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Abstract

Learning communication via deep reinforcement learning has recently been shown
to be an effective way to solve cooperative multi-agent tasks. However, learning
which communicated information is beneficial for each agent’s decision-making
process remains a challenging task. In order to address this problem, we explore
relational reinforcement learning which leverages attention-based networks to learn
efficient and interpretable relations between entities. On the foundation of relations,
we introduce a novel communication architecture that exploits a memory-based
attention network that selectively reasons about the value of information received
from other agents while considering its past experiences. Specifically, the model
communicates by first computing the relevance of messages received from other
agents and then extracts task-relevant information from memories given the newly
received information. We empirically demonstrate the strength of our model in
cooperative and competitive multi-agent tasks, where inter-agent communication
and reasoning over prior information substantially improves performance compared
to baselines. We further show in the accompanying videos and experimental results
that the agents learn a sophisticated and diverse set of cooperative behaviors to
solve challenging tasks, both for discrete and continuous action spaces using on-
policy and off-policy gradient methods. By developing an explicit architecture
that is targeted towards communication, our work aims to open new directions
to overcome important challenges in multi-agent cooperation through learned
communication.
Code available at: https://github.com/caslab-vt/SARNet

1 Introduction

Communication is one of the fundamental building blocks for cooperation in multi-agent systems. In-
deed, the ability to effectively represent and communicate information valuable to a task is especially
important in multi-agent deep reinforcement learning (MADRL). Apart from learning what to com-
municate, it is critical that agents learn to effectively reason based on the information communicated
to them by their teammates. Such a capability enables agents to develop sophisticated coordination
strategies that would be invaluable in application scenarios such as search-and-rescue for multi-robot
systems [1], swarming and flocking with adversaries [2], multiplayer games such as StarCraft [3] and
DoTA [4], and autonomous vehicle planning [5].

In this work, we explore the concept of building agents that can solve complex cooperative tasks
by answering the question: how do agents learn to effectively communicate and reason in support
of intelligent cooperation? Humans naturally inspire such a question as they exhibit complex
collaboration strategies through a structured reasoning process [6–8], allowing them to recognize,
communicate, and exploit important task information. In the context of multi-agent cooperation,
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we draw inspiration from work in soft-attention [9] to implement a method for computing relations
between agents, coupled with a memory-based attention network from Compositional Attention
Networks (MAC) [10], yielding a framework for communication that performs structured attentive
reasoning over communicated information and past memories.

Concretely, we develop a communication architecture for MADRL by leveraging the approach of
relational reinforcement learning (RRL) [11] coupled with the capacity to learn from past experiences.
Our architecture is guided by the notion that a structured and iterative reasoning between non-local
entities will enable agents to capture higher-order relations that are necessary for complex problem-
solving. To achieve manageable computational complexity with variable team sizes, we exploit
an adaptation of soft-attention [9] as the base operation for selectively attending to an entity or
information in a given task. In an effort to better equip agents to make deliberate decisions, we
separate attention and reasoning into distinct stages. Specifically, an attention unit informs the
agent of which entities are most important for the current time-step, while the reasoning stage uses
previous memories and guidance from the attention unit to extract the shared information that is most
relevant. This explicit separation in communication enables agents to not only place importance on
new information from other agents, but to selectively reason over information from past memories
given new information. This communication framework is learned in an end-to-end fashion, without
resorting to any supervision, as a result of task-specific rewards.

The main contributions of this work can be summarized as follows:

1. We propose a new communication architecture, the Structured Attentive Reasoning Net-
work (SARNet), where agents extract the relevance of other agents’ information and reason
over received communications and past memories before performing an action.

2. We show that our framework learns richer and more complex behaviors for a given task by
reasoning over communicated information and past memories.

3. We introduce an extension to the twin-delayed deep deterministic policy gradient (TD3)
method [12], allowing for trajectory-based training in recurrent networks for cooperative
and competitive scenarios.

4. We conduct benchmarks on a mixture of discrete and continuous actions spaces, with limited
or zero agent vision, using both REINFORCE [13] and our improved version of TD3 [12]
to compare our approaches to relevant baselines. Our empirical study demonstrates the
effectiveness of our novel architecture to solve cooperative and competitive multi-agent
tasks with varying team sizes and environments.

