
and 5m_vs_6m, to test the robustness of our algorithms to exploration. We use an ε-greedy policy
in which ε is annealed from 1 to 0.05 over 1 million timesteps, increased from the 50k used in [26].
Figure 3 shows the results of these experiments, in which both Weighted QMIX variants significantly
outperform all baselines. Figure 4 (Left) additionally compares the performance of QMIX and
Weighted QMIX on bane_vs_bane, a task with 24 agents, across two ε-schedules. We can see that
both variants of Weighted QMIX are able to solve the task irrespective of the level of exploration,
whereas QMIX fails to do so.

6.2.2 Necessity of increased exploration

Next, we compare our method on the challenging 6h_vs_8z, which is classified as a super hard SMAC
map due to current method’s poor performance [26]. Figure 4 (Right) compares QMIX and Weighted

2We utilise SC2.4.6.2.69232 (the same version as [26]) instead of the newer SC2.4.10. Performance is
not comparable across versions.
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Figure 4: Median test win % with 2 exploration schedules on bane_vs_bane and 6h_vs_8z.

QMIX with two differing exploration schedules (annealing ε over 50k or 1 million timesteps, denoted
-50k ε and -1mil ε respectively). We can see that a larger rate of exploration is required, and only
Weighted QMIX can successfully recover a good policy, demonstrating the benefits of our method
for improving performance in a challenging coordination problem.

6.2.3 Limitations

Figure 5: Median test win % with 2 exploration schedules on 2 super-hard SMAC maps.
Finally, we present results on 2 more super hard SMAC maps in order to show the limitations of
our method in Figure 5. In 3s5z_vs_3s6z we observe that the extra exploration is not helpful for any
method. Since QMIX is almost able to solve the task, this indicates that both exploration and the
restricted function class of QMIX are not limiting factors in this scenario. On corridor we see that
only QMIX with an extended exploration schedule manages non-zero performance, showing the
importance of sufficient exploration on this map. The poor performance of Weighted QMIX shows
that the extra complexity of our method (notably learning Q̂∗) can sometimes harm performance,
indicating that closer attention must be paid to the architecture and weighting functions.

Figure 6: Median test win % on corridor
with a modified architecture for Q̂∗.

Figure 6 shows the results on corridor for Weighted QMIX
with a slightly modified architecture for Q̂∗. The signif-
icantly improved performance for Weighted QMIX indi-
cates that the architecture of Q̂∗ is partly responsible for
the regression in performance over QMIX.

7 Conclusions and Future Work

This paper presented Weighted QMIX, which was inspired
by analysing an idealised version of QMIX that first com-
putes the Q-learning targets and then projects them into Qmix. QMIX uses an unweighted projection
that places the same emphasis on every joint action, which can lead to suboptimal policies. Weighted
QMIX rectifies this by using a weighted projection that allows more emphasis to be placed on
better joint actions. We formally proved that for two specific weightings, the weighted projection is
guaranteed to recover the correct maximal joint action for any Q. To fully take advantage of this, we
additionally learn an unrestricted joint action Q̂∗, and prove that it converges to Q∗. We extended
Weighted QMIX to deep RL and showed its improved ability to coordinate and its robustness to an
increased rate of exploration. For future work, more complicated weightings could be considered,
as opposed to the simplicitic weightings we used where w is either 1 or α in this paper. Addition-
ally, some of our results demonstrate the limitations of our method, partially stemming from the
architecture used for Q̂∗.
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Broader Impact

Due to the broad applicability of cooperative Multi-Agent Reinforcement Learning, we limit our
discussion to the cooperative setting in which agents must act independently without communication.
One such potential application is in self-driving cars, in which the agents should be able to make
safe and sensible decisions even without access to a communication network. Due to the sample
inefficiency of current RL methods, combined with their lack of safe exploration it is also necessary
to first train agents in a simulated setting before even beginning to train in the real world. Hence,
the class of algorithms we consider in this paper could be used to train agents in these scenarios
and would likely be chosen over fully-decentralised options. It is important then to obtain a better
understanding of the current approaches, in particular of their limitations. In this paper, we focus
primarily on the limitations of QMIX due to its strong performance [26]. We also investigate the
links between QTRAN and our algorithm and observe poor empirical performance for Actor-Critic
style approaches. Investigating all of these further should improve the performance of all algorithms
in this domain, and provide a better understanding of their relative strengths and weaknesses.

