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7 Supplementary materials

7.1 Accuracy of dynamic inversion depends on dimensionality and controller leak

Accurate convergence of the backward pass dynamics is crucial for the success of dynamic inversion.
We observe from Eq. (11) that the steady state of δl−1 depends upon the control signal for α > 0.
Furthermore, the nonlinear case in Eq. (16) features an implicit inversion of the nonlinearity, which
also may have nontrivial effects on the steady state. Supplementary figure S1 illustrates the accuracy
of dynamic inversion for different nonlinearities, relative dimensionalities, and leak values. We
observe that accuracy degrades gradually for increasing leak values. The dynamics are most accurate
for contracting networks, and least accurate for expanding networks, which require α > 0. Networks
with ReLU nonlinearities appear to be more inaccurate, but we attribute this to stability issues.

equal dim. contracting expanding

linear tanh ReLU

Figure S1: Evaluation of dynamic inversion accuracy for small example networks of dimensionality
20 × 20 (equal dim., left), 20 × 10 (contracting, middle), and 10 × 20 (expanding, left) for linear,
tanh and ReLU transfer functions. Values for δl were generated from a standard normal distribution,
and dynamic inversion was run to obtain values for δl−1. Accuracy was measured as the angle (in
degrees) between vectors δ̃l and δl (top), as well as δl−1 and the explicit inversion g−1(MDI

l δl)
(bottom), with MDI

l as in Eq. (17). Note that the accuracy of δl−1 is not measured directly for ReLU
because it does not have an explicit inversion. Weight matrices Wl and Bl were generated from
random uniform distributions, and then Bl was optimized with SSA (see section 7.5 below). A total
of 10 matrix initializations each with 10 generated values of δl were run for each case.
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7.2 Alternative control architecture for expanding layers

As noted in Section 3.2, the eigenvalues of the matrix (WlBl − αI) provide a good measure of the
linear stability of dynamic inversion (true linear stability is measured by the eigenvalues of the block
matrix in Eq. (S24) below). This precludes stability for α = 0 and dl > dl−1 (expanding layer),
as the matrix product WlBl will be singular. To address this, we propose an alternative control
architecture:

δ̇l−1(t) = −αδl−1(t) + Blδl −Blδ̃l(t) = −αδl−1(t) + Blel(t) (S1)
˙̃
δl(t) = −δ̃l(t) + Wlg(δl−1(t)), (S2)

where now the target error for layer l − 1, δl−1, integrates the error between δl and δ̃l directly,
through the feedback matrix Bl. This can be interpreted as proportional feedback control with a fast
controller. In this system, stability instead depends on the matrix BlWl − αI (assuming the readout
dynamics are fast, and so δ̃l = Wlδl−1). Note that this scheme either requires identical feedback
weights for the target error δl and the current estimate δ̃l, or a separate population which calculates
the error between these, propagated back as Bl(δ̃l − δl) = Blel. This second option would feature
error-coding units in the backward pass, similar to predictive coding (Whittington and Bogacz, 2019).

Figure S2: Schematic of alternate architecture for backward pass of dynamic inversion.

7.3 Single-loop dynamic inversion

Here we provide more details for single-loop dynamic inversion (SLDI). We first describe the
backward pass dynamics for some simple example networks, and then discuss the more general case.
We consider a network with L = 3 layers. In the backward pass, our aim is to begin with the output
error, δ3, and to arrive at the error for the two hidden layers, δ1 and δ2, simultaneously. Single-loop
inversion dictates that we have a single feedback loop from the output (controller u3(t)) to the first
hidden layer, with weight matrix B. Considering a nonlinear controller, the dynamics will then be

δ̇1(t) = −δ1(t) + Bu3(t) (S3)

δ̇2(t) = −δ2(t) + W2g(δ1(t)) (S4)
u̇3(t) = −αu3(t) + W3g(δ2(t))− δ3. (S5)

If the network features equal or expanding layer-by-layer dimensionalities (d1 ≥ d2 ≥ d3), then we
can describe the steady states of the two errors δ2 and δ1 as

δ2 = g−1(W+
3 (δ3 + αu3)) (S6)

δ1 = g−1(W+
2 δ2) = g−1(W+

2 g
−1(W+

3 (δ3 + αu3))), (S7)
where we have used the fact that each weight matrix has a well-defined left (pseudo)-inverse. When the
controller has no leak (α = 0), the steady states here are equivalent to performing dynamic inversion
sequentially, layer by layer. This generalizes to more hidden layers (L > 3) in a straightforward way.

