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Abstract

We present novel information-theoretic limits on detecting sparse changes in Ising
models, a problem that arises in many applications where network changes can
occur due to some external stimuli. We show that the sample complexity for
detecting sparse changes, in a minimax sense, is no better than learning the entire
model even in settings with local sparsity. This is a surprising fact in light of prior
work rooted in sparse recovery methods, which suggest that sample complexity
in this context scales only with the number of network changes. To shed light on
when change detection is easier than structured learning, we consider testing of
edge deletion in forest-structured graphs, and high-temperature ferromagnets as
case studies. We show for these that testing of small changes is similarly hard, but
testing of large changes is well-separated from structure learning. These results
imply that testing of graphical models may not be amenable to concepts such as
restricted strong convexity leveraged for sparsity pattern recovery, and algorithm
development instead should be directed towards detection of large changes.

1 Introduction

Recent technological advances have lead to the emergence of high-dimensional datasets in a wide
range of scientific disciplines [YY17; Cos+10; PF95; Bre15; Lok+18; WSD19; Ban18], where the
observations are modeled as arising from a probabilistic graphical model (GM), and the goal is to
recover the network [Orl+15]. While full network recovery is sometimes useful, and there has been a
flurry of activity [DM17; SW12] in this context, we are often interested in changes in network struc-
ture in response to external stimuli, such as changes in protein-protein interactions across different
disease states [IK12] or changes in neuronal connectivity as a subject learns a task [Moh+16].

A baseline approach is to estimate the network at each stage, and then compare the differences.
However, such observations exhibit significant variability, and the amount of data available may be
too small for this approach to yield meaningful results. On the other hand, reliably recovering net-
work changes should be easier than full reconstruction. While prior works have proposed inference
algorithms to explore this possibility [ZCL14; XCC15; FB16; BVB16; BZN18; Zha+19; Cai+19],
we do not have a good mathematical understanding of when this is indeed easier.

To shed light on this question, we propose to derive information-theoretic limits for two structural
inference problems over degree-bounded Ising models. The first is goodness-of-fit testing (GOF).
Let G(P ) be the network structure (see §2) of an Ising model P . GOF is posed as follows.

GOF : Given an Ising model P and i.i.d. samples from another Ising model Q,
determine if P = Q or if G(P ) and G(Q) differ in at least s edges.

The second is a related estimation problem, termed error-of-fit (EOF), that demands localising dif-
ferences in G(P ) and G(Q) (if distinct).

EOF: Given an Ising model P and i.i.d. samples from another Ising model Q that
is either equal to P , or has a network structure that differs from that of P in s
edges or more, determine the edges where G(P ) and G(Q) differ.
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Notice that the above problems are restricted to models that are either identical, or significantly
different. ‘Tolerant’ versions (separating small changes from large) are not pursued here. The main
question of interest is: For what classes of Ising models is the sample complexity of the above
inference problems significantly smaller than that of recovering the underlying graph directly?

Contribution. We prove the following surprising fact: up to relatively large values of s, the sam-
ple complexities of GOF and EOF are not appreciably separated from that of structure learning
(SL). Our bound is surprising in light of the fact that prior works [Liu+14; Liu+17; FB16; KLK19;
Cai+19] propose algorithms for GOF and EOF, and claim recovery of sparse changes is possi-
ble with sample complexity much smaller than SL. Concretely, for models with p nodes, degrees
bounded by d, and non-zero edge weights satisfying α ≤ |θij | ≤ β (see §2), the sample complexity
of SL is bounded as O(e2βdα−2 log p). We show that if s � √p, then the sample complexity of
GOF is at least e2βd−O(log(d))α−2 log p, and that if s� p, then the sample complexity of EOF has
the same lower bound. We further show that the same effect occurs in the restricted setting of detect-
ing edge deletions in forest-structured Ising models, and, to some extent, in detecting edge deletions
in high-temperature ferromagnets. In the case of forests, we tightly characterise this behaviour of
GOF, showing that for s � √p, GOF has sample complexity comparable to SL of forests, while
for s� √p, it is vanishingly small relative to SL. For high-temperature ferromagnets, we show that
detecting changes is easier than SL if s �

√
pd, while this does not occur if s �

√
pd. These are

the first structural testing results for edge edits in natural classes of Ising models that show a clear
separation from SL in sample complexity.

Technical Novelty. The lower bounds are shown by constructing explicit and flexible obstructions,
utilising Le Cam’s method and χ2-based Fano bounds. The combinatorial challenges arising in
directly showing obstructions on large graphs are avoided by constructing obstructions with well-
controlled χ2-divergence on small graphs, and then lifting these to p nodes via tensorisation in a
process that efficiently deals with combinatorial terms. The main challenge is obtaining precise
control on the χ2-divergence between graphs based on cliques, which is attained by an elementary
but careful analysis that exploits the symmetries inherent in Ising models on cliques. The most
striking instance of this is the ‘Emmentaler clique’ (Fig. 2), which is constructed by removing Θ(d2)
edges from a d-clique in a structured way. Despite this large edit, we show that it is exponentially
hard (in low temperatures) to distinguish this clique with large holes from a full clique.

1.1 Related Work

Statistical Divergence Based Testing. Related to our problem, but different from our setup, GOF
of Ising models has been studied under various statistical metrics such as the symmetrised KL di-
vergence [DDK19] and total variation [Bez+19]. More refined results and extensions have appeared
in [GLP18; DDK17; Can+17; Ach+18]. These are tests that certify whether or not a particular
statistical distance between two distribution is larger than some threshold. In contrast, our focus is
on structural testing and estimation, namely, whether or not the change in the network is a result
of edge-deletions or edge-additions. As such, statistically-based GOF tests do not have a direct
bearing on structural testing. Divergences can be large in structurally irrelevant ways, e.g., if a few
isolated nodes in a large graph become strongly interacting, a large KL divergence is induced, but
this is not a significant change in the network on the whole (Also see §E.1). In light of applications
which demand structure testing as a means to interpret phenomena, and this misalignment of goals,
testing in the parameter space is compelling, and testing the network is the simplest instance of this.

Sparse-Recovery-Based Structural Testing Methods. More directly related to our work, are those
that are based on direct change estimation (DCE) [FB16; Liu+14; Liu+17; LFS17; KLK19], which
attempt to directly characterize the difference of parameters δ∗ = θP − θQ by leveraging sparsity
of δ∗. These works leverage the ‘KL Importance Estimation Procedure’ (KLIEP), the key insight of
which is that the log-likelihood ratios can be written in a form that is suggestive of expressions from
sparse-pattern recovery methods, to define the empirical loss function

L(δ) = −〈δ, ÊQ[XXT ]〉+ log ÊP [exp
(
XT δX

)
],

where Ê denotes an empirical mean, and δ is sparse. The second term, which is the only non-linear
term, is reminiscent of normalization factors in graphical models. In this context, it is useful to recall
the key ideas from high-dimensional sparse estimation theory (see [Neg+12]), which has served as
a powerful generic tool. At a high-level, these results show that for a loss function L(δ) paired with
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a decomposable regulariser (such as an `1 norm on δ), if the loss function satisfies restricted strong
convexity, namely, strong convexity only in a suitable descent error set, as characterised by the
regulariser and the optimal value δ∗, minimising the penalised empirical loss leads to a non-trivial
estimation error bound. Leveraging these concepts of high-dimensional estimation, and exploiting
sparsity, the sparse DCE works show that testing can be done in O(poly(s) log p) samples (for any
P,Q!), which is further much smaller than the number needed for SL, a result which contradicts
bounds we derive in this paper. The situation warrants further discussion.

From a technical perspective, the sample complexity gains of these methods arise from assuming
law-dependent quantities to be constants. For example, [Liu+14; Liu+17] require that for ‖u‖ ≤
‖δ∗‖,∇2L(δ∗ + u) 4 λ1I, and that for S the support of δ∗, the submatrix (∇2L(δ∗))S,S < λ2I ,
where λ1, λ2 are constants independent of P,Q. [FB16] removes the second condition, and shows
thatL has the λ2-RSC property, where λ2 is claimed to be independent of P,Q. In each case, sample
costs increase with λ1 and λ−1

2 . However, the assertion that λ1, λ2 are independent of (P,Q) cannot
hold in general – the only non-linear part in L is log ÊP [exp

(
XT δX

)
], which clearly depends on

P ! This dependence also occurs if P is known. Thus, the ‘constants’ λ1, λ2 are affected by the
properties of P . More generically, the efficacy of sparse recovery techniques is questionable in this
scenario. Since the data is essentially distinct across samples, and internally dependent, and since
the sparse changes, δ∗, and the underlying distributions interact, it is unclear if meaningful notions
of design matrix that allow testing with sub-recovery sample costs can be developed.

Nevertheless, it is an interesting question to understand what additional assumptions on P,Q or
topological restrictions are useful in terms of benefiting from sparsity. Our results suggest that these
conditions are stronger than typical incoherence conditions such as high temperatures, and further
that the topological restrictions demand more than just ‘simplicity’ of the graphs.

Other Methods.[Cai+19] propose a method, whereby the parameters θP and θQ are only crudely
estimated, and then tests using the biggest (normalised) deviations in the estimates as a statistic. The
claims made in this paper are more modest, and do not show sample complexity below nSL. We
point out, however, that d-dependent terms are treated as constants in this as well.

Much of the structural testing work studies Gaussian GMs instead of Ising (see the recent survey
[Sho20]). We do not discuss these, but encourage the same careful examination of their assumptions.

Other Information-Theoretic Approaches. We adopted a similar information-theoretic viewpoint
in our earlier work [GNS17; GNS18]. Of these, the former only considers the restricted case of
s = 1 (very sparse changes), and the bounds in the latter are very inefficient. As such, the present
paper is a significant extension and generalization of this perspective. Our bounds further improve
the approximate recovery lower bounds of [SC16].

Structural Testing Extensions. A number of structural testing problems other than GOF have been
pursued. For instance, [BN18] tests if the model is mean field or supported on a structured graph
(sparse, etc.), [BN19] tests mean-field models against those on an expander, [CNL18] tests indepen-
dence against presence of structure in high temperatures, [NL19] tests combinatorial properties of
the underlying graph such as whether it has cycles, or the largest clique it contains (also see §E.2).

2 Problem Definitions and Notation

The zero external field Ising Model specifies a law on a p-dimensional random vector X =
(X1, . . . , Xp) ∈ {±1}, parametrised by a symmetric matrix θ with 0 diagonal, of the form

Pθ(X = x) =
exp

(∑
i<j θijxixj

)
Z(θ)

,

where Z(θ) is called the partition function. Notice that given Xj for all j ∈ ∂i := {j : θij 6= 0},
Xi is conditionally independent of X[1:p]−{i}−∂i. Thus, the θ determine the local interactions of
the model. With this intuition, one defines a simple, undirected graph G(Pθ) = ([1 : p], E(Pθ))
with E(Pθ) = {(i, j) : θij 6= 0}. This graph is called the Markov network structure of the Ising
model, and θ can serves as a weighted adjacency matrix of G(Pθ). We often describe models by an
unweighted graph, keeping weights implicit until required.
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The model above can display very rich behaviour as θ changes, and this strongly affects all inference
problems on Ising models. With this in mind, we make two explicit parametrisations to help us
track how θ affects the sample complexity of various inference problems. The first of these is degree
control - we assume that the degree of every node is G(P ), G(Q) is at most d. The second is weight
control - we assume that if θij 6= 0, then α ≤ |θij | ≤ β.

These are natural conditions: small weights are naturally difficult to detect, while large weights mask
the nearby small-weight edges; degree control further sets up a local sparsity that tempers network
effects in the models. The class of laws so obtained is denoted Id(α, β). We will usually work with a
subclass I ⊂ Id which has unique network structures (i.e., for P,Q ∈ I, G(P ) 6= G(Q)). Note that
we do not restrict α, β, d to have a particular behaviour - these are instead used as parametrisation
to study how weights and degree affects sample complexity. In particular, they may vary with p and
each other. We do demand that d ≤ p1−c for some constant c > 0, and that p is large (� 1).

We let G be the set of all graphs on p nodes, and Gd ⊂ G be those with degree at most d. The
symmetric difference of two graphsG,H is denotedG4H,which is a graph with edge set consisting
of those edges that appear in exactly one of G and H .

Lastly, we say that two Ising models are s-separated if their networks differ in at least s edges. The
‘anti-ball’ As(P ) := {Q ∈ I : |G(Q)4G(P )| ≥ s} is the set of Q ∈ I s-separated from P .

2.1 Problem Definitions

Below we define three structural inference problems: goodness-of-fit testing, error-of-fit identifica-
tion, and approximate structure learning.

Goodness-of-Fit Testing Given P and the dataset Xn ∼ Q⊗n where Q ∈ {P} ∪ As(P ), we wish
to distinguish between the case where the model is unchanged, Q = P , and the case where the
network structure of the model differs in at least s edges, Q ∈ As(P ). A goodness-of-fit test is a
map ΨGoF : I × Xn → {0, 1}. The n-sample risk is defined as

RGoF(n, s, I) := inf
ΨGoF

sup
P∈I

{
P⊗n(ΨGoF(P,Xn) = 1) + sup

Q∈As(P )

Q⊗n(ΨGoF(P,Xn) = 0)

}
.

Error-of-Fit Recovery Given P and the dataset Xn ∼ Q⊗n where Q ∈ {P} ∪ As(P ) we wish to
identify where the structures of P and Q differ, if they do. The error-of-fit learner is a graph-valued
map ΨEoF : I × Xn → G. The n-sample risk is defined as

REoF(n, s, I) := inf
ΨEoF

sup
P∈I

sup
Q∈{P}∪As(P )

Q⊗n
(∣∣ΨEoF(P,Xn)4 (G(P )4G(Q))

∣∣ ≥ (s− 1)/2
)
.

In words, ΨEoF attempts to recover G(P )4G(Q), and the risk penalises answers that get more than
(s− 1)/2 of the edges of this difference wrong. This problem is very similar to the following.

s-Approximate Structure Learning Given the dataset Xn ∼ Q⊗n we wish to determine the net-
work structure of Q, with at most s errors in the recovered structure. A structure learner is a graph-
valued map ΨSL : Xn → G, and the risk of structure learning is

RSL(n, s, I) := inf
ΨSL

sup
Q∈I

Q⊗n(|ΨSL(Xn)4G(P )| ≥ s).

The sample complexity of the above problems is defined as the smallest n necessary for the corre-
sponding risk to be bounded above by 1/4, i.e.

nGoF(s, I) := inf{n : RGoF(n, s, I) ≤ 1/4},

and similarly nEoF and nSL but with the risk lower bound of 1/8.1

The above problems are listed in increasing order of difficulty, in that methods for SL yield methods
for EOF, which in turn solve GOF. This is captured by the following statement, proved in §A.1.

