Field-wise Learning for Multi-field Categorical Data Supplementary Material

For simplicity, we use the notations consistently with our paper.

1 Derivatives

Define $s=\frac{-y}{1+\exp (y \hat{y})}$. The derivatives of Logloss on one sample (\mathbf{x}, y) are then given by:

$$
\frac{\partial \ell(\hat{y}, y)}{\partial U^{(i)}}=s V^{(i)} \mathbf{x}^{(i)} \mathbf{x}^{(-i)^{\top}}, \quad \frac{\partial \ell(\hat{y}, y)}{\partial V^{(i)}}=s U^{(i)} \mathbf{x}^{(-i)} \mathbf{x}^{(i)}{ }^{\top}, \quad \frac{\partial \ell(\hat{y}, y)}{\partial \mathbf{b}^{(i)}}=s \mathbf{x}^{(i)}
$$

Define $K^{(i)}=U^{(i)} U^{(i)^{\top}}\left(V^{(i)}-V_{\text {mean }}^{(i)}\right), k^{(i)}=U^{(i)} U^{(i)^{\top}} V_{\text {mean }}^{(i)}$, and $\mathbf{b}_{\text {diff }}^{(i)}=\mathbf{b}^{(i)}-\bar{b}^{(i)} \mathbf{1}_{d_{i}} . \bar{b}^{(i)}$ is the mean of elements in $\mathbf{b}^{(i)}$. Then for the regularization term $R_{1}^{(i)}=\left\|W_{b}^{(i)}-\overline{\mathbf{w}}_{b}^{(i)} \mathbf{1}_{d_{i}}^{\top}\right\|_{F}^{2}$ and $R_{2}^{(i)}=\left\|\overline{\mathbf{w}}_{b}^{(i)}\right\|_{F}^{2}$, corresponding derivatives are:

$$
\begin{gathered}
\frac{\partial R_{1}^{(i)}}{\partial U^{(i)}}=2\left(V^{(i)}-V_{\text {mean }}^{(i)}\right)\left(V^{(i)}-V_{\text {mean }}^{(i)}\right)^{\top} U^{(i)} \\
\frac{\partial R_{1}^{(i)}}{\partial V^{(i)}}=2\left(K^{(i)}-K_{\text {mean }}^{(i)}\right) \\
\frac{\partial R_{1}^{(i)}}{\partial \mathbf{b}^{(i)}}=2\left(\mathbf{b}_{\text {diff }}^{(i)}-\frac{\mathbf{1}_{d_{i}} \mathbf{1}_{d_{i}}^{\top}}{d_{i}} \mathbf{b}_{d i f f}^{(i)}\right), \\
\frac{\partial R_{2}^{(i)}}{\partial U^{(i)}}=2 V_{\text {mean }}^{(i)} V_{\text {mean }}^{(i)}{ }^{\top} U^{(i)}, \quad \frac{\partial R_{2}^{(i)}}{\partial V^{(i)}}=\frac{2}{d_{i}} k^{(i)} \mathbf{1}_{d_{i}}^{\top}, \quad \frac{\partial R_{2}^{(i)}}{\partial \mathbf{b}^{(i)}}=\frac{2 \bar{b}^{(i)} \mathbf{1}_{d_{i}}}{d_{i}} .
\end{gathered}
$$

The subscript "mean" denotes that associated variables are vectors calculated from the column averages of corresponding matrices, and such vectors are augmented accordingly when subtraction from matrices.

2 Proof of Eq.(8)

We firstly apply [1, Theorem 3.3] to a composition of loss function and our hypothesis set \mathcal{H} defined as $\ell \circ \mathcal{H}$. The range of $\ell \circ \mathcal{H}$ here is in $[0, c]$. This adds a c before $3 \sqrt{\frac{\log \frac{2}{\delta}}{2 n}}$ and one can easily verify this following the same steps of proof of [1, Theorem 3.3]. Next, according to Talagrand's lemma [1, Lemma 5.7], for an L_{ℓ}-Lipschitz continuous function ℓ, we have:

$$
\begin{equation*}
\widehat{\Re}_{S}(\ell \circ \mathcal{H}) \leq L_{\ell} \widehat{\Re}_{S}(\mathcal{H}) \tag{1}
\end{equation*}
$$

Combine Eq. (1) with [1, Theorem 3.3] and we complete the proof.