In the case that the network has contracting layer-by-layer dimensionality (d1 < d2 < d3), but is
linear, we can also describe the steady state. This corresponds to a linear version of the architecture
used in the nonlinear regression experiment, for which we test SLDI. Here, we can write the steady
states for δ2 and δ1 as

δ2 = B(W3W2B)−1δ3 (S8)

δ1 = B(W2B)−1δ2 = B(W2B)−1B(W3W2B)−1δ3. (S9)
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For comparison, we also write the corresponding sequential DI steady state, in which each pair of
hidden layers have feedback weights B2 and B3. In this case, it is

δ2 = B3(W3B3)−1δ3 (S10)

δ1 = B2(W2B2)−1δ2 = B2(W2B2)−1B3(W3B3)−1δ3. (S11)

We thus see that the two solutions are distinct in this case, though similarities may still persist
depending upon how the feedback weights are initialized. For example, in the nonlinear regression
experiment shown in the main text, we initialize the SLDI feedback as B = −B1B2, where B1

and B2 are the feedback matrices for sequential DI. For the negative transpose initialization, this
makes B = −WT

1 W
T
2 . Generalizing SLDI to arbitrary dimensionalities, nonlinearities, and nonzero

controller leak makes the steady state errors and relationship to sequential dynamic inversion less
clear. Empirical evidence in the nonlinear regression experiment in the main text suggests a rough
correspondence can persist between SLDI and sequential DI even in the general case (Fig. 3k), but
more work is needed to examine this more closely.

7.3.1 Linearized case

Considering the alternative treatment of nonlinearities, we can define the SLDI dynamics as

δ̇1(t) = −δ1(t) + Bu(t) (S12)

δ̇2(t) = −δ2(t) + W2(δ1(t)� g′(a1)) (S13)

u̇(t) = W3(δ2(t)� g′(a2))− δ3, (S14)

where � indicates element-wise division. This somewhat peculiar handling of nonlinearities is to
obtain the same formalism as the layer-wise dynamic inversion described in the main text. For equal
or expanding layers, the steady states of the two errors δ2 and δ1 will be

δ2 = W+
3 (δ3 + αu3) ◦ g′(a2) (S15)

δ1 = W+
2 δ2 ◦ g′(a1) = W+

2 (W+
3 (δ3 + αu3) ◦ g′(a2)) ◦ g′(a1). (S16)

Once again, when the controller has no leak, this will produce the same steady state as sequential
dynamic inversion.

7.4 Relation of dynamic inversion to Gauss-Newton optimization

As mentioned in the main text, we suspect that dynamic inversion may relate to second-order
methods. We study a simple case here as an illustration, and leave a more thorough analysis for
future work. Following the derivations in Botev et al. (2017), we can write the block-diagonal sample
Gauss-Newton (GN) matrix for a particular layer l as

Gl = Ql ⊗ Gl, (S17)

where Ql = hl−1h
T
l−1 is the sample input covariance to layer l and Gl is the “pre-activation” GN

matrix, defined recursively as

Gl = DlW
T
l+1Gl+1Wl+1Dl = DlW

T
l+1Cl+1C

T
l+1Wl+1Dl, (S18)

with Dl = diag(g′(al)), and Cl is a square-root representation of Gl. The GN update to the weight
matrix of layer l can be written in vectorized form as ∆vec(Wl) ∝ −G−1l g, where g is a vectorized
version of the standard backprop gradient, as in Eq. (2). In order to avoid vectorization (and thus
simplify the comparison with dynamic inversion), we make the assumption that the input to this layer
is whitened, making Ql = Il. This allows us to write the GN update in non-vectorized form:

∆Wl ∝ −G−1l δlh
T
l−1 = (DlW

T
l+1Cl+1C

T
l+1Wl+1Dl)

−1DlWl+1δl+1h
T
l−1 (S19)

≈ (CT
l+1Wl+1Dl)

+C+
l+1δl+1h

T
l−1. (S20)

Note that the approximate equality is due to the assumption that both (CT
l+1Wl+1Dl) has a left

pseudoinverse, and Cl+1 has a right pseudoinverse, which depends on the relative dimensionality of
layers l and l + 1. Considering the simplest case, optimizing the penultimate set of weights WL−1

3



for a network solving regression with squared error loss, we have GL = I (and thus CL = I), and
δL = e, and so the update becomes

∆WL−1 ∝ −(WLDL−1)+ehT
L−1. (S21)

The equivalent update for dynamic inversion with a nonlinear controller would be
∆WL−1 ∝ −g−1(W+

Le)hT
L−1, (S22)

where we see a clear resemblance. The main difference arises from how the nonlinearity appears —
in dynamic inversion it is handled implicitly in the dynamics, whereas for layer-wise Gauss-Newton
optimization, it is linearized. If we instead consider the linearized version of dynamic inversion, we
would obtain

∆WL−1 ∝ −DL−1W
+
Leh

T
L−1, (S23)

where we now have a similar term to Eq. (S21), but it is not inverted. This suggests that a closer
relationship between DI and GN optimization could be obtained by performing element-wise division
by the gradient of the nonlinearity instead of multiplication (this would also transform the element-
wise division in Eqs. (S13) and (S14) into multiplication). In practice, we found such treatment of
nonlinearities to be unstable, and did not explore them in depth here.

