## Appendix

Section A provides a proof that isometry preserves angles. Section B derives the closed-form of the gradient projection on the tangent space at a point in the Stiefel manifold. Section C gives further experimental results. Section D lists the grid considered for hyper-parameters.

### A Isometry Preserves Angles

**Theorem A.1.** *T* is an isometry iff it preserves inner products.

*Proof.* Suppose T is an isometry. Then for any  $v, w \in V$ ,

$$\begin{aligned} \|T(v) - T(w)\|^2 &= \|v - w\|^2\\ \langle T(v) - T(w), T(v) - T(w) \rangle &= \langle v - w, v - w \rangle\\ \|T(v)\|^2 + \|T(w)\|^2 - 2\langle T(v), T(w) \rangle &= \|v\|^2 + \|w\|^2 - 2\langle v, w \rangle. \end{aligned}$$

Since ||T(u)|| = ||u|| for any u in V, all the length squared terms in the last expression above cancel out and we get

$$\langle T(v), T(w) \rangle = \langle v, w \rangle.$$

Conversely, if T preserves inner products, then

$$\langle T(v-w), T(v-w) \rangle = \langle v-w, v-w \rangle,$$

which implies

$$||T(v-w)|| = ||v-w||,$$

and since T is linear,

$$||T(v) - T(w)|| = ||v - w||.$$

This shows that T preserves distance.

#### **B** Closed-form of Projection in Tangent Space

This section closely follows the arguments of Tagare [2011].

Let  $\{X \in \mathbb{R}^{n \times p} | X^\top X = I\}$  defines a manifold in Euclidean space  $\mathbb{R}^{n \times p}$ , where n > p. This manifold is called the Stiefel manifold. Let  $\mathcal{T}_X$  denotes a tangent space at X.

**Lemma B.1.** Any  $Z \in \mathcal{T}_X$  satisfies:

$$Z^{\top}X + X^{\top}Z = 0$$

i.e.  $Z^{\top}X$  is a skew-symmetric  $p \times p$  matrix.

Note, that X consists of p orthonormal vectors in  $\mathbb{R}^n$ . Let  $X_{\perp}$  be a matrix consisting of the additional n - p orthonormal vectors in  $\mathbb{R}^n$  *i.e.*  $X_{\perp}$  lies in the orthogonal compliment of X,  $X^{\top}X_{\perp} = 0$ . The concatenation of X and  $X_{\perp}$ ,  $[XX_{\perp}]$  is  $n \times n$  orthonormal matrix. Then, any matrix  $U \in \mathbb{R}^{n \times p}$  can be represented as:  $U = XA + X_{\perp}B$ , where A is a  $p \times p$  matrix, and B is a  $(n - p) \times p$  matrix.

**Lemma B.2.** A matrix  $Z = XA + X_{\perp}B$  belongs to the tangent space at a point on Stiefel manifold  $\mathcal{T}_X$  iff A is skew-symmetric.

Let  $G \in \mathbb{R}^{n \times p}$  be the gradient computed at X. Let the projection of the gradient on the tangent space is denoted by  $\pi_{\mathcal{T}_X}(G)$ .

**Lemma B.3.** Under the canonical inner product, the projection of the gradient on the tangent space is given by  $\pi_{\mathcal{T}_X}(G) = AX$ , where  $A = GX^\top - XG^\top$ .

*Proof.* Express  $G = XG_A + X_{\perp}G_B$ . Let Z be any vector in the tangent space, expressed as  $Z = XZ_A + X_{\perp}Z_B$ , where  $Z_A$  is a skew-symmetric matrix according to B.2. Therefore,

$$\pi_{\mathcal{T}_X}(G) = \operatorname{tr}(G^{\top}Z),$$
  
=  $\operatorname{tr}((XG_A + X_{\perp}G_B)^{\top}(XZ_A + X_{\perp}Z_B)),$   
=  $\operatorname{tr}(G_A^{\top}Z_A + G_B^{\top}Z_B).$  (11)

Writing  $G_A$  as  $G_A = sym(G_A) + skew(G_A)$ , and plugging in (11) gives,

$$\pi_{\mathcal{T}_X}(G) = \operatorname{tr}(\operatorname{skew}(G_A)^\top Z_A + G_B^\top Z_B).$$
(12)

Let  $U = XA + X_{\perp}B$  is the vector that represents the projection of G on the tangent space at X. Then,

$$\langle U, Z \rangle_c = \operatorname{tr}(U^{\top}(I - \frac{1}{2}XX^{\top})Z),$$
  
=  $\operatorname{tr}((XA + X_{\perp}B)^{\top}(I - \frac{1}{2}XX^{\top})(XZ_A + X_{\perp}Z_B)),$   
=  $\operatorname{tr}(\frac{1}{2}A^{\top}Z_A + B^{\top}Z_B)$  (13)

