
A Network Architecture

For a fair comparison, our network follows the same structure as CEM-RL [19]. The architecture is
originally from Fujimoto et al. [5], the only difference is using tanh instead of RELU. Pourchot and
Sigaud [19] reported the difference between the RELU and tanh. We use (400, 300) hidden layer for
all environment except Humanoid-v2. For Humanoid-v2, we used (256, 256) as in TD3 [5].

Table 4: Network architectures The architecture from the input layer to the output layer
Layer Type Actor Critic
Linear (state_dim, 400) (state_dim + action_dim , 400)
Activation tanh leaky RELU
Linear (400, 300) (400, 300)
Activation tanh leaky RELU
Linear (300, action_dim) (300, 1)
Activation tanh

B AES-RL pseudo-code

Algorithm 1: AES-RL

1 Initialize: the mean of the population πµ, shared critic Qπ and target critic Qπ ′

2 Initialize: the covariance matrix Σ = σinitI, the emtpy replay bufferR, total_steps = 0
/* Start training of the shared critic */

3 critic_worker.start_critic_training()
4 while total_steps < max_steps do
5 Nidle_worker = num_idle_worker()
6 while Nidle_worker > 0 do

/* Create new individual */
7 new_individual = population.sample(πµ, Σ)
8 Create new individual by sampling from N (πµ,Σ)
9 actor_worker = get_idle_worker()

10 actor_worker.set_actor_network(new_individual)
11 Calculate prl according to Eq. (3)
12 if rand() < prl and total_step >= rl_start_step then

/* Train the actor with shared critic */
13 critic_weight = critic_worker.get_critic_weight()
14 actor_worker.set_critic_network(critic_weight)
15 actor_worker.train_actor_network()
16 nrl ← nrl + 1
17 else

/* Evaluate immediately */
18 nes ← nes + 1
19 end

/* Evaluate the individual, with filling the replay buffer */
20 actor_worker.evaluate(R)
21 Nidle_worker ← Nidle_worker − 1
22 end
23 Nfinished_worker = num_finished_worker()
24 while Nfinished_worker > 0 do
25 finished_worker = get_finished_worker()
26 fitness, individual, current_steps = finished_worker.get_evaluation_information()

/* Update population with the finished individual */
27 population.update(fitness, individual)
28 total_steps← total_steps+ current_steps
29 Nfinished_worker ← Nfinished_worker − 1
30 end
31 end

13



Algorithm 2: actor.evaluate(R)
1 Require: hyperparameter action noise anoise
2 state = env.reset()
3 done = False
4 steps = 0
5 total_reward = 0
6 while not done do
7 action = actor_network.forward(state)
8 if anoise 6= 0 then
9 action = clip(action + anoise * random.normal(0, 1), -1, 1)

10 end
11 next_state, reward, done, info = env.step(action)
12 R.append(state, next_state, reward, done)
13 steps← steps + 1
14 total_reward← total_reward + 1
15 state = next_state
16 end
17 return total_reward, steps

C Hyperparameters

Most of hyperparameters are the same value as CEM-RL [19]. However, the size of replay buffer
is modified to 2e5, we analyzed the effect on Appendix C.1. Also, we used action noise of 0.1 as
suggested by Khadka and Tumer [13]. Pourchot and Sigaud [19] reported the action noise is not
useful for their algorithm, we found that the action noise improves exploration as the original ERL
paper. We use anoise = 0.1 for all environments. We discuss the effect on Appendix C.2. The Krl in
population control is set to 50. pnegative for fixed range algorithms are set to 0. We use ‘1/5’ for success
rate of (1 + 1)-ES. Also, we use pdesired = 0.5 for all environment except Swimmer-v2. CEM-RL
reported that RL algorithms provide deceptive gradients, therefore most of the RL algorithms fail to
solve. Therefore we use pdesired = 0.1, which means that the population of the ES is 9 times larger
than the RL. Consequently, algorithms are become more dependent on the ES part.

Other values related to the range are presented in Tab. 5. We noticed that the corresponding values are
about 1/6 of the maximum reward. For example, the reward value reaches up to 12000 in HalfCheetah,
then the 1/6 of the maximum is about 2000.