A more thorough analysis is merited on the relationship between Eqs. (S21), (S22), and (S23)
(as well as the types of nonlinear inversions found in (S22) and a more general comparison of
dynamic inversion and GN optimization). We note that layer-wise whitening is performed in a
recent model proposing to map natural gradient learning onto feedforward networks (Desjardins
et al., 2015), suggesting that the strategic placement of whitening transformations in a network with
dynamic inversion may produce a more accurate approximation to Gauss-Newton or natural gradient
optimization. As mentioned in the main text, a more promising avenue would likely be to map
dynamic inversion onto target propagation, where recent work has shown a more clear relationship to
second-order learning (Meulemans et al., 2020; Bengio, 2020).

7.5 Stability optimization

In general, the dynamic inversion system dynamics for a particular layer l are not stable when
initialized with random matrices Wl and Bl (R-Init). We follow procedures outlined in Vanbiervliet
et al. (2009) and Hennequin et al. (2014) to optimize linear stability by minimizing the smoothed
spectral abscissa (SSA; a smooth relaxation of the spectral abscissa, the maximum real eigenvalue).
The full system matrix can be written in block form as

Ml =

[
−I Bl

Wl −αI

]
, (S24)

with the first and second rows corresponding to the dynamics of δl−1 and ul, respectively, of Eqs. (5)
and (10). In brief, we calculate the gradient of the SSA with respect to the matrix Bl, and make small
steps until the maximum eigenvalue is sufficiently negative. We refer the reader to the references
above for details. SSA optimization can be done both on Wl and Bl, but we chose to optimize only
Bl in order to have full control on the initialization of Wl.

7.6 Algorithms for dynamic inversion

We provide pseudocode for recursively calculating the backpropagated error signals (δl) for dynamic
inversion (DI) and non-dynamic inversion (NDI), including the different schemes introduced in
Fig. 2. Following the calculation of the error signals, weights and biases are updated according to the
standard backpropagation rules (Eq. (2)).

Algorithm 1 Dynamic Inversion (Sequential, nonlinear controller)

function DYN-INV (Wl,Bl, g(·), α, δl, dt, tsteps):
δl−1,ul ← 0
for t = 1 to tsteps do
δl−1 += dt(−δl−1 + Blul)
ul += dt(−αul + Wlg(δl−1)− δl)

end for
return δl−1
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Algorithm 2 Dynamic Inversion (Sequential, linearized controller)

function DYN-INV (Wl,Bl, g
′(al−1), α, δl, dt, tsteps):

δl−1,ul ← 0
for t = 1 to tsteps do
δl−1 += dt(−δl−1 + Blul)
ul += dt(−αul + Wlδl−1 − δl)

end for
return δl−1 ◦ g′(al−1)

Algorithm 3 Two-Layer Dynamic Inversion (Repeat hidden layers, nonlinear controller)

function REP-2L-DYN-INV (Wl−1,Wl,Bl−1,Bl, gl(·), gl−1(·), αl, αl−1, δl, dt, tsteps):
δl−1, δl−2,ul,ul−1 ← 0
for t = 1 to tsteps do
δl−1 += dt(−δl−1 + Blul)
ul += dt(−αlul + Wlgl(δl−1)− δl)
δl−2 += dt(−δl−2 + Bl−1ul−1)
ul−1 += dt(−αl−1ul−1 + Wl−1gl−1(δl−2)− δl−1)

end for
return (δl−1, δl−2)

Algorithm 4 Two-Layer Dynamic Inversion (Single loop, nonlinear controller)

function SL-2L-DYN-INV (Wl−1,Wl,B, gl(·), gl−1(·), α, δl, dt, tsteps):
δl−1, δl−2,ul ← 0
for t = 1 to tsteps do
δl−2 += dt(−δl−2 + Bul)
δl−1 += dt(−δl−1 + Wl−1gl−1(δl−2))
ul += dt(−αlul + Wlgl(δl−1)− δl)

end for
return (δl−1, δl−2)

Algorithm 5 Error propagation for BP, FA, PBP, and NDI

function ERR-INV (algo,Wl,Bl, g
′(al−1), α, δl):

Ml = switch(algo):
case(BP): WT

l
case(FA): Bl

case(PBP): W+
l

case(NDI):
if dl > dl−1 then

(BlWl − αI)−1Bl

else
Bl(WlBl − αI)−1

end if

δl−1 ←Mlδl ◦ g′(al−1)
return δl−1
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Experiment Architecture Nonlinearities Training
Iters