By comparing (12) and (13), we get  $A = 2\text{skew}(G_A)$  and  $B = G_B$ . Thus,

$$\begin{split} U &= 2X \operatorname{skew}(G_A) + X_{\perp} G_B, \\ &= X(G_A - G_A^{\top}) + X_{\perp} G_B, \quad \because \operatorname{skew}(G_A) = \frac{1}{2}(G_A - G_A^{\top}) \\ &= XG_A - XG_A^{\top} + G - XG_A, \quad \because G = XG_A + X_{\perp} G_B \\ &= G - XG_A^{\top}, \\ &= G - XG^{\top} X, \quad \because G_A = X^{\top} G, \\ &= GX^{\top} X - XG^{\top} X, \\ &= (GX^{\top} - XG^{\top}) X \end{split}$$

| - | - |  |
|---|---|--|
|   |   |  |
|   |   |  |
|   |   |  |

## C More Results

Table 3: Accuracy (2) and Forgetting (3) results of continual learning experiments for larger episodic memory sizes. 2, 3 and 5 samples per class per task are stored, respectively. Top table is for Split CIFAR. Bottom table is for Split miniImageNet.

|                 | <i>v</i> 1       | 0               |                  |                  |                  |                  |  |
|-----------------|------------------|-----------------|------------------|------------------|------------------|------------------|--|
| Метнор          |                  | ACCURACY        |                  | FORGETTING       |                  |                  |  |
|                 | 2                | 3               | 5                | 2                | 3                | 5                |  |
| AGEM            | 52.2 (±2.59)     | 56.1 (±1.52)    | 60.9 (±2.50)     | 0.16 (±0.01)     | 0.13 (±0.01)     | 0.11 (±0.01)     |  |
| ER-RING         | 61.9 (±1.92)     | 64.8 (±0.77)    | 67.2 (±1.72)     | 0.11 (±0.02)     | 0.08 (±0.01)     | 0.06 (±0.01)     |  |
| ORTHOG-SUBSPACE | 64.7 (±0.53)     | 66.8 (±0.83)    | 67.3 (±0.98)     | 0.07 (±0.01)     | 0.05 (±0.01)     | 0.05 (±0.01)     |  |
|                 |                  |                 |                  |                  |                  |                  |  |
| Метнор          |                  | ACCURACY        |                  |                  | FORGETTING       |                  |  |
|                 | 2                | 3               | 5                | 2                | 3                | 5                |  |
| AGEM            | 45.2 (±2.35)     | 47.5 (±2.59)    | 49.2 (±3.35)     | 0.14 (±0.01)     | 0.13 (±0.01)     | 0.10 (±0.01)     |  |
| ER-RING         | 51.2 (±1.99)     | 53.9 (±2.04)    | 56.8 (±2.31)     | 0.10 (±0.01)     | 0.09 (±0.02)     | 0.06 (±0.01)     |  |
| OPTHOG-SUPSPACE | $53.4(\pm 1.23)$ | $556(\pm 0.55)$ | $58.2(\pm 1.08)$ | $0.07(\pm 0.01)$ | $0.06(\pm 0.01)$ | $0.05(\pm 0.01)$ |  |

# **D** Hyper-parameter Selection

In this section, we report the hyper-parameters grid considered for experiments. The best values for different benchmarks are given in parenthesis.

• Multitask

```
- learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
    0.1 (MNIST perm, rot), 0.3, 1.0]
• Finetune
   - learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
    0.1 (MNIST perm, rot), 0.3, 1.0]
• EWC
   - learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
    0.1 (MNIST perm, rot), 0.3, 1.0]
   - regularization: [0.1, 1, 10 (MNIST perm, rot, CIFAR,
    miniImageNet), 100, 1000]
• AGEM
   - learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
    0.1 (MNIST perm, rot), 0.3, 1.0]
• MER
  - learning rate: [0.003, 0.01, 0.03 (MNIST, CIFAR,
    miniImageNet), 0.1, 0.3, 1.0]
   - within batch meta-learning rate: [0.01, 0.03, 0.1
    (MNIST, CIFAR, miniImageNet), 0.3, 1.0]
   - current batch learning rate multiplier: [1, 2, 5 (CIFAR,
    miniImageNet), 10 (MNIST)]
• ER-Ring
   - learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
    0.1 (MNIST perm, rot), 0.3, 1.0]
• ORTHOG-SUBSPACE
```

```
- learning rate: [0.003, 0.01, 0.03, 0.1 (MNIST perm,
rot), 0.2 (miniImageNET), 0.4 (CIFAR), 1.0]
```





(p) L16

16 Figure 3: Histogram of inner product of current task and memory gradients in all layers in Split CIFAR.