Proposition 1. nSL((s− 1)/2, I) ≥ nEoF(s, I) ≥ nGoF(s, I).

11/4 is convenient for bounds for GOF, but any risk smaller than 1 is of interest, and can be boosted to
arbitrary accuracy by repeating trials and majority. For EOF, SL we use 1/8 for ease of showing Prop. 1.
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Our main point of comparison with the literature on SL is the following result, which (mildly)
extends [SW12, Thm 3a)] due to Santhanam & Wainwright. We leave the proof of this to Appx. A.2.
Theorem 2. If I ⊂ Id(α, β) has unique network structures, then for s ≤ pd/2,∃C ≤ 64 such that

nSL(s, I) ≤ C de2βd

sinh2(α/4)

(
1 + log

p2

2s
+O(1/s)

)
.

3 Lower Bounds for GOF and EOF over Id(α, β)

This section states our results, and discusses our proof strategy, but proofs for all statements are
left to §B. The bound are generally stated in a weaker form to ease presentation, but the complete
results are described in §B. We begin by stating lower bounds for the case of s = O(p). Throughout
500 > K > 1 is a constant independent of all parameters.
Theorem 3. If 20 ≤ d ≤ s ≤ p/K, then there exists a C > 0 independent of (s, p, d, α, β) such that

nGoF(s, I) ≥ C max

{
e2β

tanh2 α
,

e2β(d−3)

d2 min(1, α2d4)

}
log
(

1 + C
p

s2

)
nEoF(s, I) ≥ C max

{
e2β

tanh2 α
,

e2β(d−3)

d2 min(1, α2d4)

}
log
(
C
p

s

)
This statement is enough to make our generic point - for small s (i.e., if s ≤ p1/2−c in GOF and
if s ≤ p1−c in EOF), the above bounds are uniformly within a O(poly(d)) factor of the the upper
bound on nSL in Theorem 2. Notice also that the max-terms are uniformly Ω̃(d2) in the above - if
βd ≥ 2 log d, then the second term in the max is Ω(d2),while if smaller, the first term is Ω((d/log d)2)
because α ≤ β. Thus, over Id, the best possible sample complexity of GOF and EOF scales as
Ω̃(d2 log p), and in particular cannot be generally d-independent.

Of course, graphs in Gd have upto ∼ pd edges, and so many more changes can be made. Towards
this, we provide the following bound for GOF. A similar result for EOF is discussed in §B.
Theorem 4. If for some ζ > 0, s ≤ pd1−ζ/K, and d ≥ 10, then there exists a constant C > 0
independent of (s, p, d, α, β) such that

1. If αd1−ζ ≤ 1/32 then nGoF ≥ C
1

d2−2ζα2
log
(

1 + C
pd3−3ζ

s2

)
.

2. If βd ≥ 4 log(d− 4) then nGoF ≥ C
e2βd(1−d−ζ)

d2 min(1, α2d4)
log
(

1 + C
pd2−3ζ

s2

)
.

Thm. 4 leaves a (small) gap, since as ζ → 0, αd1−ζ ≤ 1 and βd ≥ 4 log(d) do not completely
cover all possibilities. Barring this gap, we again notice that for s �

√
pd1−ζ , nGoF is separated

from nSL by at most a poly(d) factor. The first part of the above statement is derived using results
of [CNL18]. For the limiting case of ζ = 0, i.e. when s is linear in pd, we recover similar bounds,
but with the distinction that the 2βd in the exponent is replaced by a βd. See §B.

Finally, since often the interest in DCE lies in very sparse changes, we present the following -
Theorem 5. If s ≤ d, then there exists a C > 0 independent of (s, p, d, α, β) such that

nGoF(s, I) ≥ C max

{
e2β

tanh2 α
,
e2β(d−1−2

√
s)

d6 sinh2(α
√
s)

}
log
(

1 + C
( p
s2
∧ p
d

))
nEoF(s, I) ≥ C max

{
e2β

tanh2 α
,
e2β(d−1−2

√
s)

d6 sinh2(α
√
s)

}
log
(
C
p

d

)
Structure of the Bounds Each of the bounds above can be viewed as of the form (SNR)−1 log(1 +
f(p, s, d)), where we call the premultiplying terms SNR since they naturally capture how much
signal about the network structure of a law relative to its fluctuations is present in the samples. This
SNR term in Thms. 3 and 5 is developed as a max of two terms. The first of these is effective in the

5



high temperature regime (where βd is small), while the second takes over in the low temperature
regime of large βd. Similarly, the first and second parts of Thm. 4 are high and low temperature
settings, respectively, and have different SNR terms. The SNR in all of the above is within a
poly(d) factor of the corresponding term in the upper bound for nSL.

The term f(p, d, s) thus captures the hardness of testing/error localisation. For EOF, as long as s is
small, this term takes the form pc for some c. Thus, generically, localising sparse changes is nearly
as hard as approximate recovery. This is to be expected from the form of the EOF problem itself.
More interestingly, for GOF, these take the form pdc/s2. When s �

√
pdc, this continues to look

polynomial in p, and thus GOF is as hard as recovery. On the other hand, for s much larger than
this, f becomes o(1) as p grows, and so log(1 + f) ≈ f itself and the resulting bounds look like
(SNR)−1pdc/s2. In the setting of low temperatures with non-trivially large degree, these can still
be super-polynomial in p, but relative to n they are essentially vanishing.

Notice that in high temperatures (βd ≤ 1), the bounds of Thms. 3 and 5 are only O(d) away from
nSL for small s, fortifying our claim that GOF and EOF are not separated from SL in this setting.

Counterpoint to Sparse DCE efforts The above bounds, especially Thm. 5, show that for small s
GOF and EOF are as hard as recovery of G(Q) itself. A possible critique of these bounds when
considering DCE is that the DCE schemes demand that the changes are smaller than s, while our
formulations only require the changes to have size at least s. To counter this, we point out that the
constructions for Thms. 3, 4, and 5 make at most 2s changes when computing bounds for any s
(in fact, smaller edits lead to stronger bounds). Thus, the above results catergorically contradict the
claim that a generic O(poly(s) log p) bound that is d independent and much smaller than nSL can
hold for DCE methods on Id. Since α, β, d are only parameters, and are not restricted in any way,
this shows that the assumptions made for DCE cannot be reduced to some conditions on only α, β, d,
and further topological conditions must be implicit. In particular, these are stronger than typical
incoherence conditions such as Dobrushin/high-temperature (βd < 1;e.g.,[DDK17; GLP18]).

3.1 Proof Technique

The above bounds are shown via Le Cam’s method with control on the χ2-divergence of a mixture
of alternatives for GOF, and via a Fano-type inequality for the χ2-divergence, due to Guntuboyina
[Gun11] for EOF. These methods allow us to argue the bounds above by explicit construction of
distributions that are hard to distinguish. We briefly describe the technique used for GOF below.
Definition A s-change ensemble in I is a distribution P and a set of distributionsQ, denoted (P,Q),
such that P ∈ I, Q ⊆ I, and for every Q ∈ Q, it holds that |G(P )4G(Q)| ≥ s.

Each of the testing bounds we show will involve a mixture of n-fold distributions over a class of
distributions. For succinctness, we define the following symbol for a set of distibutions Q

〈Q⊗n〉 :=
1

|Q|
∑
Q∈Q

Q⊗n.

Le Cam’s method (see e.g. [Yu97; IS12]) shows that if (P,Q) is a s-change ensemble in I, then

RGoF(n, s, I) ≥ 1−
√

1

2
log(1 + χ2(〈Q⊗n〉‖P⊗n)).

As a consequence, if we find a change ensemble and an n such that 1 +χ2(〈Q⊗n〉 ‖P⊗n) ≤ 3, then
we would have established that nGoF(s, I) ≥ n. So, our task is set up as constructing appropriate
change ensembles for which the χ2-divergence is controllable.

Directly constructing such ensembles is difficult, essentially due to the combinatorial athletics in-
volved in controlling the divergence. We instead proceed by constructing a pair of separated distri-
butions (P0, Q0) on a small number of nodes, and then ‘lifting’ the resulting bounds to the p nodes
via tensorisation - P is contructed by collecting disconnected copies of P0, while Q is constructed
by changing some of the P0 copies to Q0. The process is summarised as follows.
Lemma 6. (Lifting) Let P0 and Q0 be Ising models with degree ≤ d on ν ≤ p/2 nodes such that
|G(P0)4G(Q0)| = σ, and χ2(Q⊗n0 ‖P

⊗n
0 ) ≤ an. Let m := bp/νc. For t < m/16e, there exists a

tσ-change ensemble (P,Q) over p nodes such that |Q| =
(
m
t

)
and

1 + χ2(〈Q⊗n〉‖P⊗n) ≤ exp

(
t2

m
an

)
.
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A similar argument is used for the EOF bounds, along with a similar lifting trick, discussed in §B.
Due to the tensorisation of the χ2-divergence, we obtain results of the form an ≤ (1 + κ)n − 1,
where κ depends on (P0, Q0) but not n. Plugging this into the above with t = ds/σe yields

nGoF(s, I) ≥ 1

log(1 + κ)
log

(
1 +

pσ2

8νs2

)
.

Notice that this κ is an SNR term, while log(1 + pσ2/8νs2) captures combinatorial effects.

Figure 1: Graphs used to construct high-
temperature obstructions. Labels indicate
edge-weight, and the red edge is added in
Q0.

The procedure thus calls for strong χ2 bounds for
various choices of small graphs, or ‘widgets’. We
use two varieties of these - the first, ‘star-type’ wid-
gets, are variations on a star graph. These allow di-
rect calculations in general, and provide bounds that
extend to the high-temperature regime. The second
variety is the ‘clique-type’ widgets, that are varia-
tions on a clique, and provide low-temperature ob-
structions. Classical Curie-Weiss analysis shows that
cliques tend to ‘freeze’ - for Ising models on a k-
clique with uniform weight λ, the probability mass
concentrates on the set {(1)⊗k, (−1)⊗k}w.p. roughly
1 − e−Θ(λk). The clique-type obstructions implicitly
argue that this effect is very robust.

b
b

b
b b

b
b

b

Figure 2: Two views of Emmentaler cliques.
Left: the base clique is the large grey cir-
cle, uncoloured circles represent the groups
with no edges within (this is d, ` �
1, d+1/`+1 = 10); Right: Emmentaler as the
graph K`+1,`+1,...,`+1 (d = 7, ` = 1).

The particular graphs used to argue the high temper-
ature bounds in Thms. 3,5 are a ‘V’ versus a triangle
as seen in Fig. 1, while in Thm. 4 the empty graph
is compared to a d1−ζ-clique. The low temperature
obstructions of Thms. 3,4 compare a full d+ 1-clique
as P0 to an ‘Emmentaler’ clique (Fig. 2). These are
constructed by dividing the d + 1 nodes into groups
of size `+1, and removing the `+1-subclique within
each group. The graph can thus be seen either as a
clique with many large ‘holes’ - corresponding to the
deleted subcliques - which inspires the name, or as the complete d+1/`+1-partite graph on d + 1
nodes. Notice that in the Emmentaler clique we have deleted ≈ d /̀2 edges. We will show in §D that
this is still hard to distinguish from the full clique for ` ∼ d/10 - a deletion of Ω(d2) edges!
On Tightness Prima facie the above bounds suggest that one may find sample efficient schemes in,
say, GOF for s�

√
pd.However, it is our opinion that these bounds are actually loose. Particularly,

while the SNR terms are relatively tight, the behaviour of f(p, d, s) is not. To justify this opinion,
consider the setting of forest-structured graphs. By the same techniques, we show a similar bound
with f = p/s2 for GOF in forests in §4.1 - this is the best possible by the methods employed. For
s � √p, the resulting overall lower bound is the trivial n ≥ 1 unless α ≤ (p/s2)1/2. On the other
hand, [DDK19, Thm. 14] can be adapted to show a lower bound for forests of Ω(α−2 ∧ α−4/p)
for the particular case of s = p/2, which is non-trivial for all α . p−1/4. Our results trivialise for
α & p−1/2 for this case, demonstrating looseness.
The reason for this gap lies in the lifting trick used to show these bounds. The tensorisation step
involved in this constricts the set of ‘alternates’ one can consider, thus diminishing f . More con-
cretely - there are about p2−pd/2 potential ways to add an edge (and O(pd) to delete an edge), while
the lifting process as implemented here restricts these to at most O(pd). It is important to recognize
this lossiness, particularly since most lower bounds, for both testing and recovery, proceed via a
similar trick, e.g. [SW12; Tan+14; SC16; GNS17; NL19; CNL18]. [DDK19, Thm. 14] is the only
exception we know of. We conjecture that for GOF in Id, f should behave like p2/s2, while for
EOF, it should behave like p2/s. Note that for GOF, since s can be as big as pd, this indicates that
one should look for sample-efficient achievability schema in the setting of s > pdc.
However, for simpler settings this technique can recover tight bounds. For instance, §4.1 presents a
matching upper bound for testing of edge-deletion in a forest. Notice that in this case there are only
O(p) possible ways to edit. This raises the further question of if the same effect extends to Id, i.e.,
can deletion of edges in Id be tested with O(1 ∨ e2βdα−2(pd/s2)) samples when s �

√
pd? §4.2

offers initial results in this direction in the high temperature regime.
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4 Testing Edge Deletions

Continuing on the theme that concluded our discussion of the tightness of our lower bounds, we
study the testing of edge deletions in two classes of Ising models - forests, and high-temperature
ferromagnets - with the aim demonstrating natural settings in which the sample complexity of GOF
testing of Ising models is provably separated from that of the corresponding recovery problem.

In the deletion setting, we consider the same problems as in §2, but with the additional constraint
that if Q 6= P, then G(Q) ⊂ G(P ), that is, the network structures of alternates can be obtained by
dropping some edges in that of the null. For a class of Ising models J , we thus define

RGoF,del(n, s,J ) = inf
Ψ

sup
P∈J

P⊗n(Ψ(P,Xn) = 1) + sup
Q∈As(P )∩J
G(Q)⊂G(P )

Q⊗n(Ψ(P,Xn) = 1),

and, analogously define REoF,del, and the sample complexities nGoF,del(s,J ) and nEoF,del(s,J ).

We will look at testing deletions for two choices of J which both have uniform edge weights

• Forest-Structured Models (F(α)) are Ising models with uniform weight α such that their net-
work structure is a forest (i.e., has no cycles).
• High-Temperature Ferromagnets (Hηd(α)) are models with max degree at most d, uniform pos-
itive edge weights α, and further such that there is an η < 1 such that αd ≤ η.