2 Related Work

Communication in multi-agent deep reinforcement learning (MADRL) was formalized by CommNet
[14], which shares hidden state representations among agents to augment the information available
for each agent to process through their respective encoders. This framework has also been adopted by
several recent works in MADRL including [15] and [16]. However, there are two shortcomings of
the CommNet approach to communication. The first is that messages communicated by the agents
are not concurrently used for action prediction at the current time step, which limits application in
real-world scenarios as agents may need to be informed on the intentions of other agents in order to
perform useful actions. For example, when autonomous vehicles negotiate a turn it is more useful for
the vehicles to receive the action intention and state information of neighboring vehicles at the current
time step, instead of aggregated past histories. The second shortcoming is that the encoding/decoding
of communicated messages is dependent on the observation encoders of each agent, which eliminates
the potential for explicit reasoning through a separate communication framework to lead to richer
sets of behaviors and policies (as we show in this work).

Since CommNet, significant progress has been made in learning effective multi-agent communication
(protocols) through the following methods: (i) broadcasting a vector representation of each agent’s
private observations to all agents [14, 17]; (ii) selective and targeted communication through the
use of soft-attention networks [9] that compute the importance of each agent and its information
[18, 16]; and (iii) communication through a shared memory channel [19, 20], which allows agents to
collectively learn and contribute information at every time step. The architecture of [18] implements
communication by enabling agents to communicate intention as a learned representation of private
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observations, which are then integrated into the hidden state of a recurrent neural network as a form
of agent memory. In contrast, Memory Driven Multi-Agent Deep Deterministic Policy Gradient (MD-
MADDPG) [19] implements a shared memory state between all agents that is updated sequentially
after each agent selects an action. However, the importance of each agent’s update to the memory in
MD-MADDPG is solely decided by its interactions with the memory channel.

Our work can be considered as an extension of MD-MADDPG [19], where SARNet instead works
with independent memory states, and TarMAC [16], by computing the relevance of communicated
information through query-key pairs of soft-attention [9]. However, our model extends these works
by introducing the concept of relational learning through a two-step framework: generate relevance
of the communicating agents through a modified query-key pair, and then specifically reason and
attend over the communicated information and past memories.

The relational communication of our framework is based on the paradigm of relations in agent-based
reinforcement learning, which was proposed by [11] through multi-headed dot-product attention
(MHDPA) [9]. The core idea of relational reinforcement learning (RRL) combines inductive logic
programming [21, 22] and reinforcement learning to perform reasoning steps iterated over entities in
the environment. Attention is a widely adopted framework in Natural Language Processing (NLP) and
Visual Question Answering (VQA) tasks [23, 24, 10] for computing such relations and interactions
between entities. The mechanism [9] generates an attention distribution over entities, or more simply
a weighted value vector based on importance for the task at hand. This method has been adopted
successfully in state-of-the-art results for Visual Question Answering (VQA) tasks [23], [24], and
more recently [10], demonstrating the robustness and generalization capacity of reasoning methods
in neural networks.

3 Structured Attentive Reasoning Network

We introduce a communication architecture that is an adaptation of the attention mechanism of the
Transformer network [9], and the structured reasoning process used in the MAC Cell [10]. The
framework holds memories from previous time steps separately for each agent, which are then
used for reasoning over new information received by communicating teammates. Agents learn
relations between other entities or agents through a weighting mechanism, and consequently perform
a reasoning operation over their memories and newly communicated information. This interaction
between the structures of past memories and new information is used to produce a new memory for
the agent that contains the most valuable information for the task at hand. The agent’s new memory
is then used to augment the encoded representation of the local observation oti that is then used to
predict the action of the agent.

To summarize, before any agent takes an action, the agent performs four operations via the following
architectural features: (1) Thought Unit, where each agent encodes its local observations into
appropriate representations for communication and action selection; (2) Question Unit, which is used
to generate the importance of all information communicated to the agent; (3) Memory Unit, which
controls the final message to be used for predicting actions by combining new information from other
agents with an agent’s own memory through the attention vector generated in the Question unit; and
(4) Action Unit, that predicts the action. In Figure 1 we illustrate our proposed Structured Attentive
Reasoning Network (SARNet).

