
Supplementary Material for
“What shapes feature representations?

Exploring datasets, architectures, and training”

A Supplemental Figures

Figure A.1: Feature decodability in models with a ResNet-50 architecture trained on the Navon
dataset. Accuracy decoding features (shape, texture) from an untrained model (left) versus from
shape- (center) and texture-trained (right) models. Results corresponding to trained models are mean
across models trained on 5 cv splits. Chance = 1

23 = 4.3% (dashed line). Target features are enhanced
relative to the untrained model, whereas non-target features are suppressed.

Figure A.2: Non-target features are suppressed in the post-pool layer of models with a ResNet-
50 architecture trained on the Trifeature dataset. Accuracy decoding features (shape, texture,
color) for models trained to classify shape (left), texture (center), or color (right). Chance = 1

7 =
14.3%. As observed with the Navon dataset and in the AlexNet models, non-target features are
suppressed in trained models relative to the untrained model.

13



Figure A.3: Non-target features that are correlated with the target feature are suppressed in
ResNet-50. For both datasets in which shape and color (upper row) and shape and texture (lower
row) are correlated, target features are enhanced (left column), whereas non-target features correlated
with the the target feature (“correlated non-target feature”, right column) are suppressed. As observed
in experiments using an AlexNet architecture, suppression of the correlated non-target feature is
largely constant across correlation strengths (x axis).

Figure A.4: Decoding accuracy for models with an AlexNet architecture trained on the
Trifeature (Correlated) datasets. See Figure 5 for these results plotted in terms of enhance-
ment/suppression relative to an untrained model.

14



Figure A.5: Decoding accuracy for models with a ResNet-50 architecture trained on the Trifea-
ture (Correlated) datasets. as a function of the degree of correlation of the non-target feature with
the target feature in See Figure A.3 for these results plotted in terms of enhancement/suppression
relative to an untrained model.

Figure A.6: When two features redundantly predict the label, models with a ResNet-50 archi-
tecture preferentially learn one feature. Color is more decodable than shape, and shape is more
decodable than texture, when ResNet-50 is trained on perfectly predictive pairs, consistent with the
pattern we observed in AlexNet (Figure 4).

15



Figure A.7: Models with an AlexNet architecture sometimes suppress features that perfectly
predict the label. Models trained on a dataset in which shape and color redundantly predict the label
suppress shape in pool3 and fc6 relative to an untrained model. Models trained on a dataset in which
shape and texture predict the label suppress texture in pool3.

Figure A.8: Models with a ResNet-50 architecture sometimes suppress features that perfectly
predict the label. Models trained on a dataset in which shape and color redundantly predict the label
suppress shape in the post-pool layer relative to an untrained model. For reasons of computational
resources, we did not decode from the pre-pool layer.

16



A.1 Binary feature tasks

Figure A.9: The dynamics of feature learning when the easy feature has relatively low predictivity
(0.65) and the hard feature has high predictivity (0.9). The easy feature is decodable above chance
(∼ 75%, chance is 50%) before training (epoch 0), while the difficult feature is not. Perhaps because
of this, the easy feature is learned first, and test performance on this feature, as well as its decodability,
spike early. As the more difficult feature is learned, the decodability and use of the easier feature
declines, although not to chance, and the more difficult and predictive feature is still decodable and
used less than 80% of the time. (Averages across 5 runs.)

(a) Nonlinear decoder accuracy. (b) Advantage over linear decoder.

Figure A.10: Nonlinear decoders trained on a larger dataset (2048 examples) are still unable to recover
the more difficult feature when it is suppressed by the easier feature. (a) The nonlinear decoding
accuracy of the difficult feature still declines drastically when the easy feature is more predictive. (b)
While the nonlinear decoders do have some advantage over linear decoders (trained with the same
2048 examples), particularly when the easy feature has moderately high predictivity, the magnitude
of the advantage is small. (Results are from same models reported in Fig. 6, with only the decoders
trained on the larger dataset. The nonlinear decoders were a 2-layer fully connected network, with 64
hidden units. Panel a contains a linear model fit, while panel b contains a loess curve.)

17



A.2 RSA

(a) Similarity by architecture and task pairing. (b) Details of cross-task similarity.

Figure A.11: Two views of the RSA results on the Navon tasks. (a) The results across the two
architectures we considered, and different possible training task pairings: two different training tasks,
an untrained model vs. a trained one, and two models trained on the same task. In general, whether
models are trained on the same task significantly drives RSA results, although untrained models
do have some similarity to trained models. (b) Representational similarity between all models and
layers on each possible pair of tasks. While similarity is highest between models trained on the same
task, the magnitude of that similarity varies across tasks. For instance, two texture-trained models
are much less similar to one another than shape trained models. See Fig. 7 for equivalent analyses
on the trifeature tasks. The overall results are similar, but the Navon dataset shows slightly higher
similarity within models than the trifeature dataset, and slightly more of an effect of architecture on
representational similarity. (Results are from 5 runs per condition.)

Figure A.12: The effect of feature correlations (between shape and texture) on representational
similarity in the trifeature dataset. The representational similarity analysis is most sensitive to the
target feature, even when another feature is relatively strongly correlated with it. (Results from 5 runs
per condition, with matched architecture and layer.)

18



(a) RSA with correlation distance similarity. (b) RSA with Euclidean similarity.

(c) CKA.

Figure A.13: Further representation analyses for the toy tasks. Here we expand the results from the
main text figure Fig. 8, including both comparisons to intermediate easy feature predictivity values,
and different analysis approaches. The results for intermediate easy feature predictivities interpolate
between the cases shown in the main text, but this interpolation reflects the bias towards the easier
features. In the main text (Fig. 8) we used RSA with correlation distance as the metric. We show
an expanded version of this figure in a). We also show that (b) RSA with Euclidean distance as the
metric, and (c) CKA [22] both yield quite similar patterns of results. Our conclusions do not appear
to be limited to the particular analysis we considered in the main text.