We note that while our motivation for the study of the above is technical, both of these subclasses of
models have been utilised in practice, and indeed are the subclasses of Id that are best understood.

4.1 Testing Deletions in Forests

Forest-structured Ising models are known to be tractable, and have thus long served as the first
setting to explore when trying to establish achievability statements. We show a tight characterisation
of the sample complexity of testing deletions in forests for large changes, and also demonstrate the
separation from the corresponding EOF (and thus also SL) problem. In addition, we also show
that for the restricted subclass of trees, essentially the same characterisation follows for arbitrary
changes (i.e., not just deletions), and that the methods support some amount of tolerance directly.
We begin with the main result for testing deletions in forests (all proofs are in §C.1).
Theorem 7. There exists a constant C independent of (s, p, α) such that the sample complexity of
GOF testing of forest-structured Ising models against deletions is bounded as

nGoF,del(s,F(α)) ≤ C max

{
1,

1

sinh2(α)

p

s2

}
.

Conversely, for s ≤ p/32e, there exists a constant C ′ independent of (s, p, α), such that

nGoF,del(s,F(α)) ≥ max

{
1,

1

C ′
1

sinh2 α
log
(

1 +
p

C ′s2

)}
,

nEoF,del(s,F(α)) ≥ 1

C ′ sinh2 α
log
( p

C ′s

)
.

The upper bound is constructed by using the simple global statistic TP =
∑

(i,j)∈G(P )XiXj ,
averaged across the samples. Again, the behaviour of the lower bound shifts as s crosses

√
p - for

larger s, it scales as 1 ∨ sinh−2(α)p/s2, while for much smaller s it is 1 ∨ sinh−2(α) log p. Further,
for large changes, the lower bound is matched, up to constants, by the achievability statement above.
For the smaller case, the same holds in the restricted setting of α < 1, since exact recovery in
F(α) only needs tanh−2(α) log p samples (Chow-Liu algorithm, as analysed in [BK16]).2 Finally,
the EOF lower bound (which is also tight for α < 1, show that the sample complexity of GOF is
separated from error of fit (and thus SL) for large changes.

Fig. 3 illustrates Thm. 7 via a simulation for testing deletions in a binary tree (for p = 127, α = 0.1),
showing excellent agreement. In particular, observe the sharp drop in samples needed at s = 21 ≈
2
√
p versus at s <

√
p ≈ 11. We note that SL-based testing fails for all s ≤ 60 for this setting even

with 1500 samples (Fig. 4 in §C.3), which is far beyond the scale of Fig. 3. See §C.3 for details.
2While the α < 1 regime is certainly more relevant in practice, it is an open question whether for larger α,

and for small s, the correct SNR behaviour is sinh−2 or tanh−2 in testing.

8



6 12 18 24 30 36 42 48 54 60

40

80

120

160

200

240

280

320

360

400

440

480

Figure 3: Testing deletions in binary
trees for p = 127, α = 0.1. Entries are
coloured black if risk is > 0.35, white
if < 0.15, and orange otherwise.

Testing arbitrary changes in trees The statistic T is good
at detecting deletions in edges, but is insensitive to edge ad-
ditions, which prevents it from being effective in general for
forests. However, if the forest-models P and Q are restricted
to have the same number of edges, then T should retain power,
since any change of s edges must delete s/2 edges. This, of
course, naturally occurs for trees! Let T (α) ⊂ F(α) denote
tree-structured Ising models.
Theorem 8. There exists a C independent of (p, s, α) s.t.

nGoF(s, T (α)) ≤ C max

(
1,

1

(1− tanh(α))2 sinh2(α)

p

s2

)
.

Tolerant Testing The achievability results of Thm.s 7,8 can
be made ‘tolerant’ without much effort (see §C.1.3). ‘Tolerance’ here refers to updating the task to
separate models that are εs-close to P from those that are s-far from it. The key point here is that
for τ = tanh(α), changing εs edges reduces the mean of TP by at most εsτ in both cases, while
changing ≥ s edges reduces it by at least sτ for forest deletion, and sτ(1−τ)/2 for arbitrary changes
in trees. Thus, tolerant testing has a blow up in sample costs of (1− ε)−2 for forest deletions, and of
O((1− 2ε− τ)−2) for trees (if ε < 1−τ/2). This should be contrasted with statistical distance based
formulations of testing, for which tolerant testing is a subtle question, and, at least in unstructured
settings, requires using different divergences to define closeness and farness in order to show gains
beyond learning [DKW18].

4.2 Testing Deletions in High-Temperature Ferromagnets

Testing deletions in ferromagnets is amenable due to two technical properties of the statistic TP =∑
(i,j)∈G(P )XiXj . The first of these is that due to the ferromagneticity, deleting an edge can only

reduce the correlations between the values that the variables take. Coupling this fact with a structural
result that is derived using [SW12, Lemma 6] yields that if G(Q) ⊂ G(P ) and |G(P )4G(Q)| ≥ s,
then EP [TP ] − EQ[TP ] & sα. The second technical property is that bilinear functions of the
variables, such as TP , exhibit concentration in high-temperature Ising models. In particular, using
the Hoeffding-type concentration of [Ada+19, Ex. 2.5], TP concentrates at the scaleO(

√
pd) around

its mean for all high-temperature ferromagnets. With means separated, and variances controlled, we
can offer the following upper bound on the sample complexity, while the converse is derived using
techniques of previous sections. See §C.2 for proofs.
Theorem 9. There exists a constant Cη depending only on η and not on (s, p, d, α) such that

nGoF,del(sHηd(α)) ≤ Cη
(

pd

α2s2
∨ 1

)
.

Conversely, there exists a c < 1 independent of (s, p, d, α) such that if η ≤ 1/16, s ≤ cpd then

nGoF,del(s,Hηd(α)) ≥ c

α2d2
log

(
1 +

cpd3

s2

)
& nEoF,del(s,Hηd(α)) ≥ c

α2d2
log

(
1 +

cpd

s

)
Unlike in Thm. 7, the lower bounds above are not very clean, and so our characterisation of the
sample complexity is not tight. Nevertheless, we once again observe a clear separation between
sample complexities of GOF and of EOF and a fortiori that of SL. Concretely, our achievability
upper bound and the EOF lower bound show that for s >

√
pd3, the sample complexity of testing

deletions is far below that of structure learning in this class. Further, our testing lower bound tightly
characterises the sample complexity for s ≥

√
pd3.

As an aside, note that unlike in the forest setting, it is not clear if T is generically sensitive to
edge deletions, since network effects due to cycles in a graph can bump up correlation even for
deleted edges. However, we strongly suspect that a similar effect does hold in this setting, raising
another open question - can testing of changes in the subclass of Hηd with a fixed number of edges
be performed with O(α−2pd/s2) samples for large s? A similar open question arises for tolerant
testing, which requires us to show that small changes do not alter the mean of T too much.

9



Broader Impact Our work is theoretical. It primarily investigates the limits of finding changes in
network structure in settings that are amenable to graphical models. Secondarily, it identifies regimes
in which to focus algorithmic design of tests of network structure, and gaps in the characterisation
of existing algorithmic approaches to the same. As such, the immediate impact it has is only on
theoretical explorations.
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Appendices

A Appendix to §2

A.1 Proof of Ordering of Sample Complexities

The proposition is argued by direct reductions showing how a solver of a harder problem can be
used to solve a simpler problem. The main feature of the definitions that allows this is that the risks
of SL and EOF are defined in terms of a probability of error.

Proof of Proposition 1.

Reducing EoF to SL: Suppose we have a (s−1/2)-approximate structure learner with risk δ that uses
n samples. Then we can construct the following EOF estimator with the same sample costs. Take
a dataset from Q⊗n, and pass it to the structure learner. With probability at least 1 − δ, this gives a
graph Ĝ that is at most bs/2c-separated from G(Q). Now compute G(P )4Ĝ (G(P ) is determined
because P is given to the EOF tester). By the triangle inequality applied to the adjacency matrices
of the graphs under the Hamming metric, this identifies G(P )4G(Q) up to an error of (s − 1)/2,
and so, the EoF risk incurred is also δ. Taking δ = 1/8 concludes the argument.

Reducing GoF to EoF: Suppose we have a s-EoF solver that uses n samples with risk δ. Again, take
a dataset from Q⊗n, and pass it to the EoF solver, along with P . With probability at least 1− δ, this
yields a graph Ĝ such that |Ĝ4(G(P )4G(Q)| ≤ (s−1)/2. But then, ifG(Q) = G(P ), Ĝ can have
at most (s − 1)/2 edges, while if |G(P )4G(Q)| ≥ s, then Ĝ must have at least (s + 1)/2 edges.
Thus, thresholding on the basis of the number of edges in Ĝ produces a GoF tester with both null
and alternate risk controlled by δ, or total risk 2δ. Taking δ = 1/8 then finishes the argument.

A.2 Proof of Upper Bound on nSL

This proof is essentially constructed by slightly improving upon the proof of [SW12, Thm 3a)] due
to Santhanam & Wainwright, which analyses the maximum likelihood scheme. We use notation
from that paper below.

Proof of Theorem 2. [SW12] shows, in Lemmas 3 and 4, that if the data is drawn from an Ising
model P ∈ Id, and Q ∈ Id is such that G(P )4G(Q) = `, then

P⊗n(L (P ) ≤ L (Q)) ≤ exp (−n`κ/8d) ,

where L (P ) denotes the likelihood of P, i.e. if the samples are denoted {X(k)}k∈[1:n], then
L (P ) =

∏n
k=1 P (X(k)), and

κ = (3e2βd + 1)−1 sinh2(α/4) ≥ sinh2(α/2)

4e2βd
.

Now, for the max-likelihood scheme to make an error in approximate recovery, it must make an
error of at least s - i.e., an error occurs only if L (Q) ≥ L (P ) for some Q with G(Q)4G(P ) ≥ s.
Union bounding this as Pg. 4129 of [SW12], we may control this as

P (err) ≤
pd∑
`=s

((p
2

)
`

)
exp (−n`κ/8d)

≤
pd∑
`=s

exp

(
`

(
log

ep2

2`
− nκ/8d

))

≤
pd∑
`=s

exp

(
`

(
log

ep2

2s
− nκ/8d

))
.
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Now, if nκ/8d ≥ 2 log ep
2
/2s = 2 log p

2
/s + 2(1 − log(2)), and if exp (−nsκ/8d) ≤ 1/2 then the

above is bounded as 2 exp (−nsκ/8d), which can be driven lower than any δ by increasing n by an
O(s−1 log(2/δ)) additive factor. It follows that

nSL(s, I) ≤ 16d

κ

(
log

p2

s
+ 2 +O(1/s)

)
,

and the claim follows by expanding out the value of κ.

B Appendix to §3

B.1 Expanded Proof Technique

This section expands upon §3.1 in the main text, including a treatment of the method used for EOF
lower bounds, giving an expanded version of Lemma 6, and a theorem collating the resulting method
to construct bounds. Some of the text from §3.1 is repeated for the sake of flow of the presentation.

As discussed previously, the proofs proceed by explicitly constructing distributions with differing
network structures that are statistically hard to distinguish. In particular, we measure hardness by
the χ2-divergence. We begin with some notation.
Definition A s-change ensemble in I is a distribution P and a set of distributionsQ, denoted (P,Q),
such that P ∈ I, Q ⊆ I, and for every Q ∈ Q, it holds that |G(P )4G(Q)| ≥ s.

Each of the testing bounds we show will involve a mixture of n-fold distributions over a class of
distributions. For succinctness, we define the following symbol.
Definition For a set of distributions Q and a natural number n, we define the mixture

〈Q⊗n〉 :=
1

|Q|
∑
Q∈Q

Q⊗n.

Consider the case of GOF testing, with the known distribution P . Suppose we provide the tester
with the additional information that the dataset is drawn either from P, or from a distribution picked
uniformly at random fromQ,where (P,Q) for a s-change ensemble. Clearly, the Bayes risk suffered
by any tester with this side information must be lower than the minimax risk of GOF testing. The
advantage of this formulation is that the risks of these tests with the side information can be lower
bounded by standard techniques - basically the Neyman-Pearson Lemma. The following generic
bound, which is Le Cam’s two point method [Yu97; IS12] captures this.
Lemma 10. (Le Cam’s Method)

RGoF(n, s, I) ≥ sup
(P,Q)

1− dTV(〈Q⊗n〉, P⊗n) ≥ sup
(P,Q)

1−
√

1

2
log(1 + χ2(〈Q⊗n〉‖P⊗n)),

where the supremum is over s-change ensembles in I.

Above, χ2(·‖·) is the χ2-divergence, which is defined for distributions P,Q as follows

χ2(Q‖P ) :=

EP

[(
dQ

dP

)2
]
− 1 if Q� P

∞ if Q 6� P

.

Note that generally the method is only stated as the first bound, and the second is a generic bound
on the total variation divergence which follows from Pinsker’s inequality and the monotonicity of
Rényi divergences. The χ2-divergence is invoked becuase it yields a twofold advantage in that it
both tensorises well, and behaves well under mixtures such as 〈Q⊗n〉 above.

For the EOF bounds, more care is needed. Recall that the EOF problem only requires errors smaller
than s/2. To address this, we introduce the following.
Definition An (s′, s)-packing change ensemble is an s-change ensemble (P,Q) such that Q is
an s′-packing under the Hamming metric on network structures, that is, for every Q,Q′ ∈
Q, |G(Q)4G(Q′)| ≥ s′.
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Clearly, if one can solve the EOF problem, one can exactly recover the structures in a (s/2, s)-
packing change ensemble. Thus, the following lower bound of Guntuboyina is applicable.

Lemma 11. [Gun11, Example II.5]

REoF(n, s, I) ≥ sup
(P,Q)

1− 1

|Q|
−

√∑
Q∈Q χ

2(Q‖P )

|Q|2
,

where the supremum is taken over (s/2, s)-packing change ensembles in I.

Note that [Gun11] shows a number of lower bounds of the above form. We use the χ2-divergence
here primarily for parsimony of effort, in that the bounds on χ2-divergences we construct for the
GOF setting can easily extended to the EOF case via the above.

Our task is now greatly simplified - we merely have to construct change ensembles such that |Q|
is large, and χ2(Q‖P ) is small for every Q ∈ P. Since it is difficult to directly construct large
degree bounded graphs with tractable distributions, we will instead provide constructions on a small
number of nodes, and lift these up to the whole p nodes by the following lemma.

Lemma 12. (Lifting) Let P0 and Q0 be Ising models with degree ≤ d on ν ≤ p nodes such that
|G(P0)4G(Q0)| = σ, and χ2(Q⊗n0 ‖P

⊗n
0 ) ≤ an. Let m := bp/νc. For 1 ≤ t < m/16e, there

exists a tσ-change ensemble (P,Q) over p nodes such that |Q| =
(
m
t

)
and

χ2(〈Q⊗n〉‖P⊗n) ≤ 1(
m
t

) t∑
k=0

(
t

k

)(
m− t
t− k

)
((1 + an)k − 1) ≤ exp

(
t2

m
an

)
− 1.