One particular limitation of QMIX is that it can fail in environments in which an agent’s best action is
dependent on the actions the other agents take, i.e., in environments in which agents must coordinate
at the same timestep. However, in a Multi-Agent setting it is often crucial to coordinate with the
other agents. Our approach lifts this restriction, and is theoretically able to learn the optimal policy in
any environment which greatly increases its applicability. Extending the capabilities of cooperative
MARL algorithms should further extend the applicability of these algorithms in a broader range of
applications. However, our approach introduces extra complexity and can perform poorly in certain
challenging domains. It is important then to consider whether the extra modelling capacity of our
method is required to achieve good performance on a selected task.
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A Related Work

In this section we briefly describe related work on cooperative MARL in the common paradigm of
Centralised Training and Decentralised Execution (CTDE). For a more comprehensive survey of
cooperative MARL, see [22].

Tampuu et al. [31] train each agent’s DQN [19] using Independent Q-learning [32], which treats
the other agents as part of the environment, which can lead to many pathologies and instability
during training [4, 8]. By contrast VDN [29] and QMIX [25] learn the joint-action Q-values, which
avoids some of these issues. Qatten [37] change the architecture of QMIX’s mixing network to
a 2-layer linear mixing, in which the weights of the first layer are produced through an attention-
based mechanism. Bohmer et al. [3] learn a centralised joint action Q-Value that is approximately
maximised by coordinate descent and used to generate trajectories that IQL agents train on. SMIX(λ)
[38] replaces the 1-step Q-learning target with a SARSA(λ) target. Despite claiming their method
can represent a larger class of joint action Q-values, they can represent exactly the same class as
QMIX (Qmix) since they use the same architecture (in particular, non-negative weights in the mixing
network). Yang et al. [36] utilise integrated gradients to decompose the joint-action Q-values of the
critic into individual utilities for each agent, a form of multi-agent credit assignment. The agents are
then regressed against their respective utilities.

Mahajan et al. [16] point out some limitations of QMIX arising from its monotonic factorisation.
Specifically, they show that for a specific choice of matrix game, QMIX can fail to learn an optimal
policy if each joint action is visited uniformly, which corresponds to our idealised tabular setting in
Section 3. Additionally, they show that a lower bound on the probability of recovering the optimal
policy increases for an ε-greedy policy as ε increases. This is proved by considering the weighting
on each joint-action induced by the exploration policy. By contrast, our weighting is independent
of the exploration strategy, adding flexibility. Optimistic Weighting uses a smaller weighting when
decreasing Qtot estimates, similarly to Hysteretic Q-learning [17] which uses a smaller learning rate
when decreasing value estimates of independent learners.

Relationship to Actor-Critic. Weighted QMIX bears many similarities to an off-policy actor-critic
algorithm, if we view Q̂∗ as the critic and the policy implied by Qtot as the actor. Define the
deterministic QMIX greedy policy (assuming full observability to simplify the presentation) as:

πw(s) =

(
argmaxu1

Q1(s, u1)
. . .

argmaxun
Qn(s, un)

)
.