3 Proof of Theorem 3.1

Define $\tilde{\mathbf{x}}_{j}^{(-i)}=\left[\tilde{\mathbf{x}}_{j}^{(-i)^{\top}}, 1\right]^{\top}$ and use $<\cdot, \cdot>$ to denote inner-product. By definition of Rademacher complexity and the hypothesis set \mathcal{H}, we have:

$$
\begin{align*}
\widehat{\mathfrak{R}}_{S}(\mathcal{H}) & =\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{j=1}^{n} \sigma_{j} h\left(\mathbf{x}_{j}\right)\right] \tag{2}\\
& =\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{j=1}^{n} \sigma_{j} \sum_{i=1}^{m} \mathbf{x}_{j}^{(i)^{\top}}\left(W^{(i)^{\top}} \mathbf{x}_{j}^{(-i)}+\mathbf{b}^{(i)}\right)\right] \tag{3}\\
& \leq \frac{1}{n} \sum_{i=1}^{m} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{j=1}^{n} \sigma_{j} \mathbf{x}_{j}^{(i)^{\top}} W_{b}^{(i)^{\top}} \tilde{\mathbf{x}}_{j}^{(-i)}\right] \tag{4}\\
& =\frac{1}{n} \sum_{i=1}^{m} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{j=1}^{n}\left\langle W_{b}^{(i)}, \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\rangle\right] \tag{5}
\end{align*}
$$

and see that:

$$
\begin{align*}
& \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{j=1}^{n}\left\langle W_{b}^{(i)}, \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i))^{\top}}\right\rangle\right] \tag{6}\\
&= \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\langle W_{b}^{(i)}-\overline{\mathbf{w}}_{b}^{(i)} \mathbf{1}_{d_{i}}^{\top}, \sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\rangle+\left\langle\overline{\mathbf{w}}_{b}^{(i)} \mathbf{1}_{d_{i}}^{\top}, \sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\rangle\right] \tag{7}\\
&= \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\langle W_{b}^{(i)}-\overline{\mathbf{w}}_{b}^{(i)} \mathbf{1}_{d_{i}}^{\top}, \sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\rangle+\left\langle\overline{\mathbf{w}}_{b}^{(i)}, \sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)}\right\rangle\right] \tag{8}\\
& \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\|W_{b}^{(i)}-\overline{\mathbf{w}}_{b}^{(i)} \mathbf{1}_{d_{i}}^{\top}\right\|_{F}\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\|_{F}+\left\|\overline{\mathbf{w}}_{b}^{(i)}\right\|\left\|_{F}\right\| \sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \|_{F}\right] \tag{9}\\
& \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\|W_{b}^{(i)}-\overline{\mathbf{w}}_{b}^{(i)} \mathbf{1}_{d_{i}}^{\top}\right\|_{F}\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\|_{F}\right]+\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\|\overline{\mathbf{w}}_{b}^{(i)}\right\|_{F}\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)}\right\| \|_{F}\right] \tag{10}\\
& \leq N_{1}^{(i)} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\| \|_{F}\right]+N_{2}^{(i)} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)}\right\| \|_{F}\right] \tag{11}
\end{align*}
$$

Notice that following inequalities hold:

$$
\begin{align*}
& \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\|_{F}\right] \tag{12}\\
\leq & \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i))^{\top}}\right\|_{F}^{2}\right]^{\frac{1}{2}} \tag{13}\\
= & \left(\sum_{j=1}^{n}\left\|\tilde{\mathbf{x}}_{j}^{(-i)} \mathbf{x}_{j}^{(i)^{\top}}\right\|_{F}^{2}\right)^{\frac{1}{2}} \tag{14}\\
= & (m n)^{\frac{1}{2}} \tag{15}
\end{align*}
$$

Table 1: The hyper-parameters for each baseline. lr: learning rate; wdcy: weight decay; ebd_dim: embedding dimension or rank; a_p: number of anchor points; 12_reg: weight for L2 regularization term; dr: dropout rate.