Further, there exists a (tσ/2, tσ)-packing change ensemble (P, Q̃) over p nodes such that

|Q̃| ≥ 2

t

( m
8et

)t/2
and

∀Q ∈ Q̃, χ2(Q⊗n‖P⊗n) ≤ (1 + an)t − 1.

We note that the proof of the above lemma constructs explicit change ensembles. We will abuse
terminology and refer to the change ensemble or the packing change ensemble of Lemma 12.

The above Lemma requires control on n-fold products of two distributions. However, since the
χ2-divergence is conducive to tensorisation, control for n = 1 is usually sufficient. The statement
below captures this fact and gives an end to end lower bound on this basis. The statement amounts
to collating the various facts described in this section.

Theorem 13. Let P0 and Q0 be as in Lemma 12. Suppose further that χ2(Q0‖P0) ≤ κ. Then for
1 ≤ t < m/16e, where m = bp/νc,

nGoF(tσ, Id) ≥
1

2 log(1 + κ)
log
(

1 +
m

t2

)
,

nEoF(tσ, Id) ≥
1

2 log(1 + κ)
log
( m

4000t

)
.

The 4000 in the above can be improved under mild assumptions, such as if t ≥ 8, but we do not
pursue this further. We conclude this section with proofs of the main claims above.

B.1.1 Proof of Lifting Lemma

Proof of Lemma 6. Let G0, H0 be the network structures underlying P0, Q0, and A0, B0 be the
weight matrices of G0, H0. Recall that these are graphs on ν nodes. Partition [1 : p] into m + 1
pieces (π1, π2, . . . , πm) = ([1 : ν], [ν + 1 : 2ν], . . . [(m − 1)ν + 1 : mν]) and πm+1 = [mν + 1 :
p], the last one being possibly empty. We may place a copy of G0 on each of the first m parts,
and leave the final graph disconnected to obtain a graph G with the block diagonal weight matrix
diag(A0, A0, . . . , A0, 0). We let P be the Ising model on G. For any vector v ∈ {0, 1}m of weight
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t, letQv be the graph which places a copy ofB0 on πi for all i : vi = 1, andA0 as before otherwise.
Note the block independence across parts of π induced by this. Concretely, we have

P (X = x) =

m∏
i=1

P0(Xπi = xπi) · 2−|πm+1|,

Qv(X = x) = P (X = x) ·
∏
i:vi=1

Q0(Xπi = xπi)

P0(Xπi = xπi)
.

Now, let Vt be the t-weighted section of the cube {0, 1}m, and V ′t be a maximal t/2 packing of Vt.
We let Q := {Qv,v ∈ Vt} and Q′ := {Qv,v ∈ V ′t}. Since (P0, Q0) had symmetric difference σ,
and since we introduce t differences of this form inQ, (P,Q) forms a tσ-change ensemble. Further,
Q′ inherits the packing structure of V ′t, (P,Q′) forms a (tσ/2, tσ)-packing change ensemble. Next
note that |Q| =

(
m
t

)
trivially. Further, since |Q|′ = |Vt|, it suffices to lower bound the latter to

show that Q is as big as claimed. Since V ′t is maximal, its cardinality must exceed the t/2-covering
number of the t-section of the cube. But then, by a volume argument,

|V ′t| ≥
(
m
t

)∑t/2
k=0

(
t
k

)(
m−t
k

) ≥ (
m
t

)
(t/2)2t

(
m
t/2

) ≥ 2

t

(m
t

)t
2−t

(
2em

t

)−t/2
=

2

t

( m
8et

)t/2
where we have used t ≤ m/4.
Next, note that for any Qv ∈ Q, and hence any Qv ∈ Q′, we have

1 + χ2(Q⊗n‖P⊗n) = EP⊗n
∏
vi=1

Q⊗n0

P⊗n0

(Xn
πi) =

(
1 + χ2(Q⊗n0 ‖P⊗n)

)t
.

Finally,

1 + χ2(〈Q⊗n〉‖P⊗n) =
1

|Q|2
∑

v,v′∈Vt

EP⊗n
[
Q⊗nv Q⊗nv′

(P⊗n)2
(Xn)

]

=
1(
m
t

)2 ∑
v,v′∈Vt

∏
i:vi=v′i=1

EP⊗n0

[
(Q⊗n0 )2

(P⊗n0 )2
(Xn

πi)

]

≤ 1(
m
t

)2 ∑
v,v′∈Vt

(1 + an)|{i:vi=v′i=1}|

=
1(
m
t

) t∑
j=0

(
t

j

)(
m− t
t− j

)
(1 + an)j .

Finally, note that the final expression can be written as E[(1 + an)H ] where H ∼ Hyp(m, t, t).
Since hypergeometric random variables are stochastically dominated by the corresponding bino-
mial random variables, we may upper bound the above by the moment generating function of a
Bin(t, t/m) random variable at (1 + an) to yield that

1 + χ2(〈Q⊗n〉‖P⊗n) ≤ (1 + (t/m)((1 + an)− 1))
t ≤ exp

(
t2

m
an

)
.

B.1.2 Proof of Theorem 13

Proof. It is a classical fact that the χ2-divergence tensorises as

χ2(Q⊗n0 ‖P
⊗n
0 ) = (1 + χ2(Q0‖P0))n − 1.

The reason for this is that due to independence, 1 + χ2(Q⊗n0 ‖P
⊗n
0 ) amounts to a product of second

moments of relative likelihoods (Q/P ) of iid samples.
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Thus, since χ2(Q0‖P0) ≤ κ, we may set an = (1 + κ)n − 1 in Lemma 12. Now, by LeCam’s
method (Lemma 10), we know that if RGoF(tσ) < 1/4 for a given n, then using ensemble from
Lemma 12, it must hold that

1

4
≥ 1−

√
1

2
log

(
1 + exp

(
t2

m
an

)
− 1

)
⇐⇒ an ≥ 2(3/4)2m

t2

=⇒ (1 + κ)n − 1 ≥ m

t2

⇐⇒ n ≥ 1

log(1 + κ)
log
(

1 +
m

t2

)
Thus, the smallest n for which we can test tσ-changes in Id must exceed the above lower bound,
giving the stated claim.

The EOF claim follows similarly. Using the packing change ensemble from Lemma 12, and the
lower bound Lemma 11, if the risk is at most 1/4 for some n, then we find that

1

4
≥ 1− 1

|Q̃|
−

√
(1 + an)t − 1

|Q̃|

⇐⇒ (1 + an)t ≥ 1 + |Q̃|

(
3

4
− 1

|Q̃|

)2

⇐⇒ (1 + κ)nt ≥ 1 + |Q̃|

(
3

4
− 1

|Q̃|

)2

⇐⇒ n ≥ 1

t log(1 + κ)
log

|Q̃|(3

4
− 1

|Q̃|

)2


Now, since 1 ≤ t ≤ m/16e, we observe that

|Q̃| ≥ 2

t

( m
8et

)t/2
≥ 2

t
· 2t/2 ≥ 2.5.

Thus, (3/4− 1/|Q̃|)2 ≥ 1/9, and the term in the final log above is at least log |Q̃|/9, which in turn is
lower bounded by Lemma 12. Thus continuing the above chain of inequalities, we observe that

n ≥ 1

log(1 + κ)
· 1

t

(
t

2

(
log
( m

8et

)
− (2 log(t/2) + 4 log(3))

t

))
Finally, since log(x)/(x/2) ≤ 1/e, we may −2(log(t/2) + 4 log(3))/t ≥ −5. Folding this −5 into
the log gives 8e6 ≤ 4000 in the denominator. Finally, again, this tells us that the infimum of the n
for which the EOF risk is small is at least the above lower bound, yielding the claim.

B.2 Expanded Lower Bound Theorem Statements and Proofs

We give slightly stronger theorem statements than those in the main text, and give the proofs of the
claimed bounds. In all cases the proofs involve the use of Lemma 12 - we describe which widgets
are used, and what values of σ, t are needed. Then we simply invoke Theorem 13 repeatedly to
derive the results.

B.3 The case d ≤ s ≤ cp

Proof of Theorem 3. High Temperature Bound This is shown by using the Triangle construction
of §D.1.1. This construction amounts to σ = 1 and m = bp/3c. Thus taking t = s, µ = α, λ = β
and invoking both Proposition 20 and Theorem 13, we find that so long as p/6 ≥ 16es, the bounds

nGoF(s, Id) ≥
1

C tanh2(α)e−2β
log
(

1 +
p

Cs2

)
,
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and similarly

nEoF(s, Id) ≥
1

C tanh2(α)e−2β
log
( p

Cs

)
.

Low Temperature Bound Let βd ≥ log d. We show this for even d - odd d follows by reducing d
by one. We use the Emmentaler clique versus the full clique of §D.2.3 with ` = 1. This corresponds
to σ = d/2 and m = bp/d+ 1c ≥ p/2d. Now take t = d2s/de ≤ 4s/d. Note that the total number
of changes is at least s and at most d/2d2s/de ≤ 2s. Notice that t ≤ m holds so long as s ≤ p/K
for some K ≥ 400. Invoking Proposition 35 in the case of µ = α, λ = β, and then Theorem 13
with the stated m,σ, t, gives us the bound

nGoF ≥
1

Cd2 min(1, µ2d4)e−2β(d−3)
log

(
1 +

1

C

(p/2d)

(4s/d)2

)
≥ e2β(d−3)

C ′d2 min(1, µ2d4)
log

(
1 +

1

C ′
pd

s2

)
,

where the (d− 3) in the exponent arises as (d− 1)− 1− `, and d− 1 occurs since we may reduce
d by 1 to make it even. Similarly

nEoF ≥
e2β(d−3)

C ′d2 min(1, µ2d4)
log

(
1 +

1

C ′
p

s

)
.

Integrating the bounds. We now note that if βd ≤ 3 log d, then

e2β(d−3)

d2 min(1, µ2d4)
≤ e2β

tanh2(α)
.

Indeed, in this case, e2β(d−3) is bounded as d6, and so the left hand size is at most
d4 min(1, α2d4)−1 ≤ α−2, which is dominated by the right hand side.

On the other hand even if βd ≥ 3 log d, we may still use the high temperature bound since this is
shown unconditionally. Thus, at least so long as we replace the pd/s2 in the low temperature bound
by p/s2, we may take the maximum of the expressions in the above bounds to get a concise lower
bound - the low temperature term itself only becomes active when βd ≤ 3 log d, in which case it is
known to be true. The claim thus follows.

B.4 The case cp ≤ s ≤ cpd1−ζ

We first state the commensurate EOF bound -

Theorem 14. In the setting of Theorem 4, we further have that

1. If αd1−ζ ≤ 1/32 then nEoF ≥ C
1

d2−2ζα2
log
(

1 + C
pd1−ζ

s

)
.

2. If βd ≥ 4 log(d− 4) then nEoF ≥ C
e2βd(1−d−ζ)

d2 min(1, α2d4)
log
(

1 + C
pd1−ζ

s

)
.

Proofs of Thms. 4 and 14.
High Temperature Bounds Suppose s = pd1−ζ0/K for any ζ0 ∈ (0, 1]. We invoke the widget
of a full d1−ζ0 -clique as Q0 versus an empty graph as P0, i.e. the construction of §D.1.2. This
corresponds to taking σ = d2−2ζ0/2 + O(d), m ≥ pd−(1−ζ0)/2 and t = b2sd−(2−2ζ0)c, with the
total edit made being at most 2s. Invoking Proposition 21 with µ = α, and then Theorem 13 gives
the bounds on noting that

m

t2
≥ C pd−(1−ζ0)

(sd−(2−2ζ0))2
= C

pd3−3ζ0

s2
,

m

t
≥ C pd−(1−ζ0)

(sd−(2−2ζ0))
= C

pd1−ζ0

s2
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and then finally setting ζ0 ≥ ζ to derive the claim.

Low Temperature Bounds Again fix a ζ0. We invoke the Emmentaler clique v/s full clique widget
of D.2.3, but this time with ` = d1−ζ0 . This gives σ ≈ d2−ζ0/2, m = bp/dc and t = d2sd−2−ζ0e.
The bound now follows similarly to the above section upon invoking Propositions 35 with λ =
β, µ = α and then Theorem 13 with the stated m, t, σ. We only track the terms in the log, which are

m

t2
≥ C pd−1

(sd−(2−ζ0))2
= C

pd3−2ζ0

s2
,

m

t
≥ C pd−1

(sd−(2−ζ0))
= C

pd1−ζ0

s2
.

B.5 Proofs in the setting s ≤ d

The catch in this section is that the Emmentaler clique construction of the proofs above can no longer
be employed, since setting even ` = 1 in these induces Ω(d) changes. We instead turn to the clique
with a large hole construction of §D.2.2.

Proof of Theorem 5. High Temperature Bound This is the same as the high temperature bound of
Thm. 3, and that proof may be repeated.

Low Temperature Bound Suppose βd ≥ 3 log d. We use the clique with a large hole construction
of §D.2.2 with the choice of ` = d

√
2se. This amounts to s ≤ σ = s + O(

√
s) ≤ 2s, and

m = bp/dc. We then simply set t = 1 in Theorem 13. Now invoking Proposition 27, we find that

nGoF ≥
1

C
√
s sinh2(α

√
s)e−2β(d−1−2

√
s)

log
(

1 +
p

Cd

)
≥ e2β(d−1−2

√
s)

Cd6 sinh2(α
√
s)

log
(

1 +
p

Cd

)
and the same lower bound for nEoF since in this case m/t2 = m/t = 1 (the d6 is introduced to
make the following easy).

Integrating the bounds Similarly to the proof of Thm. 3, note that for βd ≤ 3 log d, e2βdd−6 ≤ 1,
allowing us to rewrite the low-temperature bound as the max expression in the theorem statement.
Giving up space in the logarithm to p/s2 ∧ p/d then yields the stated claim for GOF. For EOF, we
follow the same procedure, but note that since s ≤ d, (p/s ∧ p/d) = p/d.

C Appendix to §4

C.1 Testing Deletions in Forests, and Changes in Trees

C.1.1 Proofs of Lower Bounds

Proof of Lower bounds from Theorem 7. First note that n ≥ 1 is necessary, since testing/estimation
with no samples is impossible. To derive the second term in the converse for GOF and the converse
for EOF, we plug in the single-edge widget of §D.1.4 with µ = α into Theorem 13. The widget
corresponds to ν = 2 and σ = 1. Thus, setting t = s and m = bp/2c ≥ p/3, we obtain both the
claimed bounds.