Table 5: Hyperparameters A list of the hyperparameters that vary with the environment

Fixed Range
Linear Sigmoid

Range r

HalfCheetah-v2 2000 2000
Hopper-v2 600 600

Walker2D-v2 860 860
Ant-v2 960 960

Swimmer-v2 48 48
Humanoid-v2 960 960

Fitness Baseline
Absolute Relative

Baseline fb

HalfCheetah-v2 -2000 2000
Hopper-v2 -600 600

Walker2D-v2 -860 860
Ant-v2 -960 960

Swimmer-v2 -48 48
Humanoid-v2 -960 960

14



C.1 Replay Buffer Size

The replay buffer size of 200k improves the performance of the proposed algorithm. The performance
of CEM-RL also increased, but not as much as the asynchronous algorithm. A possible hypothesis
for this phenomenon is as follows. In CEM-RL, the critic learning steps are guaranteed in the
synchronous stage. However, in AES-RL, the critic is trained in a parallel with the other workers;
thus samples should be more productive. With the reduced size of the replay buffer, it is filled with
more recent steps and replace the oldest experiences which is nearly useless. Therefore, the samples
are more informative.

Tab. 6 shows the comparison results. In Walker-v2, the size of the replay buffer does not significantly
affect the performance of AES-RL. However, the performance gap is relatively more significant in
HalfCheetah-v2. One of the differences of the two environment is that the learning saturates earlier in
Walker-v2. Therefore, the replay buffer is productive enough. Differently, actors in HalfCheetah-v2
still learn at the end of 1M steps. Here, We may use other techniques like importance sampling to
enhance the efficiency of a mini-batch sample; however, we remain it as future work.

Table 6: Effect of the Replay Buffer Size

µ Relative Range CEM-RL
Σ Adaptive

Replay 200k 1M 200k 1M

HalfCheetah-v2 Mean 12550 11472 11515 10725
Std. 187 467 203 354

Walker2D-v2 Mean 5474 5468 4503 4711
Std. 223 690 388 155

C.2 Action Noise

CEM-RL reported that the action noise is not useful, as opposed to ERL. However it consistently
improves the performance a little in our experiments. We hypothesize that the πµ of CEM-RL moves
with the weighted average of individuals; therefore, the effect of action noise is reduced. Otherwise,
in AES-RL, the action noise increases the chance of better policy which affects directly to the πµ.

Table 7: Effect of the Action Noise
µ Relative Range
Σ Adaptive

anoise 0.1 0.0

HalfCheetah-v2 Mean 12550 12095
Std. 187 338

Walker2D-v2 Mean 5474 5244
Std. 223 670

D Full Results of Proposed Methods

We compare all combination of methods proposed in Sec. 3. Except for Swimmer-v2, the relative
baseline is the best in both performance and stability. In Hopper-v2 and Ant-v2, the relative baseline
scores are slightly lower than the best methods, but it is comparable. Therefore we use the relative
baseline methods when compare with the previous algorithms: TD3, CEM, ERL, and CEM-RL.

In Swimmer-v2, CEM, pure evoluationary algorithm, was the best, ERL, mostly evolutionary algo-
rithm, was also able to solve the environment [19]. Among the asynchronous algorithms, (1 + 1)-ES,
which has the most aggressive update rule, is consistently successful. From this result we can infer
that aggressive exploration is more important in Swimmer-v2. Also, other methods have a chance to
solve the environment, but not always.

In conclusion, we proposed various update rules for asynchronous algorithms. We started from the
Rank-Based asynchronous algorithm and the (1 + 1)-ES update algorithm, which are at the extremes.

15



Our design purpose is to achieve a balance between the two. The relative baseline method with
adaptive variance showed the best performance, which effectively balances between aggressive and
conservative updates.

Table 8: Full results of our proposed mean-variance update methods Results are measured with
average scores of ten test runs within a total of 1M step from the summation of all worker steps,
averaged with ten random seeds.

Category Previous algorithms Proposed algorithms
(1+1)-ES Rank-Based Fixed Range Fitness Baseline Fixed Range Fitness Baseline

µ Full Move Oldest Linear Sigmoid Absolute Relative Linear Sigmoid Absolute Relative
Σ Success Rule Online Update - Adaptive Online Update - Fixed

HalfCheetah-v2 Mean 11882 10010 10279 12053 12224 12550 10870 12031 11767 12128
Std. 385 746 1044 398 422 187 409 604 458 821

Walker2D-v2 Mean 2347 4230 5020 5360 5137 5474 3419 5121 5039 5070
Std. 320 254 799 683 223 223 1676 965 471 557

Hopper-v2 Mean 2588 3729 3506 3764 3789 3751 2996 3769 3788 3423
Std. 748 53 179 40 26 58 1068 20 30 626

Ant-v2 Mean 5098 3917 3015 5140 3883 5120 3406 5007 4947 4613
Std. 715 514 1233 546 1047 170 944 891 543 712

Swimmer-v2 Mean 347 59 99 128 97 161 191 81 107 120
Std. 19 8 43 65 32 100 123 12 34 63

Humanoid-v2 Mean 600 3476 5697 5958 5770 6136 5662 5695 5774 5837
Std. 35 1980 177 301 229 444 107 209 267 239

E Ablation Study

AES-RL algorithm mainly consists of three novel methods; an asynchronism, the mean update rule,
and the variance update rule. In this section, we evaluate the effectiveness of each methods.