3.1 The Thought Unit

The Thought unit at each time-step t transforms an agent i’s private observations into three separate
vector representations: query qti, key kti, and values vti , which are used for the Question and Memory
units. The query qti and key kti are used to compute the relevance of communicated information in
the Question unit, while the values vti are used to integrate information into memory (Memory unit).
Additionally, an encoding of the local observation, eti, is generated for the Action unit to complement
the information generated from the communication step. Specifically, we have

qti,k
t
i,v

t
i , e

t
i = ϕthθthi

(oti), qti,k
t
i ∈ Rdq , vti ∈ Rdv , eti ∈ Rde (1)

where oti is the local observation of agent i, ϕth
θthi

can be characterized by a multi-layer perceptron

(MLP) or any recurrent neural network (RNN) parameterized by θthi .
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Figure 1: SARNet consists of a Thought unit, Question unit, Memory unit, and Action unit that
process the agents observations and communications in distinct stages.

The query is used by each agent i to inform the Question Unit of which aspects of communicated
information are relevant to the current time step based on local observation.

The key and value are broadcast to all communicating agents. The key vector is used in the Question
Unit to infer the relevance of the broadcasting agent to the current reasoning step, and the value
vector is subsequently used to integrate the information into the memory of agent i.

The resulting information broadcasted by each agent i to all the cooperating agents is then:

cti = [

key

kti vti
value

]. (2)

3.2 The Question Unit

The Question unit is designed to capture the importance of each agent in the environment, including
the reasoning agent i, similar to the self-attention mechanism in [9]. In the mechanism used in [9],
the attention computes a weight for each entity through the use of the dot-product computation and
softmax. However, in contrast we use a linear projection instead of a dot-product to generate the
attention mechanism over all individual representations in the vector for each entity, using Eq. 3.
This allows the agent to compute the importance of each individual communicated information from
other agents for a particular time step. More importantly, SARNet’s use of a dedicated memory unit
and the ability to simultaneously attend to both newly received information and past memories allows
SARNet to have substantial performance gains over TarMAC, as TarMAC can only attend to new
messages (values). This is performed through a soft attention-based weighted average using the query
generated by agent i, and the set of keys, K, that contains the keys {kt1,kt2, ...,ktN} from all agents.

The recipient agent, i, upon receiving the set of keys, K, from all agents, including its own key,
computes the interaction with every agent through a Hadamard product, �, of its own query vector,
qti and all the keys, ktj , in the set K. A linear transformation, W

[dq×d1]
iq , is then applied to every

interaction, qhtij , that defines the query targeted for each communicating agent j, including self, to
produce a scalar defining the weight of the particular agent:

qutij = W
[dq×d1]
iq qhtij , qhtij = qti � kj

t, ktj ∈ Rdq , qhtij ∈ Rdq , qutij ∈ R1 (3)
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A softmax operation is then used over the new scalars for each agent to generate the weights specific
to each agent, i.e., an attention vector:

ati = softmax

[
quti1√
dq

...
qutii√
dq

...
qutiN√
dq

]
ati ∈ RN (4)

The use of the linear transformation in Eq. 3 allows the model to specify an importance not only for
each individual agent, as done in TarMAC [16], but further it learns to assign an importance to every
element in the vector relative to each other in the information vector. Instead, TarMAC performs the
equivalent step in Eq. 3 through a dot-product attention mechanism, which places equal importance to
the elements in the query-key vectors to generate qutij . We hypothesize that agents learn to attribute
certain state information and intentions between elements of the query-key vectors. In lieu of the
dot-product attention, we make use of a linear layer to compress the query-key Hadamard product to
a weight, allowing more flexibility for the agent to learn varying representations of communication.

3.3 The Memory Unit

The Memory unit is responsible for decomposing the set of new values, V , which contains
{vt1,vt2, ...,vtN}, into relevant information for the current time step. Specifically, it computes the
interaction of newly communicated knowledge (V) with the memory aggregated from the preceding
time step. The newly retrieved information, from the memory and the values, is then measured in
terms of relevance based on the importance of each agent generated in the Question unit.