C.1.2 Proof of Upper Bound of Theorem 7, and of Theorem 8

We give the proof for α > 0. The proof for α < 0 follows identically.

We use u as a short hand for a pair (i, j) with i < j, and set Zu = XiXj . We exploit two key
properties of forest structured graphs

1. For any u = (i, j), if nodes i and j are connected via the graph, then E[Zu] =∏
v∈path(u) tanh(θv), where for u = (i, j) path(u) is the unique path connecting i and

j. If i and j are not connected, then E[Zu] = 0.

2. For any u 6= v, E[ZuZv] = E[Zu]E[Zv], that is, the Zus are pairwise uncorrelated.
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The above are standard properties, and are shown by exploiting the fact that conditioning on any
node in the forest breaks it into two uncorrelated forests. See, e.g. [BK16] for proofs.

Proof of Upper Bound in Theorem 7. Recall the statistic T =
∑n
`=1

∑
u∈G(P ) Z

`
u/n, where the

outer sum is over samples. Suppose G(P ) has k edges. Let τ := tanh(α). We propose the test

T
Null
≷
Alt

(k − s/2)τ.

Since the sum is over all edges in p, and since all edges have the same weight α, we note that

EP [T ] = kτ.

Now consider an alternate Q∆ that deletes some ∆ ≥ s of these edges. Since a deletion of an edge
in the forest disconnects the nodes at the end of the edges (the path connecting two nodes in a forest
is unique, if it exists, and we’ve just removed that unique path by deleting the edge),

EQ∆
[T ] = (k −∆)τ.

Next, we consider the variance of the statistic. Due to uncorrelation of Zus, under any forest struc-
tured Ising model we have in the case of n = 1

Var[T ] =
∑

u∈G(P )

(1− (E[Zu])2,

where we have used that Z2
u = (±1)2 = 1 always. Using the standard behaviour of variances under

averaging of independent samples,

VarP⊗n [T ] =
∑

u∈G(P )

1− τ2

n
=
k(1− τ2)

n
,

VarQ⊗n∆
[T ] =

∑
u∈G(P )∩G(Q∆)

1− τ2

n
+

∑
u∈G(P )\G(Q∆)

1/n =
k(1− τ2) + ∆τ2

n
.

Using Tchebycheff’s inequality, we then observe that for a given constant C > 1, the following hold
with probability at least 7/8 :

Under P⊗n: T ≥ kτ − C
√
k(1− τ)2

n
,

Under any Q⊗n∆ : T ≤ (k −∆)τ + C

√
k(1− τ)2 + ∆τ2

n
.

Thus, the test has false alarm and size both at most 1/8, irrespective of P and Q∆, so long as

(k −∆)τ + C

√
k(1− τ)2 + ∆τ2

n
< (k − s/2)τ < kτ − C

√
k(1− τ)2

n
.

Solving out the upper bound on (k − s/2)τ yields

n > 4C2 k

s2
(τ−2 − 1),

while for the lower bound, since ∆ ≥ s, the same must hold if

(k −∆)τ + C

√
k(1− τ)2 + ∆τ2

n
< (k −∆/2)τ,

which may be rearranged to

n > 4C2

(
1

∆
+

k

∆2
(τ−2 − 1)

)
,
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which in turn must hold if

n > 4C2

(
1 +

k

s2
(τ−2 − 1)

)
,

where the final inequality again utilises ∆ ≥ s.
Thus, forests with k edges can be tested with risk at most 1/4 as long as we have at least

4C2

(
1 +

k

s2
(τ−2 − 1)

)
+ 1 ≤ C ′max

(
1,
k

s2
(τ−2 − 1)

)
samples, where C ′ ≤ 8C2 + 1 is a constant. Since forests on p nodes have at most p − 1 edges,
replacing k by p yields an upper bound on the sample complexity of testing deletions in forests.

Finally, since τ = tanh(α), we note that τ−2 − 1 = sinh−2(α), concluding the proof.

Some Observations

• While the above proof is for uniform edge weights, this can be relaxed with little change. How-
ever, the above proof does strongly rely on the edge weights all having the same sign. If this is
not the case, then we may encounter edit the same number of positively and negatively weighted
edges, and the statistic T becomes uninformative.

• The statistic T similarly loses power in the general setting of testing both additions and deletions
in forests. This is because while the variance remains controlled as k(1 − τ2), the means under
the alternates may not move if the only changes being made are additions.

• On the other hand, if we consider testing only of full trees, i.e. P such that G(P ) has the full
(p − 1) edges, and further the altered Q are also trees, then something interesting emerges - at
least in the setting of uniform weights. Since at least s edges were changed from G(P ) to G(Q),
and one cannot add an edge to G(P ) without introducing a cycle, it must be the case that G(Q)
effects at least one edge-deletion for every edge it adds, and so it must make at least ≥ s/2
deletions. In this case, the statistic discussed above is powerful. This, of course, was the point of
Theorem 8 in the main text, which we are now ready to prove

Proof of Theorem 8. Assume that α > 0. The proof proceeds similarly for α < 0. We use the
statistic T from the proof of the upper bound of Thm. 7 above, and also reuse the notation of τ,∆
and Q∆ from the above. The claim relies on the above observation that if ∆ edges are changed,
then at least ∆/2 ≥ s/2 edges must be deleted.
In this case, the mean and the variance of T under P remain unchanged. On the other hand,
under Q∆, for any edge u ∈ G(P ) that was deleted in G(Q∆), we must have |EQ∆

[Zu]| ≤ τ2,
since the distance between the end points of these edges is now at least 2. Further, since G(Q) is
a tree, the variance of the statistic under Q∆ (for n = 1) is

VarQ∆
[T ] =

∑
u∈G(P )

(1− EQ∆
[Zu]2)

≤ (p− 1−∆)(1− τ2) + ∆

= (p− 1)(1− τ2) + ∆τ2.

At this point the argument from the earlier proof of Thm. 7 can be used. The test needs to be
updated to declaring for the null only when T > (p− 1)τ − sτ(1− τ)/4.

C.1.3 Tolerant Testing of Forest Deletions, and of Trees

As discussed in the main text, the tolerant testing problem admits as parameters a class of Ising
models J , a given Ising model P ∈ J , a change parameter s ≤ p, and a tolerance ε ∈ (0, 1), with
the goal of testing, via sample access, if an unknown model Q ∈ J has a network structure that
has at most εs edges different from G(P ), or if it has at least s edges different instead. Concretely,
we may define the following risk functions, the latter of which is for the deletion version of tolerant
testing:

21



RGoF
tol (n, s, ε,J ) = inf

Ψ
sup
P∈J

{
sup

P̃∈Aεs(P )c∩J
P̃⊗n(Ψ = 1) + sup

Q∈As(P )∩J
Q⊗n(Ψ = 0)

}
,

RGoF,del
tol (n, s, ε,J ) = inf

Ψ
sup
P∈J

 sup
P̃∈Aεs(P )c∩J
G(P̃ )⊂G(P )

P̃⊗n(Ψ = 1) + sup
Q∈As(P )∩J
G(Q)⊂G(P )

Q⊗n(Ψ = 0)

 .

Analogously to §2, the sample complexities ntol
GoF(s, ε,J ) and ntol

GoF,del(s, ε,J ) are the smallest
n required to drive the above risks below 1/4. Our claim in the main text may be summarised as
follows.
Theorem 15. There exists a constant C independent of (s, p, α, ε) such that

ntol
GoF(s, ε,F(α)) ≤ C max

{
1,

1

sinh2(α)

p

(1− ε)2s2
,

1

(1− ε)2s

}
.

Further, if ε < 1−tanh(α)/2, then

ntol
GoF(s, ε, T (α)) ≤ C max

{
1,

1

sinh2(α)

p

(1− 2ε− tanh(α))2s2
,

1

(1− 2ε− tanh(α))2s

}
.

Proof. We repeatedly reuse the notation from the proof of Theorem 7 above.

For the forest deletion setting, suppose |G(P )| = k, and let P̃∆0
be such that it’s network structure

is a deletion of most ∆0 ≤ εs edges from G(P ). It follows from the mean and variance calculations
before, that, for any ∆ ≥ s,

EP̃⊗n∆0

[T ] = (k −∆0)τ ≥ (k − εs)τ,

VarP̃⊗n∆0

[T ] =
k(1− τ2) + ∆0τ

2

n
≤ k(1− τ2) + ∆τ2

n
.

Consider the test which rejects the null hypothesis when T < (k − 1+ε
2 s)τ . Comparing the above

to a Q∆ as in the proof of Theorem 7, and proceeding as in it, we find that the risk is appropriately
controlled so long as the following relations hold for every ∆0 ≤ εs, and ∆ ≥ s, where C is an
absolute constant:

n ≥ C k(τ−2 − 1) + ∆0(
1+ε

2 s−∆0

)2
n ≥ C k(τ−2 − 1) + ∆(

∆− 1+ε
2 s
)2

The right hand sides of the first and second equations above respectively increase and decrease with
∆0 and ∆. Thus, setting ∆0 = εs and ∆ = s, and taking the maximum possible k = p tells us that
the conditions will be met so long as

n ≥ 4C
(p− 1) sinh−2(α) + s

(1− ε)2s2

For the tree case, the same argument follows but with a small change - in the null case, a change
of ∆0 edges can reduce the mean of T by ∆0τ, but in the alternate, there may exist changes of ∆
edges which only drop the mean of T by ∆/2(τ − τ2). Thus, we use the test

T
Null
≷

Alt.
(p− 1)τ − 1 + 2ε

4
sτ +

s

4
τ2.
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Continuing similarly, and keeping in mind that the variance of T after ∆ changes is at most (p −
1)(1− τ2) + ∆τ2, we find that risk of the above test is controlled so long as for every ∆0 ≤ εs, and
for every ∆ ≥ s, the following relations hold

n ≥ C

s2

p(τ−2 − 1) + ∆0

(1 + 2ε− τ − 4∆0/s))
2

n ≥ C

s2

p(τ−2 − 1) + ∆

(2∆/s(1− τ)− (1 + 2ε− τ))
2

It is a matter of straightforward computation that if ε ≤ 1−τ
2 , then the right hand sides of the first and

second inequality above respectively increase and decrease with ∆0 and ∆. Thus, setting ∆0 = εs
and ∆ = s, the above holds if

n ≥ C

(1− 2ε− τ)2

(
p(τ−2 − 1)

s2
+

1

s

)
.

C.2 Testing Deletions in High-Temperature Ferromagnets

C.2.1 Proof of achievability

Proof of the upper bound of Theorem 9. We follow the strategy laid out in the main text. The pro-
posed test statistic is T ({X(i)};P ) := Ê[

∑
(i,j)∈G(P )XiXj ], where the {X(i)} are the samples,

and Ê indicates the empirical mean over this data. Concretely, the test is to threshold T as

T
Null

≷
Alt.

EP [T ]− Csα,

where C the constant left implicit in Lemma 16.

The analysis relies on two facts:

Lemma 16. Let P,Q ∈ Hηd(α), and G(Q) ⊂ G(P ), with |G(P )4G(Q)| ≥ s. For every η < 1,
there exists a constant C > 0 that does not depend on (p, s, α) such that

EP [T ]− EQ[T ] ≥ 2Csα.

Lemma 17. For any P,Q ∈ Hηd(α), which may be equal,

VarQ

 ∑
(i,j)∈G(P )

XiXj

 ≤ Cηpd,
where Cη may depend on η, but not otherwise on (p, d, s, α).

Applying the variance contraction over n independent samples, we find via a use of Tchebycheff’s
inequality that the following event have probability at least 1/8 for the respective hypotheses:

Null: T ≥ EP [T ]− Cη

√
8pd

n
,

Alt: T ≤ EP [T ]− Csα+ Cη

√
8pd

n
.

Thus, taking n so large that Csα > Cη

√
8pd
n , the false alarm and missed detection probabilities are

both controlled below 1/8, yielding the claimed result.

It of course remains to argue the above lemmata. These are both essentially utilisations of existing
results.
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Proof of Lemma 16. We use the fact that in ferromagnetic models, the correlations between any
pair of nodes increases as the weights increase (or contrapositively, if weights are deleted, then
correlations must decrease). This is classically shown via (a special case of) Griffith’s inequality
[Gri69], which claims that for any u, v, i, j, in a ferromagnetic Ising model, E[XuXvXiXj ] ≥
E[XuXv]E[XiXj ]. This is relevant here due to the fact that

∂θijEPθ [XuXv] = ∂θij
1

Zθ

∑
x

xuxv exp

(∑
s<t

θstXsXt

)
a
=

1

Zθ

∑
x

xuxvxixj exp

(∑
s<t

θstXsXt

)

− 1

Z2
θ

(∑
x

xuxv exp

(∑
s<t

θstXsXt

))(∑
x

xuxv exp

(∑
s<t

θstXsXt

))
= E[XuXvXiXj ]− E[XuXv]E[XiXj ] ≥ 0.

Above, equality (a) is a consequence of the quotient rule, and the fact that Zθ =∑
x exp

(∑
s<t θstxsxt

)
.

Next, we utilise the following structural lemma, due to Santhanam and Wainwright. While we cite
it as their Lemma 6 below, but more accurately this arises via a correction of a subsidiary part of
the proof of the same lemma. In particular, we are utilising a corrected version of the unlabelled
inequality on Page 4131 that follows the inequality (51), with further specialisation to the high-
temperature deletion with a uniform edge weight context.

Lemma 18. (A variation of Lemma 6 of [SW12]) Let P ∈ Hηd(α), and Q be obtained by removing
the edge (a, b) from P . Then

EP [XaXb]− EQ[XaXb] ≥
α

400
.

With this in hand, we develop our result by arguing over each deleted edge in a sequence. For
a given P and Q, such that Q occurs by deleting ∆ ≥ s edges from P , take a chain of laws
P = Q0, Q1, Q2, . . . , Q∆ = Q, where each Qt+1 is obtained by deleting one edge from Qt. Let
(it+1, jt+1) be the edge deleted in going from Qt to Qt+1 Since each model is ferromagnetic, and
each Qt+1 deletes an edge from Qt, we find that

EQt

 ∑
(i,j)∈G(P )

XiXj

− EQt+1

 ∑
(i,j)∈G(P )

XiXj

 ≥ EQt
[
Xit+1

Xjt+1

]
− EQt+1

[
Xit+1

Xjt+1

]
≥ α

400
.

