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to a class of separable GANs and relativistic GANs (R-GANs). More specifically, Thm. 3 (L1501) and Thm. 43

(L1513) show that separable GANs in Eq. (30) have bad basins while R-GANs in Eq. (31) have no bad basins. These4

results only require minor conditions on the loss (Assumption J.1-J.5), covering logistic loss, hinge loss, squared5

loss, etc.; 2) To cover LS-GAN (min-max version), two minor changes suffice: change the two h functions to h16

and h2 in Eq. (30); change Assumption J.1-J.3 accordingly. We’ll modify to include LS-GAN and R-LS-GAN. 3)7

W-GAN is difficult to analyze. See App. J.2 for a discussion. The difficulty also indicates that our contribution goes8

beyond a global landscape analysis in that we identify the losses (R-GANs) that are amenable to rigorous analysis.9

Figure 1: LSUN (256×256) generation
with CNN structure for JS-GAN (above)
and RS-GAN (bottom).
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effectiveness of relativistic GANs has been justified (to some extent)” and “our11

goal is to use experiments to support the landscape theory.” For this, we focus12

on: a) advantage in narrow nets; b) robustness to initialization. Our paper13

validates a) and b) in four ways: 1) On L265-269 we show that for MNIST and a14

certain initial point, RS-GAN outperforms JS-GAN by 30 FID scores (around 3015

vs. 60). 2) On L256, we show RS-GAN outperforms JS-GAN by 9 FID scores16

(45 vs. 53) when using a ResNet (bottleneck) on STL. 3) In Tab. 11 (in appendix)17

we show that R-hinge-GAN outperforms hinge-GAN with 1/4 width (24 vs. 3318

FID on CIFAR10). Both SN-GAN and BigGAN papers use hinge-GAN, so we19

check hinge loss. 4) In experiments (Tab. 2, Tab. 11 in paper), separable versions (JS-GAN, hinge-GAN) do not beat20

their relativistic counterparts (RS-GAN, R-hinge-GAN) in any case. These points show: R-GANs are more robust to21

initialization and architecture. In new experiments we show: 5) R-LS-GAN outperforms LS-GAN by 6 FID (42 vs. 48)22

with 1/4 width (Tab. 1 below); 6) RS-GAN outperforms WGAN-GP (Tab. 2 below); 7) experiments on LSUN (higher23

resolution than CIFAR10 - Fig. 1). These new experiments further justify the advantage of R-GANs. We will explain in24

the main text.25
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sults for neural nets: one branch [60,43] only discusses paths and basins assuming width n. A drawback, as you point27

out: convergence of GD is not proved. Nevertheless, this is enough to distinguish RS and JS-GAN. Another branch28

[2,25,37] proves convergence of SGD assuming width ≥ n6. Drawback: assumption of width n6 is impractical. An29

ideal result that SGD converges for width n is a huge open question for neural nets (attempts exist, but all have strong30

limitations). We do not intend to solve this open question here. We combine Thm. 1,2 with the first branch since it is31

cleaner and already non-trivial. It is possible to combine with the second branch (on convergence), but it will make this32

paper much longer. Future advances for neural nets can be potentially combined with our function space result.33
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adaptation of those of [60,43,59] to GANs. References [60,43,59] consider a convex loss (e.g. quadratic) in function36

space and “transfer” decreasing paths in function space to decreasing paths in parameter space. To achieve this “transfer,”37

some assumptions on the architecture (e.g. width large enough) are needed [60,43,59]. We apply this approach to the38

GAN loss. In our proof, we state the general requirement of “transfer” in Assumption I.1-I.3, and then prove when these39

assumptions hold in Appendix I.2 and I.3 (using architecture assumptions of [60,43,59]). We’ll discuss in the main text.40
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being input data, decompose the graph into cycles and trees, compute the loss by grouping the terms according to cycles42

and trees, and add each term. We’ll sketch the proof in the main text.43

R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN.R4-study WGAN. Thanks for suggesting. i) See the first response, point 3) in L8 of the rebuttal. ii) We add simulation44

showing that RS-GAN outperforms WGAN-GP for standard datasets (Tab. 2 below).45

R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture.R4-study DRAGAN architecture. Thanks for pointing out the reference, which we read with great interest. It suggested46

that mode collapse may be due to bad equilibria. However, there is no formal statement or proof. We will cite it and47

discuss the connection with our work. DRAGAN adds a penalty of the gradient which may help eliminate some basins,48

but it likely creates other basins. A formal analysis requires much effort, and is an interesting future direction.49
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bution is about the landscape, not the training process. In contrast, Sec. 3 shows that the basin really appears in training,51

and the theoretical values 0.48 and 0.35 really play a role in understanding the training process. Following your52

comment, we will reduce the length of Sec. 3.53

Regular channel/2 channel/4

LS-GAN 32.93 37.83 48.63

R-LS-GAN 34.78 34.34 42.86
Table 1: FID results on CIFAR-10 for LS-GAN and R-LS-GAN
with CNN structure given in Tab. 5 of the appendix.

Regular channel/2 channel/4

CNN WGAN-GP 39.66 42.39 50.56
RS-GAN 27.16 32.74 49.74

ResNet WGAN-GP 21.33 23.80 40.45
RS-GAN 19.31 21.78 31.26

Table 2: FID results on CIFAR-10 for WGAN-GP and RS-GAN
with CNN and ResNet.