As a first step, an agent computes a direct interaction between the new values from other agents,
vtj ∈ V , and its current memory, mt−1

i . This step performs a relative reasoning between newly
received information and the memory from the previous step. This element-wise multiplication
allows the model to highlight relevant information from the prior memory, given the information
from the new communications:

mitij = mt−1
i � vtj , ∀ vtj ∈ V, mitij ,m

t−1
i ∈ Rdv (5)

The new interaction per agent j evaluated relative to the memory, mitij , and current knowledge, V ,
is then used to compute a new representation for the final attention stage, through a feed-forward
network, W

[dv×dv ]
r . This enables the model to reason independently on the interaction between new

information and previous memory, and new information alone:

mrtij = W[d2v×dv]
r [mitij + vtj ], mrtij ∈ Rdv (6)

Finally, we aggregate the important information, mrij , based on the weighting calculated in the
Question unit, in (4). This step generates a weighted average of the new information, mrij , gathered
from the reasoning process, based on the attention values computed in (4). A linear transformation,
W

[dv×dv ]
m , is applied to the result of the reasoning operation to prepare the information for input to

the Action unit:

mvti =
N∑

j=1

atijmrtij , mt
i = W[dv×dv ]

m mvti, ∀ atij ∈ ati, mt
i ∈ Rdv (7)

3.4 The Action Unit

The Action unit, as the name implies, predicts the final action of the agent, i, based on the new
memory, Eq. 7, computed from the Memory unit and an encoding, eti (Eq. 1) of its local observation
oi, from the Thought unit:

ati = ϕaθai (eti,m
t
i), eti ∈ Rde ,mt

i ∈ Rdv ,ati ∈ Rda (8)

where ϕaθai is a multi-layer perceptron (MLP) parameterised by θai .

4 Experiments

We evaluate our communication architecture on Traffic Junction and OpenAI’s multi-agent particle
environment, [25], a two-dimensional stochastic environment consisting of agents and landmarks with
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cooperative tasks. Each agent receives a private observation that includes only partial observations
with limited or no vision of the environment depending on the task. We consider different experimental
scenarios where a team of agents cooperate to complete tasks with static goals, or compete against
other agents.

4.1 Baselines and Training

SARNet is compared against the communication architectures of TarMAC [16], IC3Net [15], Comm-
Net [14] and a set of independent agents that do not communicate based on a recurrent-MADDPG
(R-MADDPG) [25], [26]. In order to perform a fair and thorough analysis on the effectiveness of
each communication architecture, we adapt all of the baseline frameworks to the same recurrent
model and training methodologies. We use LSTM as observation encoders for the architectures.
CommNet and TarMAC were originally proposed as models trained with global rewards, however,
following the results of IC3Net on the strengths of training with individualized rewards, we adapt
CommNet and TarMAC to be trained with independent rewards (see Appendix A.2 for details).

Additionally, we propose a multi-agent recurrent extension of TD3 [12] with trajectory-based
training and rollouts. The key contribution for training multi-agent systems: (1) Developing a training
methodology with shared policy parameters and independent rewards. We use shared parameters for
the actor, however, each agent maintains a distinct set of parameters for the critic to enable training
with individualized rewards and centralized training with MADDPG [25]. (2) Extend R-MADDPG
[26] from a single step transition update to a recurrent trajectory-based training [27] through TD3.
For SARNet and all baselines, we use the above training methodology for multi-agent particle
environments (MPE) [25], and REINFORCE [13] for traffic junction. Refer to Appendix A.1.3
for multi-agent trajectory-TD3. Environment details and additional experiments are described in
Appendix B. Results for Physical Deception tasks are in Appendix B. Hyperparameters are noted
in Appendix A.2.

4.2 Environments

Figure 2: Illustrations of the multi-agent particle environment in the experiments: Cooperative
Navigation, Predator-Prey, Physical Deception, and Traffic Junction respectively.

T

landmark
agent predator

agent

obstacle

prey

4.2.1 Cooperative Navigation

Task In this environment, N agents need to cooperate to reach N landmarks. Each agent observes
the relative positions of a fixed number of neighboring agents and landmarks. The agents are
penalized if they collide with each other, and positively rewarded based on the proximity to the
nearest landmark.