Summing up the left hand side over t = 0 to ∆− 1 leads to a telescoping sum, while s copies of the
right hand side get added, directly leading to our conclusion

EP

 ∑
(i,j)∈G(P )

XiXj

− EQ

 ∑
(i,j)∈G(P )

XiXj


= EQ0

 ∑
(i,j)∈G(P )

XiXj

− EQ∆

 ∑
(i,j)∈G(P )

XiXj


=

∆−1∑
t=0

EQt

 ∑
(i,j)∈G(P )

XiXj

− EQt+1

 ∑
(i,j)∈G(P )

XiXj


≥

∆−1∑
t=0

α

400
= ∆

α

400
≥ s α|

400
.

24



To complete the proof, we prove the key lemma used in the above argument.

Proof of Lemma 18. We note that this proof assumes familiarity with the proof of Lemma 6 of
[SW12]. The main reason is that the proof really consists of fixing an equation in the proof of
this result, and then utilising the ferromagnetic properties a little. As a result, there is no neat way
to make this proof self contained (reproducing the proof of the aforementioned lemma is out of the
question, since this is a long and technical argument in the original paper). With this warning out of
the way, let us embark.

Let ∂a and ∂b be the neighbours of, respectively, a and b in G(P ) (which, since G(Q) only deletes
(a, b) from G(P ), contain all the neighbours of a and b in G(Q) as well).

Before proceeding, we must first point out a (small) error in the proof of Lemma 6 in [SW12]. The
clearest way to see this error is to note the inequality following equation (51) in the text, which
claims that if (a, b) ∈ G(P )4G(Q), then some quantity (J in the paper) known to be positive is
upper bounded by

J ≤
∑

u∈∂a\{b}

({EP − EQ}[XuXa])(θPua − θQua) +
∑

v∈∂b\{a}

({EP − EQ}[XvXb])(θ
P
vb − θ

Q
vb).

Note that we have specialised the above to the case where G(Q) ⊂ G(P ). Now, observe than when
the only change made is in the edge (a, b), then the above upper bound is 0. Indeed, θPua = θQua
for every u ∈ ∂a \ {b}, since none of these edges have been altered, making the first sum 0, and
similarly the second, contradicting the claim that the sum is bigger than J (which is positive). The
error actually lies a few lines up, in the decomposition for the term ∆(θ, θ′), which along with the
claimed terms, should also include the term ({EP −EQ}[XaXb])(θ

P
ab−θ

Q
ab), which is missing from

the text of [SW12]. This term is present since the Pθ[xC ] and Pθ′[xC ] are, of course, laws on Xa

and Xb, and thus have θPabxaxb and θQabxaxb in the Ising potentials.3 Putting this term back in, the
correct equation is that

κ ≤ ({EP − EQ}[XaXb])(θ
P
ab − θ

Q
ab) +

∑
u∈∂a\{b}

({EP − EQ}[XuXa])(θPua − θQua)

+
∑

v∈∂b\{a}

({EP − EQ}[XvXb])(θ
P
vb − θ

Q
vb),

where κ is the lower bound on J , that is (specialised to our case of uniform weights),

κ =
sinh2(α/4)

1 + 3 exp (αd)
.

We note that the conclusion of Lemma 6 of [SW12] is not affected by the above error4.

With this out of the way, we may now argue our point. In our case, we know that since only the edge
(a, b) has been altered, the second and third terms in the updated sum are 0. Further, we know that
θPab = α ≥ 0, and θQab = 0. Thus, we conclude that

EP [XaXb]− EQ[XaXb] ≥
κ

α
≥ sinh2 α/4

α(1 + 3 exp (2αd))
.

Finally, we use our high temperature condition. Firstly, note that αd ≤ η < 1, and thus (1 +
3 exp (2αd)) ≤ 1 + 3e2 ≤ 24. Next, since sinh(x) ≥ x, sinh2(α/4) ≥ α2/16. Putting these
together, we find that

EP [XaXb]− EQ[XaXb] ≥
α2/16

α · 24
=

α

384
≥ α

400
3note however that exactly one of θPab and θQab is zero, since (a, b) lies in one but not the other graph.
4The expression 2αdmaxu∈{a,b},v∈V |µuv − µ′uv| already accounts for the extra term we add, since it

allows us to take u = a, v = b.
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Proof of Lemma 17. We directly utilise the concentration result [Ada+19, Ex. 2.5], which shows
that for bilinear forms f(X) = 〈A,XX>〉, where the inner product is the Frobenius dot product,
and for a high temperature Ising model P , there exists a Cη depending only on η such that5

P (|f − E[f ]| ≥ t) ≤ 2 exp

(
− t

Cη‖A‖F

)
.

Via the standard integral representation E[(f − E[f ])2] =
∫∞

0
P (|f − E[f ]|2 ≥ r)dr and the

above upper bound, we directly obtain that the variance of any f such as the above is bounded by
3‖A‖2FC2

η .

Now, out statistic is a bilinear function of the above form. Indeed,∑
(i,j)∈G(P )

XiXj = 〈G(P )/2, XX>〉,

where we treat G(P ) as it’s adjacency matrix, and thus we immediately obtain that the variance is
bounded by 1.5C2

η‖G(P )‖2F . Notice that ‖G(P )‖2F is merely twice the number of edges in G(P ),
and since this has degree at most d, this number is at most 2pd. The claim follows.

C.2.2 Proof of Lower Bounds

The lower bounds are argued using Thm. 13, with the widget(s) that consist of comparing a full
clique to an empty graph, which of course satisfy the constraint that the alternate models are derived
by deleting edges from the null graph. Concretely, we use the bound of Proposition 22, to show the
following result

Proposition 19. Suppose s ≤ pd/K for large enough K and αd ≤ η ≤ 1/32. Then there exists a
C independent of all parameters such that

nGoF,del(s,Hηd(α)) ≥ max
s/Kp≤k≤d

1

Ck2α2
log

(
1 +

pk3

Cs2

)
,

nGoF,del(s,Hηd(α)) ≥ max
s/Kp≤k≤d

1

Ck2α2
log

(
1 +

pk

Cs

)
,

where the maximisation is over integers k ≥ 2 in the stated ranges. In particular, the bounds in the
main text correspond to taking k = d.

Proof. The proof relies on the fact that if αd ≤ 1/32, then αk ≤ 1/32 for any k ≤ d as well, which
allows us to utilise Prop. 22 for each k. For each valid choice of k, we take P0 to be the Ising model
on the complete graph on k nodes with uniform edge weight α, and Q0 to be the Ising model on
the empty graph on k nodes. The relevant quantities are σ =

(
k
2

)
, m = bp/kc, and t = ds/

(
k
2

)
e,

with the total number of changes lying between s and 2s. Repeated use of Thm.13 concludes the
argument.

C.3 Simulation Details

Details about the generation of Figure 3 are as follows:

• Sampling from Ising Models Samples from Ising models were generated by running Glauber
dynamics for 1600 steps. This number is chosen to be four times the ‘autocorrelation time’,
which is the time at which the autocorrelation of the test statistic 〈XX ′, G〉/2 drops to near 0,
and serves as a proxy for the mixing time of the dynamics (at least for the relevant statistics).
Note that raw samples were outputted from the dynamics (i.e., we did not take ergodic averages).

• Constructing P s and Qs Throughout, P was the Ising model on a complete binary tree on 127
nodes. For each value of s and each experiment, s random edges from this tree were deleted.

5Instead of the Frobenius norm ‖A‖F , the bound of [Ada+19] features the Hilbert-Schmidt norm of A.
These are the same thing for finite dimensional operators.
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Figure 4: Reconstruction Error of the Chow-Liu Tree for the Ising model on a complete Binary Tree
with p = 127, α = 0.1.

• Experiment Structure For each value of s ∈ {3, 6, . . . , 60} and n ∈ {20, 40, . . . , 480}, we
carried out a simulation of the GoF testing risk of our statistic for s deletions using n samples.
We refer to each of these as an experiment. Each experiment was carried out by running 100
independent tests (on independent data), which each consisted of two parts - first we generated
samples from P , and declared a false alarm if T fell below (p−1− s/2) tanh(α) for this. Next,
we generated a Q by deleting s edges, and then generated samples from Q, and finally declared
a missed detection if T was above the same threshold. Risks were computed by adding up the
total number of false alarm and missed detection events in these 100 runs, and dividing them by
100.

• Structure of Figure 3 Each box in the figure corresponds to a simulation for s changes and
n nodes, where (s, n) are the coordinates of the upper right corner of the box. The boxes are
coloured according to their empirical risk - if this was greater than 0.35, then the box was coloured
black; if smaller than 0.15, then coloured white, while if it was between these values, the box was
coloured orange.

Additionally, we note that structure learning performs very poorly for this setup. This is best illus-
trated by the Figure 4, which shows the number of edge-errors (i.e. |G(P )4Ĝ|) versus the sample
size when the Chow-Liu algorithm was run on data generated by the null model (i.e., the full binary
tree). The Chow-Liu algorithm was run by computing the covariance matrix, and computing the
weighted maximum spanning tree for it via the library methods in MATLAB. The number of errors
is again averaged over 100 trials. This demonstrates that the naïve scheme of recovering the graph
and testing against it is infeasible for s ≤ 60 if n ≤ 1500, empirically demonstrating the separation
between structure learning and testing.

D Widgets

As discussed in the previous section, we will utilise Lemma 6, in order to do which we need to
provide specific instances of (P0, Q0) that are close in χ2-divergence. We will abuse terminology
and call this pair an ensemble. This section lists a few such pairs of graphical models, along with the
χ2-divergence control we offer for the same, proofs for which are left to §F. Throughout, we will
use λ and µ as weights of edges, with λ ≥ |µ| > 0. I the proofs of the theorems, we will generally
set λ = β and µ = α, but retaining these labels aids in the proofs of χ2-divergence control offered
for these widgets.

D.1 High-Temperature Obstructions

The following graphs are used to construct obstructions in high temperature regimes. The first is
the triangle graph, as described in §3.1. The second is a full clique in high temperatures. The latter
section is derived from the bounds of [CNL18].
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D.1.1 The Triangle

We start simple. Let PTriangle be the Ising model on 3 nodes with edges (1, 2) and (2, 3), each with
weight λ, and QTriangle be the same with the edge (1, 3) of weight µ appended (see Figure 5). The
bound below follows from an explicit calculation, which is tractable in this small case.

b b

b

b b

b

1

2

3

λ

µ
1

2

3

λλ λ

G0 G1

bb

Figure 5: Ensemble used for Proposition 20

Proposition 20. For λ ≥ |µ| > 0,

χ2(QTriangle‖PTriangle) ≤ 8e−2λtanh2 µ.

D.1.2 Full Clique versus Empty Graph

[CNL18] shows the remarkable fact that high-temperature cliques are difficult to separate from the
empty graph. We present this result below.
Proposition 21. Let P be the Ising model on the empty graph with k nodes, and let Q be the Ising
model on the k-clique, with uniform edge weights µ. If 32µk ≤ 1, then

χ2(Q‖P ) ≤ 3k2µ2.

In the notation of [CNL18], this is the bound at the bottom of page 22, instantiated with G = G′

and theR,B,Γ values as determined in the proof of Example 2.7.

We will also utilise the following reversed χ2-divergence bound. This is not formally shown in
[CNL18], and thus, we include a proof of the same, using the techniques of the cited paper, in
§F.2.5.
Proposition 22. Let P be the Ising model on a clique on m nodes with uniform edge weights µ, and
let Q be the Ising model on the empty graph on m nodes. If 32µm ≤ 1, then

χ2(Q‖P ) ≤ 8(µm)2.

D.1.3 Fan Graph

This widget is not required for the main text, although it may serve as a more involved construction
to show the bounds of Thms. 3 and 5. Its main use is in Appendix E.2, where it is used to show an
obstruction to testing of maximum degree in a graph.

Generalising the triangle of the previous section, we may hang many triangles from a single ver-
tex, getting a graph that resembles an axial fan with many blades. Using such a graph, we may
demonstrate high-temperature obstructions to determining the maximum degree of a graph.

Concretely, for a natural B we define a fan with B blades to be the graph on 2B + 1 nodes where,
nodes [1 : 2B] are each connected to the central node 2B + 1, and further, for i ∈ [1 : B], nodes
2i and 2i − 1 are connected. We call the edges incident on the central node (B + 1) axial, and the
remaining edges peripheral.

Treating ` as a parameter, the Ising models P`,Fan and Q`,Fan are determined as followed:

• Q`,Fan places a weight λ on each peripheral edge, and a weight of µ on each axial edge.
• P`,Fan ‘breaks in half’ ` of the blades in the graph - concretely, for i ∈ [1 : `], we delete

the edges {2i− 1, 2B + 1}.

Viewing P as the null graph, note that in Q we have added an excess of ` edges, and increased the
degree of the central node from 2B−` to 2B. The fan graph serves as a high-temperature obstruction
to determining the maximum degree of the graph underlying an Ising model via the following claim.
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Figure 6: The Fan graphs for P`,Fan (left) and Q`,Fan (right) in the setting B = 4, ` = 2.

Proposition 23. For ` ≤ B, if λµ ≥ 0, then

χ2(Q`,Fan‖P`,Fan) ≤
(
1 + 16e−2λ tanh2 µ

)` − 1.

D.1.4 Single Edge

This construction is possibly the simplest, and is used to show the lower bound in Thm. 7. We
consider the two possible Ising models on two nodes - P is the one with an edge, of weight µ, while
Q has no edges. The characterisation is trivial, and we omit the proof.
Proposition 24. χ2(Q‖P ) = sinh2(µ).

D.2 Low-Temperature Obstructions via Clique-Based Graphs

The computations in this and the subsequent cases are rather more complicated that in the previous
case, and will intimately rely on a ‘low temprature’ assumption. The basic unit is that of a clique on
some d+ 1� 1 nodes, in the setting of temperature λd ≥ log d.

The intuition behind these is rather simple - Ising models on cliques tend to ‘freeze’ in low tem-
prature regimes, i.e. the distribution concentrates to the states ±(1, 1, . . . , 1) with probability
1 − exp (−Ω(βd))) for βd � 1. This effect is fairly robust, and dropping or adding even a large
number of edges does not alter it significantly. Thus, one has to collect an exponential in βd number
of samples merely to obtain some diversity in the samples, which will be necessary to distinguish
any of these variations of a clique from the full thing.

While generic arguments can be offered for each of the settings below on the basis of the above
intuition, these tend to be lossy in how they handle the effect of very low edge weights. To counteract
this, we individually analyse each setting, and while the arguments have structural similarities, the
particulars vary.

It is worth noting that our bounds rely on below diverge from the classical literature in the low
temperature condition we impose. We generally demand conditions like βd ≥ log d, while most
other lower bounds demand that βd ≥ 1. This extra room allows us to tighten the exponents in
the sample complexity bounds as opposed to previous work, but has the obvious disadvantage of
reduced applicability. We note, however, that in most settings, this only yields a lost factor of d in
the resulting bounds, and frequently not even that. Functionally, thus, there is little to no loss in the
use of this stronger low-temperature condition.6 A similar notion of low temperature has appeared
in e.g. [Bez+19].