Weighted QMIX trains Q̂∗ to approximate Qπw , the Q-values of this policy. This is also an ap-
proximation to Q-learning since πw ≈ argmax Q̂∗. Viewed in this manner, Weighted QMIX is
similar to MADDPG [15] with a single critic, except for how the actors are trained. MADDPG
trains each agent’s policy πa via the multi-agent deterministic policy gradient theorem , whereas
Weighted QMIX trains the policy indirectly by training Qtot via the weighted loss in (8). Multi-agent
Soft Actor Critic (MASAC) [11, 12] is another off-policy actor-critic based approach that instead
trains the actors by minimising the KL divergence between each agent’s policies and the joint-action
Q-values. These actor-critic based approaches (as well as COMA [9] and LIIR [5]) do not restrict the
class of joint action Q-values they can represent, which theoretically allows them to learn an optimal
value function and policy. However, in practice they do not perform as well as QMIX, perhaps due to
relative overgeneralisation [35] or the presence of bad local minima.

Relationship To QTRAN. QTRAN [27] is another Q-learning based algorithm that learns an
unrestricted joint action Q function and aims to solve a constrained optimisation problem in order to
decentralise it. However, it is empirically hard to scale to more complex tasks (such as SMAC).

We can view QTRAN as specific choices of the 3 components of Weighted QMIX, which allows us
to better understand its trade-offs and empirical performance in relation to WQMIX. However, the
motivations for QTRAN are significantly different. Qtot is represented using VDN instead of QMIX,
and trained using Q̂∗ as the target (instead of yi). This can limit QTRAN’s empirical performance
because QMIX generally outperforms VDN [26]. Q̂∗ is a network that takes as input an embedding
of all agents’ chosen actions and observations (and additionally the state if it is available). The agent
components share parameters with the agent networks used to approximate Qtot.
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Weighting. The weighting function is as follows:

w(s,u) =


λopt u = û

λnopt Qtot(s,u) < Q̂∗(s,u)

0 otherwise,
(11)

where û = argmaxQtot(s, ·). Using too small a weight in the weighting can have a substantial nega-
tive effect on performance (as we show in Appendix E). However, using a 0 weight for overestimated
Q-values is a fundamental part of the QTRAN algorithm.

Concurrent Work. Wang et al. [33] propose QPLEX, which also expands the class of joint-action
Q-values that can be represented. They acheive this by decomposingQtot as a sum of a value function
and a non-positive advantage function. Crucially, this advantage function is 0 for the joint-action
in which every agent maximises their own utilities (û∗ in our notation). This ensures consistency
between the agent’s greedy joint-action (û∗), and the true maximum joint-action of Qtot. In contrast,
Weighted QMIX does not maintain this consistency. Our experimental results show that despite not
restricting the class of joint-action Q-values that can be represented, QPLEX can struggle to learn a
good policy in some environments like QMIX.

Son et al. [28] propose QOPT, which also learns an unrestricted Q̂∗ and utilises an optimistic-style
weighting to train Qtot that is represented by QMIX. In contrast to Weighted QMIX, whose Q̂∗ does
not share any parameters with Qtot, the unrestricted joint-action Q-values of QOPT are obtained
through an unrestricted mixing network (the weights are not constrained to be non-negative) which
takes as input the agent utilities. The weighting function used for training Qtot is similar to the
weighting for CW-QMIX, in which a smaller weighting is used for the the joint-actions whose
Q-values are estimated as lower than the Q-values for the approximate best joint-action (û∗).

B Proof of Theorems

Proposition 1. For any w : S × U → (0, 1] and Q. Let Qtot = ΠwQ. Then ∀s ∈ S, û ∈
argmaxQtot(s, ·). We have that Qtot(s, û) ≥ Q(s, û). If û = u∗ := argmaxuQ(s,u) then
Qtot(s, û) = Q(s, û).

Proof. Consider a s ∈ S. Assume for a contradiction that Qtot(s, û) < Q(s, û).