Result Analysis In this task, SARNet agents consistently outperform the baselines, as shown in
Table 1. In addition, SARNet maintains a low level of collisions with other agents. This behavior
of SARNet agents is attributed to their ability to understand communicated information from other
agents and effectively reason a course of action to stay away from a landmark that is heavily populated
by other agents. We observe at the start of an episode, SARNet agents tend to gradually converge
around their closest landmarks. However, if an agent observes that the landmark it is approaching
is already occupied, SARNet agents do not force collisions with other agents. We also observe an
interesting phenomenon of information overload in CommNet. As CommNet aggregates all messages
irrespective of relevance, CommNet agents fail to identify the specific needs of communication
and negotiation when maneuvering around highly occupied landmarks. IC3Net adopts a different
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approach, where agents approach the nearest landmark and if there is a risk of collision with other
agents, they tend to hover in place (which can be seen from high average distance to landmark
values). TarMAC on the other hand is aggressive in its policy and tends to capture landmarks more
consistently at the cost of collisions.

Table 1: Partially observable cooperative navigation. Number of collisions between agents, and
average distance at the end of the episode are measured.

N = L = 6 N = L = 10
Policy Reward Coll. Avg. dist. Reward Coll. Avg. dist.

SARNet -12.39± 1.0 11.17± 0.96 0.77± 0.52 -14.73± 0.41 14.5± 0.43 0.23± 0.08
TarMAC -17.16± 0.82 16.34± 0.77 0.81± 0.19 -21.71± 1.15 21.4± 1.16 0.3± 0.02
CommNet -23.34± 5.25 22.51± 5.13 0.81± 0.13 -21.31± 2.47 21.03± 2.46 0.28± 0.03
IC3Net -16.97± 1.17 13.62± 0.20 3.35± 0.98 -27.67± 0.55 27.35± 0.58 0.28± 0.01
MADDPG -13.12± 0.80 12.11± 0.75 1.01± 0.19 -20.97± 0.15 20.82± 0.11 0.14± 0.02

Communication Analysis We illustrate the communication patterns of SARNet and TarMAC in
Figure 3, through their respective attention values. We observe that SARNet agents place importance
on their own information the most, especially at the start of an episode where they need to make a
decision on which landmark to approach. Attention to other agents is regulated mainly based on the
proximity of other agents to the current target landmark. It is interesting to understand how differently
SARNet and TarMAC utilize the attention mechanism. SARNet generally places a larger importance
on agents that are gradually approaching, while TarMAC targets information from agents that are
farther away. This key difference between the two communication architectures allows SARNet to
outperform the baselines, by consistently maintaining a low collision rate. Additionally, as the agents
stabilize to their target position, both SARNet and TarMAC attend equally to all agents, observing the
intentions of other agents. We also investigate the specific impact of the memory unit in Appendix C.

4.2.2 Predator-Prey

Task This task involves a slower moving team ofN communicating agents chasingM faster moving
agents in an environment with L static landmarks. Each agent receives its own local observation,
where it can observe the nearest prey, predator, and landmarks. We analyze the performance of
predators trained with SARNet and the baselines while competing with preys trained with CommNet.
The potential for communication and cooperation between the CommNet preys makes the task
extremely hard for the predators.

Results SARNet agents learn a sophisticated strategy of creating clusters and chasing the nearest
prey, severely limiting the prey’s potential for escape. Moreover, SARNet also often adopts the
strategy to push a prey towards a landmark and surround it, forcing the prey into an adversarial
state. SARNet successfully accomplishes a much better division of work as compared to TarMAC,
in part due to actions being influenced by the communication at the same time step, allowing a
better degree of approximation of other agents’ policies and consequently their intentions. As for the
non-communicating policy, MADDPG approaches the nearest visible prey in a naive manner, which
is not always the optimal policy due to the nature of preys being faster than the predators. This results
in MADDPG agents missing the target preys and needing to change course to re-target it. As the
authors of IC3Net have noted, CommNet is equivalent to IC3Net, when trained with individualized
rewards. In general, IC3Net requires a longer training time to enable the agents to learn to fully
communicate in fully cooperative tasks, and that explains the general trend of IC3Net performing
similarly to CommNet in a few tasks.