19



A B
0 0
0 1
1 0
1 1

B

A

B

A

A B

A∧B A∨B

A⊕B

A∨B

A
∧B

RDM

 1 1
√
2

0 1
1



A B

A∧¬B ¬A∧B

A⊕B

A∧¬B

¬A
∧B

RDM

 1 1 0√
2 1

1



Correlation: -0.8

Figure A.14: An intuitive example of why representational similarity might be lower on nonlinear
tasks — there are multiple solutions resulting in different RDMs. We consider two possible ways that
a network with two hidden units could compute the XOR of two binary inputs: either by an AND
and an OR (top row), or by units that select each of the valid combinations (bottom row). When the
inputs are passed through these networks, and representations are computed at the hidden layer, the
patterns are different. In fact, when the representational dissimilarity matrices are computed, and then
the correlation is taken between the two networks, it is actually negative! This raises the question of
why positive representational similarities are observed at all between different networks computing
XOR. The answer likely lies in overparameterization — a very large hidden layer will likely contain
units which partially represent both solutions. However, the network will still likely favor one or the
other, thus resulting in lower correlations between RDMs than on simpler tasks. (This will likely be
exacerbated by other features being partially represented, and so on.)

20



B Methods

B.1 Decoding

B.1.1 Decoding from vision models (Sections 3 and 4)

Layer definitions. For AlexNet, we decoded from “pool3” (the output of the final convolutional
layer, including the max pool), “fc6” (the first linear layer of the classifier, including the ReLU), or
“fc7” (the second linear layer of the classifier, incluing the ReLU). For ResNet-50, we decoded from
“pre-pool” (the output of the final convolutional layer prior to the global average pool) and “post-pool”
(after the global average pool).

Training procedure. The inputs to a decoder were activations from some layer of a trained, frozen
model in response to images normalized by the statistics of the dataset on which the model had
been trained (images were unnormalized when decoding from untrained models). We trained and
validated decoders on either a version of the Trifeature dataset (when decoding from models trained
on a Trifeature task) or a version of the Navon dataset; in both, sets of features were uncorrelated.

We trained decoders to minimize cross-entropy loss for 250 epochs using Adam optimization [20] and
a batch size of 64 for each of 6 learning rates (10−6, 10−4, 10−3, 10−2, 10−1, 1) and 6 weight decays
(0, 10−6, 10−4, 10−3, 10−2, 10−1). We selected the decoder with the highest validation accuracy
(when using trained models, we had trained models on 5 cv-splits, so took the mean validation
accuracy across the 5 trained models) over the training period over the set of hyperparameter
combinations.

B.1.2 Decoding from models trained on binary features (Section 4.3)

Decoders were trained for 5000 epochs with a learning rate of 10−3. We did not use weight decay or
search over hyperparameters for the binary feature datasets. For the nonlinear decoding analysis, we
used decoders with a single hidden layer with 64 units and a leaky-rectifier nonlinearity, trained for
20000 epochs.

B.2 Datasets

B.3 Trifeature

In Fig. B.1 we show sample stimuli illustrating the range of features in the trifeature dataset.

Figure B.1: Sample images showing all colors, shapes, and textures used in the trifeature dataset.

B.3.1 Binary features

As described in the main text, the datasets were composed of inputs that were 32-element binary
vectors, and outputs (labels) that were single binary scalars (except in the multi-task case). We
divided the inputs into two domains of 16 inputs each, and the labels were probabilistically related to

21



a feature extracted from each domain. Each feature had a predictivity (p (label|feature)). We sampled
the datasets by first assigning a label of 1 to half of the inputs, and then for each domain flipping the
label with probability 1− predictivity, and then sampling a domain input uniformly from the set of
inputs that matched that feature value. For example, if the label was 1, and we flipped the label for the
XOR feature, we would sample an input where the first two inputs of the XOR domain had parity 0.

B.4 Representational Similarity Analyses

For the Trifeature datasets, representational similarity analyses were performed using 10 examples
per combination of features of the 100,000 uncorrelated images. These images would sometimes have
some small overlap with the train and val sets, but it was difficult to exclude the sets for all images,
and generally due to the small sizes of the train sets this overlap would be no more than a 10% of the
RSA dataset. Similarly, for the Navon dataset, we performed the representational similarity analyses
on all images. We found that RSA on only train or only validation data did not produce very different
results between Navon models for which it was easy to make the comparison.

For the binary feature datasets, representational similarity analyses were performed on a new dataset
sampled independently from the training and evaluation data for the models; the predictivity of the
features in this dataset did not matter, since the labels are not used in RSA, only the patterns of
activation produced by the inputs.

We also compared to CKA [22], as well as RSA with Euclidean distance as the RDM metric, and
found similar results in both cases (Fig. A.13), and similarly with Spearman rank correlation rather
than Pearson between the RDMs.

22


	Introduction
	Related Work
	Does feature selection happen by enhancement or suppression?
	What's already decodable from an untrained model?
	What's decodable after training?

	What if multiple features are predictive?
	What if two features redundantly predict the label?
	What if one feature perfectly predicts the label, but another only partially predicts it?
	Do models prefer reliable but difficult features, or easy but less reliable ones?

	What affects the representational similarity between models?
	Conclusion
	Supplemental Figures
	Binary feature tasks
	RSA

	Methods
	Decoding
	Decoding from vision models (Sections 3 and 4)
	Decoding from models trained on binary features (Section 4.3)

	Datasets
	Trifeature
	Binary features

	Representational Similarity Analyses