Define Q′tot as follows:

Q′tot(s,u) =

{
Q(s,u) u = û

Qtot(s,u) otherwise,

By construction we have that Q′tot ∈ Qmix, and

∑
u∈U

w(s,u)(Q(s,u)−Q′tot(s,u))2

=
∑
u6=û

w(s,u)(Q(s,u)−Q′tot(s,u))2 + w(s, û)(Q(s, û)−Q′tot(s, û))2

=
∑
u6=û

w(s,u)(Q(s,u)−Q′tot(s,u))2

(Q′tot(s, û) = Q(s, û))

=
∑
u6=û

w(s,u)(Q(s,u)−Qtot(s,u))2

(Q′tot(s,u) = Qtot(s,u) ∀u 6= û)

<
∑
u6=û

w(s,u)(Q(s,u)−Qtot(s,u))2 + w(s, û)(Q(s, û)−Qtot(s, û))2

(Qtot(s, û) < Q(s, û))

=
∑
u∈U

w(s,u)(Q(s,u)−Qtot(s,u))2.
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Thus Qtot cannot be the solution of ΠwQ, a contradiction. And so Qtot(s, û) ≥ Q(s, û).

Now consider the scenario in which û = u∗, and assume for a contradiction that Qtot(s, û) >
Q(s, û).

Define Q′tot as follows:

Q′tot(s,u) =

{
Q(s,u) u = û = u∗

min{Qtot(s,u), Q(s,u∗)} otherwise,

Again, by construction Q′tot ∈ Qmix.

∑
u∈U

w(s,u)(Q(s,u)−Q′tot(s,u))2

=
∑
u6=û

w(s,u)(Q(s,u)−Q′tot(s,u))2 + w(s, û)(Q(s, û)−Q′tot(s, û))2

=
∑
u6=û

w(s,u)(Q(s,u)−Q′tot(s,u))2

(Q′tot(s, û) = Q(s, û))

≤
∑
u6=û

w(s,u)(Q(s,u)−Qtot(s,u))2

(If min{Qtot(s,u), Q(s, û)} = Qtot(s,u) then Q′tot(s,u) = Qtot(s,u).

Otherwise Q(s,u∗) < Qtot(s,u) =⇒ (Q(s,u∗)−Q(s,u))2 < (Qtot(s,u)−Q(s,u))2,

since Q(s,u) ≤ Q(s,u∗).)

<
∑
u6=û

w(s,u)(Q(s,u)−Qtot(s,u))2 + w(s, û)(Q(s, û)−Qtot(s, û))2

(Qtot(s, û) > Q(s, û))

=
∑
u∈U

w(s,u)(Q(s,u)−Qtot(s,u))2.

Thus, Qtot cannot be the solution of ΠwQ, a contradiction. This proves that Qtot(s, û) = Q(s, û) if
û = u∗.

Proposition 2. Let Qtot = ΠwQ. ∀s ∈ S ∃û ∈ argmaxQtot(s, ·) such that Qtot(s, û) = Q(s, û).

Proof. Assume for a contradiction that ∀û ∈ argmaxQtot we have that Qtot(û) > Q(û).

Define ∆s := Qtot(s, û)−max{Qtot(s,u)|u ∈ U, Qtot(s,u) < Qtot(s, û)} to be the difference
between the maximum Q-Value and the next biggest Q-Value (the action gap [1]). ∆s is well defined
as long as there exists a sub-optimal action. If there is not a suboptimal action, then trivially any
u ∈ U satisfies the condition.

Let ε = min{∆s/2, (Qtot(s, û)−max{Q(s,u)|u ∈ argmaxQtot(s, ·)})/2} > 0.

Define Q′tot as follows:

Q′tot(s,u) =

{
Qtot(s,u)− ε u ∈ argmaxQtot
Qtot(s,u) otherwise.

i.e. we have decreased the Q-Value estimates for the argmax joint actions by a small non-zero amount.
Since ε < ∆s we do not need to worry about adjusting other action’s estimates.

By construction Q′tot ∈ Qmix.

Then Q′tot has a smaller loss than Qtot since the estimates for the argmax actions are closer to the
true values.

This gives our contradiction since Qtot ∈ ΠwQ.
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Thus ∃û ∈ argmaxQtot such that Qtot(û) ≤ Q(û). Combined with Proposition 1 gives us the
required result.