4.2.3 Traffic Junction

Task Similar to [14], [15], [16] we perform an evaluation on Traffic Junction, with 6, 10 and 20
agents respectively. Agents enter the environment with a fixed probability parriv , with a preassigned
route. The maximum number of agents in the environment are fixed, Nmax. The agents can perform
the following two actions: Gas or Brake. Once the agent completes the route it is sampled back into
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Figure 3: (Top) Attention values generated by Agent 1 in red, in cooperative navigation for N = 6
denoted by the shaded regions. Dashed lines indicate the normalized distance between Agent 1 and
other agents. (Top-Left) Attention metrics for SARNet. (Top-Right) Attention values generated by
query-key pairs for TarMAC. (Bottom-Left) Learning curves for predator-prey environment with
6 predators trained with baselines, and 2 preys that learn with CommNet. Scores are measured by
the cumulative rewards of predators and preys. SARNet consistently maintains a higher training
score, measured as the difference in rewards between the predators and preys. (Bottom-Right) Mean
success rates % across random seeds of the agents in the Traffic Junction task for 20 agents.

Table 2: (Left) Predator-Prey: Number of prey captures by the predators per episode is measured.
SARNet performs better than all baselines. (Right) Success rate on traffic junction environments
where agents have no vision of other agents.

6 vs 2 12 vs 4
Predator vs Prey # captures # captures

SARNet vs. CommNet 17.51± 0.26 25.34± 1.21
TarMAC vs. CommNet 16.18± 0.34 23.33± 3.38
CommNet vs. CommNet 13.14± 0.24 18.83± 4.28
IC3Net vs. CommNet 13.22± 0.28 17.16± 3.41
MADDPG vs. CommNet 13.52± 0.36 15.33± 3.51

Policy N = 6 N = 10 N = 20

SARNet 74.27± 5.33 94.81± 3.57 65.65± 3.75
TarMAC 76.35± 7.18 85.94± 5.10 59.36± 10.84
CommNet 77.08± 5.02 83.58± 7.65 53.71± 5.57
IC3Net 76.40± 4.64 89.82± 2.75 56.95± 9.30

the environment. In order to make the task harder, the agents have zero visibility. This ensures that
the task cannot be successfully solved without communication.

Results We train all the agents using REINFORCE [13] for the traffic-junction task, and report the
results in Table 2. We observe that as the number of agents increase, SARNet has a significantly
higher performance. Similar to TarMAC, SARNet learns to attend to other agents within its proximity,
especially at the junctions. Since all of the architectures are trained using individualized rewards, the
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architectures perform comparably for fewer agents. However, as the number of agents are increased,
the task becomes significantly harder with high probabilities of collision and we clearly see the
performance benefits of our architecture when communication is critical. SARNet inherently learns
the action intentions of other agents during the current time step, instead of relying on the history of
other agents, enabling it to coordinate much better than the baselines.

5 Conclusion

We have introduced a novel framework, SARNet, for communication in multi-agent deep RL which
performs a structured attentive reasoning between agents to improve coordination skills. Through a
decomposition of the representations of communication into reasoning steps, our agents outperform
baseline methods in all tasks. Our experiments demonstrate key benefits of gathering insights from
(1) an agent’s own memories; and (2) the internal representations of the information available to
an agent. The communication architecture is learned end-to-end, and is capable of computing task-
relevant importance of each piece of communicated information from cooperating agents. While this
multi-agent communication mechanism shows promising results, we believe that we can further adapt
this method to scale to a larger number of agents, through the use of graph neural networks to initiate
and maintain communication with indirectly connected agents, along with decentralized learning.

Broader Impact

Multi-agent communication and cooperation is an active area of research that presents extreme
challenges for agents to learn efficiently and in a scalable manner. Our work hopes to introduce a
step towards learning sophisticated coordination strategies and behaviors in multi-agent learning
and cooperation. Robotics has always been a natural application area for multi-agent learning.
Communication in multi-agent research has varied applications, from the field of telecommunications,
security and surveillance, to in fact bidding agents for Google Adwords [28]. Applications for deep
reinforcement learning, especially in multi-robot systems, are still constrained due to the large sample
complexity, and more importantly, coordination and cooperation are still left unsolved for larger tasks.
Our work strives to achieve a robustness towards different learning mechanisms and tasks, while still
learning to cooperate and communicate.
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