E.1 Asynchronism

To compare the effectiveness of asynchronism, we adopt an update rule of CEM-RL based on the
simple asynchronous methods in [26]. Therefore, the resulting algorithm is an asynchronous version
of CEM-RL, namely ACEM-RL. As in [26], previous results are stored in a separate list with its
score. When a new individual is evaluated, it is stored on the list, and the oldest one is removed
to maintain the population size. However, there should be a multiplication factor 1/n because the
update occurs n times frequently. Therefore the mean update in Eq. (1) is modified to

µt+1 =
1

n

Ke∑
i=1

λizi (13)

E.2 Mean and Update Rule

In the mean update, we already compared various update rules in Sec. 4.2 and Appendix D. The
result of ACEM-RL, which applies asynchronism to CEM-RL, is in column “Rank-based"-“Oldest"
in Tab. 8 In addition, we fix the variance to the constant value. Here, We expect that the fixed variance
prevents exploration.

The overall results are displayed in Tab. 9. As a result, simply applying asynchronism to the previous
method without proper mean and variance update reduces the performance.

Table 9: Ablation study The overall result of the ablation study. From the baseline algorithm
CEM-RL, ACEM-RL adopts asynchronism. AES-RL with constant variance means that only the
mean is updated. Finally, AES-RL results include all features, asynchronism, mean update, and
variance update.

CEM-RL ACEM-RL
AES-RL

AES-RLσ2 = const.
0.0001 0.001

HalfCheetah-v2 Mean 10725 10010 11636 12306 12550
Std. 397 746 209 233 187

Walker2D-v2 Mean 4711 4230 5167 5302 5474
Std. 155 254 251 458 223

16



F Training Time According to the Number of workers

We compare the execution time for a various number of workers, from 2 to 9. Training time of
CEM-RL is measured with original author’s implementation. P-CEM-RL is our implementation of
parallel version of CEM-RL, which has parallelized actors with synchronous update scheme. For
AES-RL,

Table 10: Training time according to the number of workers Training time is measured in minutes
with Ethernet-connected two machines of Intel i7-6800k with three NVidia GeForce 1080Ti each.

CEM-RL P-CEM-RL AES-RL
Workers 1 5 2 3 4 5 6 7 8 9

HalfCheetah-v2 467.17 187.42 225.63 136.32 103.15 83.43 72.38 65.52 58.88 54.47
Walker-v2 487.25 205.17 275.90 163.10 131.18 105.42 97.12 84.23 81.02 77.33
Hopper-v2 504.63 188.48 305.23 199.55 144.77 133.23 122.58 97.35 92.52 90.75

G Contribution of RL and ES in Learning Process

We approximately compare the contribution of RL and ES agents. To measure the contributio,n we
used the update ratio p in mean update rules. Higher p indicates the new agent moves the mean of the
distribution more. We recorded the p value for all updates, and the values are accumulated for total
experiment. The result in Tab. 11 shows that the ratio of each agents differs in each environments.
For Swimmer-v2, our agent fails to find good solution (reward higher than 300) 8 out of 10, we only
measured in successful trials.

Table 11: Contribution of RL and ES
HalfCheetah-v2 Walker2D-v2 Hopper-v2 Ant-v2 Swimmer-v2 Humanoid-v2

ES (%) 37.1 50.3 64.2 22.5 79.5 50.4
RL (%) 62.9 49.7 35.8 77.5 20.5 49.6

H Step-wise Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

R
et

ur
n

HalfCheetah-v2

AES-RL (5 Workers)
SAC
CEM-RL
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

Av
er

ag
e 

R
et

ur
n

Hopper-v2

AES-RL (5 Workers)
SAC
CEM-RL
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e 

R
et

ur
n

Walker-v2

AES-RL (5 Workers)
SAC
CEM-RL
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e 

R
et

ur
n

Ant-v2

AES-RL (5 Workers)
SAC
CEM-RL
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

50

100

150

200

250

Av
er

ag
e 

R
et

ur
n

Swimmer-v2

AES-RL (5 Workers)
SAC
CEM-RL
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e 

R
et

ur
n

Humanoid-v2

AES-RL (5 Workers)
SAC
CEM-RL
TD3

17


	Network Architecture
	AES-RL pseudo-code
	Hyperparameters
	Replay Buffer Size
	Action Noise

	Full Results of Proposed Methods
	Ablation Study
	Asynchronism
	Mean and Update Rule

	Training Time According to the Number of workers
	Contribution of RL and ES in Learning Process
	Step-wise Learning Curve