Method	Avazu	Criteo
LR	lr: 0.1, wdcy: 1e-9	lr: 0.1, wdcy: 1e-9
GBDT	num_leaves: 1e4, max_depth: 100	num_leaves: 1 e 3 , max_depth: 50
FM	lr: 0.1, wdcy: 1e-6, ebd_dim: 100	lr: 0.01, wdcy: 1e-5, ebd_dim: 80
FFM	lr: 0.1, wdcy: 1e-6, ebd_dim: 8	lr: 0.1, wdcy: 1e-6, ebd_dim: 4
RaFM	lr: 0.01, wdcy: 1e-6, ebd_dim: $\{32,64,128\}$	lr: 0.01 , wdcy: $1 \mathrm{e}-6$, ebd_dim: $\{32,64,128\}$
LLFM	lr: 0.0001, a_p: 4, ebd_dim: 64, 12_reg:1e-6	lr: 0.0001, a_p: 2, ebd_dim: 64, 12_reg:1e-6
DeepFM	lr: 0.1, wdcy:1e-6, ebd_dim: 30, dr: 0.7	lr: 0.1, wdcy:1e-6, ebd_dim: 10 , dr: 0.3
IPNN	lr: 0.01, wdcy: 1e-6, ebd_dim: 40	lr: 0.01, wdcy: 1e-6, ebd_dim: 10
OPNN	lr: 0.01, wdcy: 1e-6, ebd_dim: 40	lr: 0.01, wdcy: 1e-6, ebd_dim: 10
Ours	lr: 0.1 , wdcy: $1 \mathrm{e}-8, \lambda$: $1 \mathrm{e}-5$, ebd_dim: 8	lr: 0.01 , wdcy: $1 \mathrm{e}-6, \lambda: 1 \mathrm{e}-3$, ebd_dim: $\log _{1.6}\left(d_{i}\right)$

Table 2: Standard deviations of the Logloss reported in our paper.

Method	Avazu	Criteo
LR	0.1×10^{-4}	0.1×10^{-4}
GBDT	0.0×10^{-4}	0.0×10^{-4}
FM	2.0×10^{-4}	2.3×10^{-4}
FFM	0.3×10^{-4}	0.3×10^{-4}
RaFM	0.0×10^{-4}	0.0×10^{-4}
LLFM	0.0×10^{-4}	0.0×10^{-4}
DeepFM	0.7×10^{-4}	0.8×10^{-4}
IPNN	1.2×10^{-4}	1.0×10^{-4}
OPNN	1.0×10^{-4}	1.0×10^{-4}
Ours	2.0×10^{-4}	0.5×10^{-4}

The first inequality uses Jensen's inequality, and the second equality uses the property $\mathbb{E}\left[\sigma_{i} \sigma_{j}\right]=$ $\mathbb{E}\left[\sigma_{i}\right] \mathbb{E}\left[\sigma_{j}\right]=0$ for $i \neq j$. The last equality uses the properties that $\mathbf{x}_{j}^{(i)}$ is a one-hot vector and $\tilde{\mathbf{x}}_{j}^{(-i)}$ has exactly $m 1$ s. Follow the same steps and we can get $\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\left\|\sum_{j=1}^{n} \sigma_{j} \tilde{\mathbf{x}}_{j}^{(-i)}\right\|_{F}\right] \leq(m n)^{\frac{1}{2}}$.
Combine above results and we can get:

$$
\begin{equation*}
\widehat{\Re}_{S}(\mathcal{H}) \leq \frac{1}{n}(m n)^{\frac{1}{2}} \sum_{i=1}^{m}\left(N_{1}^{(i)}+N_{2}^{(i)}\right)=\sqrt{\frac{m}{n}} \sum_{i=1}^{m}\left(N_{1}^{(i)}+N_{2}^{(i)}\right) \tag{16}
\end{equation*}
$$

so we complete the proof.

4 Experiment details

The hyper-parameters for each baseline are presented in Table 1 . Table 2 shows the standard deviations of the Logloss reported in our paper, which are based on 5 runs.

References

[1] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