Corollary 2. If Qtot has a unique argmax û, then Qtot(û) = Q(û).

Proof. Proposition 2 showed the existence of an argmax action whose Qtot-value matches Q exactly.
If there is a unique argmax û, then it must match exactly giving our result.

Theorem 1. Let w be the Idealised Central Weighting from Equation (4). Then ∃α > 0 such that,
argmax ΠwQ = argmaxQ for any Q.

Theorem 2. Let w be the Optimistic Weighting from Equation (5). Then ∃α > 0 such that,
argmax ΠwQ = argmaxQ for any Q.

Proof. Since the proof of both theorems contains a significant overlap, we will merge them both into
a single proof.

We will start by first considering the Idealised Central Weighting: Let Qtot = ΠwQ (Qtot ∈ ΠwQ if
there are distinct solutions).

Let u∗ ∈ argmaxQ, be an optimal action.

Consider a state s ∈ S.

Define ∆s := Q(s,u∗)−max{Q(s,u)|u ∈ U, Q(s,u) < Q(s,u∗)} to be the difference between
the maximum Q-Value and the next biggest Q-Value (the action gap [1]). ∆s is well defined
as long as there exists a sub-optimal action. If there is not a suboptimal action, then trivially
argmax ΠwQ = argmaxQ for state s.

Let û ∈ argmax ΠwQ, and consider the loss when û = u∗.

By Propositon 1 we have that Qtot(s, û) = Q(s, û).

Then the loss:∑
u∈U

w(s,u)(Q(s,u)−Qtot(s,u))2 = α
∑
u6=u∗

(Q(s,u)−Qtot(s,u))2 < α(
Rmax
1− γ

)2|U |n,

where Rmax := max r −min r. The last inequaility follows since the maximum difference between
Q-values in the discounted setting is then Rmax

1−γ , and there are |U |n joint-actions total.

Whereas if û 6= u∗, then the loss∑
u∈U

w(s,u)(Q(s,u)−Qtot(s,u))2

= (Q(s,u∗)−Qtot(s,u∗))2 + α
∑
u6=u∗

(Q(s,u)−Qtot(s,u))2

≥ ∆2
s,

since Q(s,u∗)−Qtot(s,u∗) ≥ ∆s, which is proved below.

By Proposition 2 let û′ ∈ argmaxQtot such that Qtot(s, û′) = Q(s, û′). Then Q(s,u∗) ≥
∆s +Q(s, û′) = ∆s +Qtot(s, û

′) > ∆s +Qtot(s,u
∗) =⇒ Q(s,u∗)−Qtot(s,u∗) > ∆s.

The strict inequaility Qtot(s, û′) > Qtot(s,u
∗) used is due to û 6= u∗.

Setting 0 < αs <
∆2

s(1−γ)2

(Rmax)2|U |n then gives the required result for state s.

Letting α = mins αs > 0 completes the proof for the Idealised Central Weighting.

For the proof of the Optimistic Weighting we will use many of the same arguments and notation.

We will once again consider a single state s ∈ S and the action gap ∆s.

Now, let us consider a Qtot of a specific form: For s ∈ S, let Qtot(s, û) = cs + ε, where ε << ∆s

and Qtot(s,u) = cs,∀u 6= û. Note that here Qtot has a unique maximum action.
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For this Qtot, consider û = u∗ then the loss:∑
u∈U

w(s,u)(Q(s,u)−Qtot(s,u))2 = α
∑
u6=u∗

(Q(s,u)−Qtot(s,u))2 ≤ α(
Rmax
1− γ

)2|U |n < ∆2
s,

since Qtot(s,u) = cs = Q(s,u∗) − ε > Q(s,u),∀u 6= u∗ by Proposition 1, which means that
w(s,u 6= u∗) = α. The final inequality follows due to setting 0 < αs <

∆2
s(1−γ)2

(Rmax)2|U |n as earlier.