D.2.1 Clique with a deleted edge

This calculation is the simplest demonstration of our bounding technique, and all following settings
are analysed in a similar way. While it is superseded by the section immediately following it, the
bound is thus important for the reasons of comprehension if nothing else.

We consider graphs on d + 1 nodes, and let PClique be the Ising model on the complete graph on
d + 1 nodes, with edge (1, 2) of weight µ, and every other edge of weight λ. QClique is formed by

6This effect is linked to the concentration of the Ising model on the clique we mentioned before. Notice that
the probability of a uniform state is as 1− exp (−Ω(βd)). For this to be appreciable, i.e., at least polynomially
close to 1, a condition like βd = Ω(log d) is in fact necessary.
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deleting the edge (1, 2) in PClique Note that such underlying constructions feature in nearly every

bb

b

b

b b

b b

b

b

λ

µ

λ

Figure 7: The clique with uniform weight λ barring one edge, and the same edge deleted. Here
d = 4.

lower bound on structural inference on degree bounded Ising models.

With the exposition out of the way, we state the bound below.
Proposition 25. Suppose λd > log d. Then

χ2(QClique‖PClique) ≤ 16e−2λ(d−1) sinh2 µ.

D.2.2 The clique with a large hole

To allow for a greater number of changes, we modify the previous construction by removing a large
subclique from theKd+1 used above, instead of just one edge. More formally, for some ` < d/8, let
K` be the complete graph on nodes [1 : `].We set P`,Clique to the the Ising model onKd+1 such that
the edges in K` have weight µ, and all other edges have weight λ, while Q`,Clique instead deletes
the edges in K`. Note that as a conseuquence, we have effected a deletion of ∼ `2/2 edges from the
original model.
Proposition 26. If `+ 1 ≤ d/8, λ ≥ |µ| and λd > 3 log d, then

χ2(Q`,Clique‖P`,Clique) ≤ 32`e−2β(d+1−`) sinh2(µ(`− 1)).

Note that the bound of the previous subsection (up to some factors) can be recovered by setting
` = 2 in the above.

Control on the χ2-divergence with P and Q exchanged is also useful.
Proposition 27. If `+ 1 ≤ d/12, λ ≥ |µ| and λd > 3 log d, then

χ2(P`,Clique‖Q`,Clique) ≤ 64`e−2β(d+1−`) sinh2(2µ(`− 1)).

D.2.3 Emmentaler Clique

As a development of the Clique with a large hole, we may in fact put in many large holes, leading
to a pockmarked clique reminiscent of a Swiss cheese. Concretely, let ` be a number such that
B := d/(`+ 1) is an integer. We define a graph on d nodes in the following way: Divide the nodes
into B groups of equal size, V1, . . . , VB . Form the complete graph on d nodes, and then delete the
` + 1-sublique on Vi for each i. Note that equivalently, the graph above is the complete symmetric
B-partite graph on d nodes. The graph effects a deletion of ∼ d`/2 edges from a clique.

The key property of the Emmentaler is that it still freezes at a exponential rate, and it has sufficient
‘space’ in it to accommodate significantly more edges. In particular, the graph is regular and the
degrees of each node are uniformly d− `− 1. We use this in two ways:

Emmentaler with one extra node We show that determining the degree of a node connected to
many of the nodes of an Emmentaler is hard. Concretely, we construct the following two graphs on
d+ 1 nodes:

Construct an Emmentaler Clique on the first d nodes. Next, connect the node d+ 1 to each node in⋃B−1
i=1 Vi. Notice that node d+ 1 is not connected to one of the parts of the Emmentaler. We choose
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Figure 8: Two views of the Emmentaler cliques. The left represents the base clique as the large grey
circle, while the uncoloured circles within represent the groups Vi with no edges within (this should
be viewed as `� 1, B = 10). This view is inspiration for the name. On the right, we represent the
Emmentaler as the graph K`+1,`+1,...,`+1 - here d = 8 and ` = 1 is shown.

P` to be the Ising model with uniform weight λ on the this graph. ForQ`, we additionally add edges
between node d+ 1 and each node in VB with weight µ. The following result holds.
Proposition 28. If 2 ≤ `+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log d, and |µ| ≤ λ, then

χ2(Q`‖P`) ≤ 32de−2λ(d−1−`).

Notice that the above proposition does not show a µ dependence. This is due to inefficiencies
in our proof technique. We strongly conjecture that a bound of the form (1 + Cd tanh2(µ(` +
1))e−2λ(d−`−1))n holds.

Emmentaler v/s Full Clique We show that it is difficult to distinguish between an Emmentaler
and a full clique. Concretely, we let P` be an Emmentaler as above, and in Q`, we add back the
deleted subcliques to each Vi, but with weight µ.
Proposition 29. If `+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log d, then

χ2(Q`‖P`) ≤ d2 min(1, µ2d4)e−2λ(d−1−`).

E Miscellaneous

E.1 Using statistical formulations to test structural changes

The main text makes the case that statistical formulations of GOF do not give us the whole story
when one is interested in structural changes. Concretely, though, this only directly affects the lower
bounds. On the other hand, when we restrict alternate hypotheses in the GOF problem to make a lot
of changes, then one may expect that tests under statistical formulations are powerful.

Intuitively, this expectation is rendered plausible by the fact that the notion of being close to a given
model is similar under the statistical and the structural formulations - equality under one is also
equality under the second, at least in the setting of unique network structures, and mere continuity
suggests that, at least locally, setting some value of s(P, ε) or ε(s, P ) should allow one to translate
tests from the statistical to the structural notions of changes and vice versa.7 However, this strategy
does not work too well, at least with our current understanding of Ising models. More concretely -
utilising statistical tests for structural testing in a sample efficient way requires a local understanding
of the distortion of the edge-Hamming distance of the graph under the map (θ, θ′) 7→ SKL(θ‖θ′),

7It should be noted that this analogy is flawed - while the notions of being close are indeed similar, the
notion of being far from a model is significantly different under the two formulations. The main text mentions
an example illustrating this - if a small group of disconnected nodes is bunched into a clique, a large statistical
change is induced due to the marked difference in the marginal law of this group, but the structural change is
tiny. Of course, being close and far are ultimately related concepts, and some shadow of this effect must be cast
on the closeness argument we have just presented.
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which is not available as of now. Global constraints on the same are available, and are unhappily
both rather pessimistic, and essentially tight. This means that using the methods developed for
testing for statistical divergences in the setting of structural identity testing is problematic.

Some details - the best available results that translate edge-differences to symmetrised KL diver-
gence is via Lemma 4 of [SW12]. The Bhattacharya coefficient of two distributions is BC(P,Q) :=∑
x

√
P (x)Q(x). The cited lemma argues that under s changes,

BC ≤ exp
(
−Cs sinh2(α)e−2βd/d

)
.

Let −ϕ denote the exponent in the above, for conciseness. Since −2 log BC ≤ KL, this induces
DSKL & ϕ, and similarly, since 1 − BC ≤ TV, this tells us also that TV ≥ 1 − exp (−ϕ) . Since
1− e−z ≤ z, this means that the best lower bound we can possibly derive this way is TV ≥ ϕ.
Now, the best known upper bounds for statistical testing under SKL is (βpd/ε)2 up to log factors
[DDK16], and under TV for ferromagnets this may be improved to (pd/ε)2 [Bez+19]. Plugging in
the values of ε implicit in the above, the first of these then requires about(

βpd

ϕ

)2

∼ e4βd

α4

(
βpd2

s

)2

,

which is worse than the testing by first recovering the underlying network. Similarly, under TV, a
similar number is required, but without an extra β-factor, which has little effect in light of terms like
eβd showing up. So, naïvely using this structural characterisation does not give promising results.

Further, unfortunately, the characterisation of BC, and indeed of KL and TV divergences offered
through this is essentially tight. This essentially follows from our results providing control on the χ2-
divergences in various construction, and the control this imposes on KL,TV via the monotonicity
of Rényi divergences and Pinsker’s inequality. It may be the case that in some special cases, tight
bounds for structural testing may be derived via the statistical testing approach above. We have not
explored this possibility in detail.

E.2 Lower Bounds on Property Testing

In passing, we mention that our constructions improve upon lower bounds for some of the property
tests studied in [NL19]. For instance, the triangle construction provides an obstruction to cycle
testing that does not require explicit control on α as in [NL19]. Similarly, the Clique with a hole, and
the Emmentaler clique with an extra node constructions may serve as obstructions to testing the size
of the largest clique, and to testing the value of the maximum degree of the network structures in low
temperatures. In high temperatures, the Fan graph construction shows that testing maximum degree
is hard. In each case this either improves upon the lower bounds of [NL19] by either improving the
exponent from βd/4 to 2βd(1− od(1)), or by removing an explicit high-temperature condition that
is enforced in the lower bound.

F Proofs of Widget Bounds

An Observation For Ising models P,Q,

1 + χ2(Q‖P ) =
∑
x

Q(x)2

P (x)
=
∑
x

ZP
Z2
Q

exp
(
xT 2θQx− xT θPx

)
=
ZPZ2Q−P

Z2
Q

,

where Z2Q−P :=
∑
x exp

(
xT (2θQ − θP )x

)
is yet another partition function. We will repeatedly

use this form of the χ2-divergence, without further comment, in the following.

F.1 Star-Based Widgets

F.1.1 Triangle

Proof of Proposition 20. Let P = PTriangle, Q = QTriangle. Note that
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P (x) =
1

ZP
eλx2(x1+x3)

Q(x) =
1

ZQ(µ)
eλx2(x1+x3)eµx1x3

Where the partition functions may simply be computed to obtain the expressions below:

ZP = 23 cosh2 λ = 4(cosh 2λ+ 1)

ZQ(µ) = 4(eµ cosh 2λ+ e−µ).

Further, we have that

W := EP [(Q/P )2] =

(
ZP

ZQ(µ)

)2

· 1

ZP
·
∑

eλx2(x1+x3)e2µx1x3 =
ZPZQ(2µ)

ZQ(µ)2
.

Inserting the previous computed values of these partition functions, we have

W =
(cosh 2λ+ 1)(e2µ cosh 2λ+ e−2µ)

(eµ cosh 2λ+ e−µ)2

=
e2µ cosh2 2λ+ e−2µ + cosh 2λ(e2µ + e−2µ)

(eµ cosh 2λ+ e−µ)2

= 1 +
cosh 2λ(eµ − e−µ)2

(eµ cosh 2λ+ e−µ)2

≤ 1 +
(eµ − e−µ)2

e2µ cosh 2λ

≤ 1 +
4 sinh2 µ

cosh2 µ cosh 2λ

≤ 1 + 8e−2λ tanh2 µ

where the second and third inequalities both use that ex ≥ coshx ≥ ex/2, for x ≥ 0.

F.1.2 Fan with deletions

In keeping with the rest of the text, these proofs will set 2B = d. Note that the value of B does not
enter the resulting bounds.

Proof of Proposition 23. Let

P`,η,µ,λ(x) :=
1

Z(`, η, µ, λ)
exp

λxd+1(

d/2∑
i=1

x2i) + µxd+1(

d/2∑
i=`+1

x2i−1)


· exp

ηxd+1(
∑̀
i=1

x2i−1) + λ(

d/2∑
i=1

x2ix2i−1)

 .

Then P`,Fan = P`,0,µ,λ, Q`,Fan = P`,µ,µ,λ. Further, Z2Q−P = Z(`, 2µ, µ, λ).

Here again the partition function is simple to compute. In essence, the groups (x2i−1, x2i) across i
are independent given xd+1, and the expressions, unsurprisingly, are invariant to value of xd+1.

Unfortunately the calculations get a little messy. If one is not interested in the results on property
testing in §E.2, then the following may be safely skipped. We do note that the steps below are
elementary, it is just the form of the expressions that is long.
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Z(`, η, µ, λ)

=
∑
xd+1

∑
exp

λxd+1(

d/2∑
i=1

x2i) + µxd+1(

d/2∑
i=`+1

x2i−1) + ηxd+1(
∑̀
i=1

x2i−1) + λ(

d/2∑
i=1

x2ix2i−1)


=
∑
xd+1

∏̀
i=1

∑
x2i−1,x2i

exd+1(ηx2i−1+λx2i)+λx2ix2i−1 ·
d/2∏
i=`+1

∑
x2i−1,x2i

exd+1(µx2i−1+λx2i)+λx2ix2i−1

=
∑
xd+1

(
2eλ cosh((λ+ η)xd+1) + 2e−λ cosh((λ− η)xd+1)

)`
·
(
2eλ cosh((λ+ µ)xd+1) + 2e−λ cosh((λ− µ)xd+1)

)d/2−`
= 2d+1

(
eλ cosh(λ+ η) + e−λ cosh(λ− η)

)` (
eλ cosh(λ+ µ) + e−λ cosh(λ− µ)

)d/2−`
Thus,

1 + χ2(Q‖P ) =
Z(`, 0, µ, λ)Z(`, 2µ, µ, λ)

Z(`, µ, µ, λ)2

=

((
eλ cosh(λ) + e−λ cosh(λ)

) (
eλ cosh(λ+ 2µ) + e−λ cosh(λ− 2µ)

)
(eλ cosh(λ+ µ) + e−λ cosh(λ− µ))

2

)`
=: U `.

We proceed to estimate U .

U =

(
eλ cosh(λ) + e−λ cosh(λ)

) (
eλ cosh(λ+ 2µ) + e−λ cosh(λ− 2µ)

)
(eλ cosh(λ+ µ) + e−λ cosh(λ− µ))

2

=
e2λ coshλ cosh(λ+ 2µ) + e−2λ coshλ cosh(λ− 2µ) + cosh(λ) cosh(λ+ 2µ) + cosh(λ) cosh(λ− 2µ)

e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)

By eliminating one factor of the denominator from the numerator above, we obtain the sequence of
relations that follows below.

U
(a)
= 1 +

(e2λ + e−2λ) sinh2 µ+ sinh(µ) (sinh(2λ+ µ)− sinh(2λ− µ))

e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)

(b)
= 1 +

2 cosh(2λ) sinh2 µ+ 2 cosh(2λ) sinh2 µ

(eλ cosh(λ+ µ) + e−λ cosh(λ− µ))
2

= 1 +
4 sinh2(µ) cosh(2λ)

e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)

(c)

≤ 1 + 4
sinh2 µ

cosh2(λ+ µ)
≤ 1 + 4

sinh2 µ

cosh2 λ cosh2 µ

≤ 1 + 16e−2λ tanh2 µ,

where (a) follows by the identities

cosh(u) cosh(u+ 2v)− cosh2(u+ v) = sinh2 v

cosh(u) cosh(u+ 2v)− cosh(u+ v) cosh(u− v) = sinh(v) sinh(2u+ v),

(b) uses
sinh(2u+ v)− sinh(2u− v) = 2 cosh(2u) sinhu,

and (c) follows by dropping all terms but the first in the denominator, and observing that e2λ ≥
cosh(2λ). Finally, the inequality cosh(λ+ µ) ≥ coshλ coshµ holds because λ, µ ≥ 0.
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F.2 Clique-based Widgets

The method for showing the bounds is developed in the case of the Clique with a single edge deleted.
While there are variations in the proofs of the following two cases, the basic recipe remains the same.