Learning
Rate

Weight
Decay

Leak (α)

Linear
regression

30-20-10 linear-linear 2000 10−2 0 0 (blue); 10−3

(yellow);
10−2 (red)

Nonlinear
regression

30-20-10-10 tanh-tanh-
linear

12000 10−2 0 0 (blue); 10−3

(yellow);
10−2 (red)

MNIST
classification

784-1000-10 tanh-softmax 6× 105

(10 epochs)
10−3 10−6 0 (blue); 10−2

(yellow)
MNIST
autoencoding

784-500-250-30
-250-500-784

tanh-tanh-
linear-tanh-
tanh-linear

1.6× 106

(25 epochs)
10−6 10−10 10−3 (blue);

10−2 (yellow)

Table 1: Hyperparameters and architectures for all experiments.

7.7 Simulation details

7.7.1 General comments

Due to instabilities in the PBP and NDI algorithms during the first several iterations of training, we
imposed a maximum norm for the backpropagated error signals for linear and nonlinear regression
(‖δ‖ ≤ 10 for linear regression, ‖δ‖ ≤ 1 for nonlinear regression). This was not necessary for
MNIST classification or MNIST autoencoding. This did not affect BP and FA algorithms, and if
anything places a handicap on the dynamic inversion algorithms. Stability was measured initially and
throughout training by computing the maximum real eigenvalue for the block matrix in Eq. (S24).

7.7.2 Linear regression (Fig. 3a-f)

The linear regression example utilized a network with a single hidden layer (dim. 30-20-10) following
Lillicrap et al. (2016). Training data was generated in the following way: input data x was generated
independently for each dimension from a standard normal distribution, and target output t was
generated by passing this input through a matrix T, with elements generated randomly from a
uniform distribution (U(−1, 1)) such that t = Tx. No bias units were used in the network (nor to
generate the test data). Weight matrices (W0, W1) were initialized with random uniform distributions
(U(−0.01, 0.01)) and all algorithms began with exact copies. The random feedback matrix (B, R-Init)
was generated from the same distribution, but for feedback alignment, this distribution had a larger
spread (U(−0.5, 0.5) as in Lillicrap et al. (2016); negative transpose initialization for FA was also
scaled: B = −50WT ). Training used squared error loss, and we plot the training error as normalized
mean squared error (NMSE) in which the error for each algorithm is normalized by the maximum
error across all algorithms and iterations, so that training begins with a normalized error of ~1. The
learning rate was set to 10−2 for all algorithms and was not optimized.

7.7.3 Nonlinear regression (Fig. 3g-k)

The nonlinear regression example was also adapted from Lillicrap et al. (2016) and used a network
with two hidden layers (dim. 30-20-10-10) and tanh nonlinearities (with linear output). Training
data was generated from a network with the same architecture, but with randomly generated weights
and biases (all generated from a uniform distribution, U(−0.01, 0.01)). Feedforward and feedback
weight matrices were initialized in the same way as the linear regression example, and bias weights
were initialized to zero. Training loss was again squared error, and normalized in the same was as for
linear regression. The learning rate was set to 10−3 for all algorithms and was not optimized.

7.7.4 MNIST classification (Fig. 4a)

MNIST classification was performed on a single hidden layer network (dim. 784-1000-10 as in
Lillicrap et al. (2016)) with a tanh nonlinearity and a softmax output with cross-entropy loss. The
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standard training (60000 examples) and test (10000 examples) sets were used. Data was first
preprocessed by subtracting the mean from each pixel dimension and normalizing the variance
(across all pixels) to 1. Weight matrices and biases were initialized in the same way as for linear and
nonlinear regression. Training was performed online (no batches). The learning rate was set to 10−3

for all algorithms and was not optimized. An additional weight decay of 10−6 was also used.

7.7.5 MNIST autoencoder (Fig. 4b-d)

MNIST autoencoding was done on a network with architecture 784-500-250-30-250-500-784 with
nonlinearities tanh-tanh-linear-tanh-tanh-linear, similar to Hinton and Salakhutdinov (2006) but
with one hidden layer removed. The standard MNIST training set was used (60000 examples), and
performance was measured on this dataset, without the use of the test set. Data was preprocessed so
that each pixel dimension was between 0 and 1 (data was not centered). To speed up simulations,
training was done on mini-batches of size 100. The learning rate was set to 10−6 for all algorithms,
with a weight decay of 10−10. Learning rate and mini-batch size were not optimized, however, we
found that PBP and NDI algorithms became unstable for larger learning rates.

7.8 Code

Code for running dynamic inversion, and for reproducing the experiments shown here can be found
at https://github.com/wpodlaski/dynamic-inversion.
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