Now consider any Q′tot ∈ Qmix.

If for this Q′tot, û 6= u∗, then w(s,u∗) = 1 and thus the loss∑
u∈U

w(s,u)(Q(s,u)−Qtot(s,u))2

= (Q(s,u∗)−Qtot(s,u∗))2 +
∑
u6=u∗

w(s,u)(Q(s,u)−Qtot(s,u))2

≥ ∆2
s.

By Proposition 2 let û′ ∈ argmaxQ′tot such that Q′tot(s, û
′) = Q(s, û′). Since Q(s,u∗) ≥

∆s +Q(s, û′) = ∆s +Qtot(s, û
′) > ∆s +Qtot(s,u

∗) =⇒ Q(s,u∗)−Qtot(s,u∗) > ∆s.

Thus, we have shown that for any Q′tot with û 6= u∗ the loss is greater than the Qtot we first
considered with û = u∗.

And so for state s, argmax ΠwQ(s, ·) = u∗ = argmaxQ(s, ·).

Letting α = mins αs > 0 once again completes the proof.

Corollary 3. Letting w be the Central or Optimistic Weighting, then ∃α > 0 such that the unique
fixed point of T ∗w isQ∗. Furthermore, ΠwQ

∗ ⊆ Qmix recovers an optimal policy, and max ΠwQ
∗ =

maxQ∗.

Proof. Using the results of Theorems 1 and 2 we know that ∃α > 0 such that argmax ΠwQ =
argmaxQ. We also know from their proofs that the same α works for both weightings.

Instead of updating Qtot in tandem with Q̂∗, we can instead write T ∗w as:

T ∗w Q̂∗(s,u) := E[r + γQ̂∗(s′, argmax
u′

(ΠwQ̂
∗)(s′,u′))].

And so:
Q̂∗(s′, argmax

u′
(ΠwQ̂

∗)(s′,u′)) = max
u′

Q̂∗(s′,u′), ∀s′ ∈ S.

Thus, our operator T ∗w is equivalent to the usual Bellman Optimality Operator T ∗, which is known
to have a unique fixed point Q∗ [34, 18].

Once again by the results of Theorems 1 and 2, we know that Q∗tot ∈ ΠwQ
∗ acheives the correct

argmax for every state. Thus it is an optimal policy. Finally, Proposition 1 shows that max ΠwQ
∗ =

maxQ∗.

C Experimental Setup

We adopt the same training setup as [26], using PyMARL to run all experiments. The architecture for
QMIX is also the same as in [26].

The architecture of the mixing network for Q̂∗is a feed forward network with 3 hidden layers of 256
dim and ReLU non-linearities. Shown in Figure 1.

For the experiment in Figure 6 the architecture for Q̂∗is modified slightly. We replace the first
hidden layer with a hypernetwork layer. A hypernetwork with a single hidden layer of dim 64 (with
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ReLU) takes the state as input and generates the weight matrix. Inspired by [37] we then take the
column-wise softmax of this weight matrix, which can be viewed as an approximation of multi-head
attention.

The architecture and setup for QTRAN is also the same, except we use a 3 layer feedforward network
of dim {64, 256} to match the depth of Q̂∗.

MADDPG and MASAC’s critic shares the same architecture as Q̂∗.

MADDPG is trained using the deterministic multi-agent policy-gradient theorem, via the Gumbel-
Softmax trick, as in [15, 12]. Specifically for agent a we produce Q(s, ua, u

−a) (with target network
Q) for each possible action, where u−a are the actions of the other agents produced by their most
recent policies. We multiply these by the agent’s policy (one-hot vector since it is deterministic)
and use the Straight Through Gumbel-Softmax estimator [13] to differentiate through this with a
temperature of 1.

MASAC is trained by minimising the KL divergence between each agent’s policy
πa and exp(Q(s, ·, u−a) − αent log πa)., Since the KL divergence is an expectation:
Eπa

[log( πa

exp(Q(s,·,u−a)−αent log πa) ], we approximate it by sampling an action from πa for each
agent. These sampled actions are used for u−a. For the actor’s policies we use the same ε-greedy
floor technique as in [9].

QPLEX uses the same setup for its mixing network as for the SMAC experiments in [33].

C.1 Predator Prey

For Weighted QMIX variants (and ablations with just a weighting), we consider α ∈ {0.1, 0.5} and
set α = 0.1 for all variants.

For QTRAN we set λopt = 1 and consider λnopt ∈ {0.1, 1, 10} (since only their relative weighting
makes a difference), and the dim of the mixing network in {64, 256}. We set λnopt = 10 and the
dim of the mixing network to 64.

For MASAC we consider αent ∈ {0, 0.001, 0.01, 0.1} and set it to 0.001.

C.2 SMAC Robustness to exploration

For Weighted QMIX we consider α ∈ {0.01, 0.1, 0.5, 0.75} and set α = 0.75 for CW and α = 0.5
for OW. All lines are available in Appendix E.

For the Weighted QMIX ablations we considered α ∈ {0.5, 0.75} and set α = 0.75.

For QTRAN we set λopt = 1 and consider λnopt ∈ {1, 10} (since these 2 performed best in
preliminary experiments), and the dim of the mixing network in {64, 256}. We set λnopt = 10 for
5m_vs_6m and λnopt = 1 for 3s5z. The dim of the mixing network is set to 64.

For MASAC we consider αent ∈ {0, 0.001, 0.01} and set it to 0 for 3s5z and 0.01 for 5m_vs_6m.

C.3 SMAC Super Hard Maps

We consider α ∈ {0.01, 0.1, 0.5, 0.75} and set α = 0.5 for OW-QMIX and α = 0.75 for CW-QMIX.

For the experiment in Figure 6 we only considered α ∈ {0.5, 0.75} and set α = 0.75 for both
methods.

D Ablations

In order to better understand our method, we examine 3 additional baselines:

QMIX + Q̂∗. This ablation removes the weighting in our loss (w = 1), but still uses Q̂∗to bootstrap.
This ablation allows us to see if a better bootstrap estimate alone can explain the performance of
WQMIX.
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Figure 7: Median test return for the predator prey environment, comparing Weighted QMIX and 3
ablations.

Figure 8: Median test win % with an increased rate of exploration, comparing Weighted QMIX and 3
ablations.

QMIX + CW/OW. This ablation introduces the CW/OW weightings into QMIX’s loss function for
Qtot. We do not additionally learn Q̂∗.

E Results

In this section we present the results of additional experiments that did not fit in the main paper.

Ablation experiments for Predator Prey.

Our ablation experiments in Figure 7 show the necessity for both Q̂∗and a weighting in order to
solve this task. As expected QMIX +Q̂∗ is unable to solve this task due to the challenges of relative
overgeneralisation. The use of a uniform weighting in the projection prevents the learning of an
optimal policy in which two agents coordinate to capture a prey. Thus, even if Q̂∗can theoretically
represent the Q-values of this optimal policy, the QMIX agents are unable to recover it. Figure 7 also
shows that QMIX with just a weighting in its projection (and no Q̂∗) is unable to successfully solve
the task.

Ablation experiments testing robustness to increased exploration.

Figure 8 shows the results of further ablation experiments, confirming the need for both Q̂∗and
a weighting to ensure consistent performance. Note in particular that combining QMIX with a
weighting results in significantly worse performance in 5m_vs_6m, and no better performance in
3s5z.

Effect of α on performance.

Figure 9 shows the effect of varying α in the weighting function for CW-QMIX and OW-QMIX. We
can see that if α is too low, performance degrades considerably.

19



Figure 9: Median test win % with an increased rate of exploration. Above: The effect of varying α
for CW-QMIX. Below: The effect for OW-QMIX.
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