We begin with a technical lemma that is repeatedly used in the following.

Lemma 30. Let τ : [a, b]→ R be a function differentiable on (a, b) such that τ ′ is strictly concave.
If τ(a) < 0 and τ(b) > 0, then τ has exactly one root in (a, b)

Proof. Since τ ′ is concave, it can have at most two roots in (a, b). Indeed, if there were three
roots a < x1 < x2 < x3 < b, then ∃t ∈ (0, 1) : x2 = tx1 + (1 − t)x3, and 0 = f(x2) =
tf(x1)+(1− t)f(x3) violates strict concavity. Further, between its roots, τ ′ must be positive, again
by concavity.

Thus, we can break [a, b] into three intervals (I1, I2, I3), some of them possibly trivial8, of the from
([a, x1), [x1, x2], (x2, b]), such that τ is monotone decreasing on the interiors of I1, I3 and monotone
increasing on the interior of I2.

Note that τ has at least one root by the intermediate value theorem. We now argue that it cannot
have more than one. Since τ is falling on I1, it follows that supx∈I1 τ(x) = τ(a) < 0, and there is
no root in I1. Similarly, since τ is falling on I3, τ(b) = infx∈I3 τ(x) > 0, and there is no root in I3.
This leaves I2, and since τ is monotone on I2, it has at most one root on the same.

F.2.1 Clique with a single edge deleted

Proof of Proposition 25. Let P = PClique and Q = QClique as defined in the main text. For given
λ, η, let

Pλ,η(x) :=
1

Z(λ, η)
e
λ
2 ((

∑
xi)

2−(d+1))e−ηx1x2

Note that P = Pλ,λ−µ, and Q = Pλ,λ. Further,

W := EP [(Q/P )2] =
Z(λ, λ− µ)Z(λ, λ+ µ)

Z(λ, λ)2
.

We begin by writing Z in a convenient form, derived by breaking the configurations into bins de-
pending on the number of xis that take the value −1:

Z(λ, η) =

d−1∑
j=0

(
d− 1

j

){
e−η

(
e
λ
2 (d+1−2j)2−(d+1) + e

λ
2 (d−3−2j)2−(d+1)

)
+ 2eηe

λ
2 ((d−1−2j)2−(d+1))

}
.

Notice above that since (d− 3− 2(d− 1− j))2 = (d+ 1− 2j)2, and
(
d−1
j

)
=
(
d−1
d−1−j

)
, it follows

that the sums over the first two terms above are identical. Thus,

Z(λ, η) = 2
∑(

d− 1

j

)
e−ηe

λ
2 (d+1−2j)2−(d+1) + 2

∑
eηe

λ
2 ((d−1−2j)2−(d+1))

⇐⇒ Z(λ, η)

2eλ/2(d2−d)︸ ︷︷ ︸
=:Z̃(λ,η)

= eλd−η
∑(

d− 1

j

)
e−2λj(d+1−j)︸ ︷︷ ︸

=:S1(λ)

+e−(λd−η)
∑(

d− 1

j

)
e−2λj(d−1−j)︸ ︷︷ ︸

=:S2(λ)

⇐⇒ Z̃(λ, η) = eλd−ηS1(λ) + e−λd+ηS2(λ).

8i.e. of cardinality 0 or 1. More precise characterisation can be obtained by casework on the number of roots
of τ ′.
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Since the term appears often, we set d′ = d− 1. As a consequence of the above, we have

W =
Z(λ, λ− µ)Z(λ, λ+ µ)

Z(λ, λ)2
=
Z̃(λ, λ− µ)Z̃(λ, λ+ µ)

Z̃(λ, λ)2

=
(eλd

′+µS1(λ) + e−λd
′−µS2(λ))(eλd

′−µS1(λ) + e−λd
′+µS2(λ))

(eλd′S1(λ) + e−λd′S2(λ))2

= 1 + 4 sinh2 µ
S1S2

(eλd′S1 + e−λd′S2)2

≤ 1 + 4 sinh2 µ
e−2λd′S2(λ)

S1(λ)
.

The bounds are now forthcoming by controlling S1, S2 as in the following

Lemma 31. If d ≥ 5 and λ(d− 4) ≥ log(d), then

S1(λ) ≥ 1

S2(λ) ≤ 2 + 3de−2λ(d−2) ≤ 2 + 3/d.

The bound follows directly from the control offered above.

This proof describes closely the structure of the forthcoming proofs

• Begin by introducing one free parameter, η varying which yields Ising models that interpo-
late between P and Q.

• Express the χ2 divergence as a ratio of partition functions.
• Exploit the symetries of the mean field Ising model to more conveniently write these parti-

tion functions.
• Control the terms arising via a ‘ratio trick’ as in the proof of Lemma 31. At time this is

used more than once, or a more direct form of this trick is used instead.

We conclude by showing Lemma 31.

Proof of Lemma 31. S1 ≥ 1 follows trivially, since all terms in the sum are non-negative and the
first term is

(
d−1

0

)
e0 = 1.

Concentrating on S2, let Tj :=
(
d−1
j

)
e−2λj(d−1−j). Note that S2 =

∑
Tj , and that Tj = Td−1−j

for every j. Further, for j ∈ [0 : d− 2],

Tj+1

Tj
=
d− 1− j
j + 1

e−2λ(d−2−2j).

Treating j as a real number in [0, d− 2], define

τ(j) = log(d− 1− j)− log(j + 1)− 2λ(d− 2− 2j).

We have

τ ′(j) = − 1

d− 1− j
− 1

j + 1
+ 4λ

τ ′′(j) = − 1

(d− 1− j)2
+

1

(j + 1)2

τ ′′′(j) = − 2

(d− 1− j)3
− 2

(j + 1)3
< 0.

We may now note that τ ′ is a strictly concave function on the relevant domain. Further, note that
since log(d− 1) ≤ 2λ(d− 2) follows from our conditions, τ(0) < 0, and similarly, τ(d− 2) > 0.

36



By Lemma F.2, τ has exactly one root in [0, d− 2] - in particular, this lies at j = d/2− 1. But since
Tj+1/Tj = eτ(j), we obtain that for j ≤ d/2− 1, Tj+1 ≤ Tj , and for j ≥ d/2− 1, Tj+1 ≥ Tj .
Since T s are decreasing until d/2− 1 and increasing after d/2, it follows that for all j ∈ [2 : d− 3],
Tj ≤ max(T2, Td−3) = T2. Now, under the conditions of the theorem,

T2

T1
= exp (τ(1)) = exp (log(d− 2)− log 2− 2λ(d− 4))

≤ exp (log(d− 2)− log 2− 2 log(d)) ≤ 1/d,

where we have used the assumption λ(d− 4) ≥ log d. Thus,

S2 = T0 + T1 +

d−3∑
j=2

Tj + Td−2 + Td−1

≤ 1 + T1 +
d− 4

d
T1 + T1 + 1

≤ 2 + 3d exp (−2λ(d− 2)) ≤ 2 + 3/d.

We call this method of estimating sums such as S2 the ratio trick, since they control the values of
the sums by controlling the ratios of subsequent terms.

F.2.2 Clique with Large Hole

The computations of this section are in essence a deepening of the previous section, and we will
frequently make references to the same.

Proof of Proposition 26. Once again condensing notation, let P := P`,Clique, Q := Q`,Clique.

Further, let

P`,λ,η(x) :=
1

Z`(λ, η)
e
λ
2 (

∑
1≤i≤d+1 xi)

2−(d+1)e−
η
2 (

∑
1≤i≤` xi)

2−`

Again, P = P`,λ,λ−µ, Q = P`,λ,λ holds. Z` is the central object for this section, and has the
following expression. This is derived by tracking the number of negative xis in both the bulk of the
clique and the single ‘hole’ separately.

Z`(λ, η) :=
∑

{±1}d+1

e
λ
2 (

∑
1≤i≤d+1 xi)

2−(d+1)e−
η
2 (

∑
1≤i≤` xi)

2−`

=
∑
i,j

(
`

i

)(
d+ 1− `

j

)
e
λ
2 (d+1−2i−2j)2−(d+1)e

−η
2 (`−2i)2−`

We normalise Z` by eλ/2((d+1)2−(d+1))e−η/2(`2−`), and put a ∼ over the normalised version9 to get

Z̃`(λ, η) :=
∑
i,j

(
`

i

)(
d+ 1− `

j

)
e−2λj(d+1−2i−j)e2ηi(`−i)e−2λi(d+1−i)

=:
∑̀
i=0

(
`

i

)
e2ηi(`−i)e−2λi(d+1−i)Si(λ)

9Unlike in §F.2.1, we include the factor due to η in the normalisation. This does not affect the further
calculations since these factors cancel in the expression for W below. More importantly, the normalisation
includes a factor of eλ/2((d+1)2−(d+1)) instead of eλ/2(d

2−d). While the latter lent the formulae in the ` = 2
case of the previous section a pleasant symmetry, the former yields more convenient expressions when dealing
with ` abstractly. Due to this, the terms are further reduced by a common factor of eλd. We highlight this here
because of the cosmetic differences arising from these changes—for instance, the leading term in Z̃` is just S1

instead of eλd−ηS1 as in the §F.2.1—which may irk the careful reader at first glance.
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where

Si(λ) :=
∑
j

(
d+ 1− `

j

)
e−2λj(d+1−2i−j).

Notice that Si ≥ 0 for every i.

As before, we are interested in controlling

W :=
Z`(λ, λ− µ)Z`(λ, λ+ µ)

Z`(λ, λ)2
=
Z̃`(λ, λ− µ)Z̃`(λ, λ+ µ)

Z̃`(λ, λ)2
.

To this end, note first that 2λi(`− i)− 2λi(d+ 1− i) = −2λ(d+ 1− `), and so, for instance,

Z̃`(λ, λ+ µ) =
∑
i

(
`

i

)
e2µi(`−i)e−2λi(d+1−`)Si(λ).

Collecting like terms in expressions of the above form, we obtain that

Z̃`(λ, λ− µ)

Z̃`(λ, λ)
= 1 +

∑`−1
i=1

(
`
i

) (
e−2µi(`−i) − 1

)
e−2λi(d+1−`)Si(λ)

Z̃`(λ, λ)

and

Z̃`(λ, λ+ µ)

Z̃`(λ, λ)
= 1 +

∑`−1
i=1

(
`
i

) (
e2µi(`−i) − 1

)
e−2λi(d+1−`)Si(λ)

Z̃`(λ, λ)
,

where the terms involving i = 0 and i = ` in the numerator drop out because e2µi(`−i) = 1 in these
cases.

Now, if µ ≥ 0 the second terms in the above two expressions are respectively negative and positive,
while if µ < 0, they are respectively positive and negative. It is a triviality that for A < 0 <
B, (1 +A)(1 +B) ≤ 1 +A+B. We thus have the upper bound

W ≤ 1 +

∑`−1
i=1

(
`
i

)
2 (cosh 2µi(`− i)− 1) e−2λi(d+1−`)Si(λ)

Z̃`(λ, λ)

= 1 + 4

∑`−1
i=1

(
`
i

)
sinh2(µi(`− i))e−2λi(d+1−`)Si(λ)

Z̃`(λ, λ)
(1)

While we will provide full proofs in the sequel, it may help to see where we are going first. Roughly,
we argue via the ratio trick in the proof of Lemma 31 in the previous section, that Si is bounded
by 2(1 + e−2λ(`−2i)(d+1−`)), under conditions such as λ(d + 1 − 2`) ≥ log d + 1 − 2`. Plugging
in this upper bound, and noting that after multiplication with e−2λi(d+1−`) we have a sum that is
completely symmetric under i 7→ `− i, we can bound W as

W ≤ 1 + 16

∑`−1
i=1

(
`
i

)
sinh2(µi(`− i))e−2λi(d+1−`)

Z̃`(λ, λ)
.

We then show that under the conditions of the proposition, the first term in the above sum dominates
all the remaining terms, in the process utilising the condition |µ| ≤ λ. Finally, using the trivial
bound Z̃`(λ, λ) ≥ 1, we get the claied upper bound.

Let us then proceed. The control on the Sis is offered below.

Lemma 32. If λ(d+ 1− 2`) ≥ log(d+ 1− 2`) and d ≥ 4`, then for every i ∈ [1 : `− 1],

Si(λ) ≤ 2 + 2e−2λ(`−2i)(d+1−`).
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Incorporating the above lemma into (1), we have

W ≤ 1 + 8

∑`−1
i=1

(
`
i

)
sinh2(µi(`− i))e−2λi(d+1−`) (1 + e−2λ(`−2i)(d+1−`))

Z̃`(λ, λ)

≤ 1 + 8

∑`−1
i=1

(
`
i

)
sinh2(µi(`− i))

(
e−2λi(d+1−`) + e−2λ(`−i)(d+1−`))
Z̃`(λ, λ)

(a)
= 1 + 16

∑`−1
i=1

(
`
i

)
sinh2(µi(`− i))e−2λi(d+1−`)

Z̃`(λ, λ)

= 1 +
16

Z̃`(λ, λ)

(
sinh2(µ(`− 1))e−2λ(d+1−`) +

`−1∑
i=2

(
`

i

)
sinh2(µi(`− i))e−2λi(d+1−`)

)
(b)

≤ 1 +
16

Z̃`(λ, λ)

(
sinh2(µ(`− 1))e−2λ(d+1−`) +

`−1∑
i=2

(
`

i

)
e2|µ|i`−2λi(d+1−`)

)
(c)

≤ 1 +
16

Z̃`(λ, λ)

(
sinh2(µ(`− 1))e−2λ(d+1−`) +

`−1∑
i=2

(
`

i

)
e−2λi(d+1−2`)

)
(2)

where the equality (a) follows since each term in the sum is invariant under the map i 7→ `− i, (b)
follows since sinhx ≤ ex, and (c) used λ ≥ |µ|. .

For i ∈ [2 : `], let Vi denote the term corresponding to i in the summation above, and let V1 =
sinh2(µ(` − 1)e−2λ(d+1−`). We will argue that V1 dominates Vi for every i by using a weakened
ratio trick.

Note that
V1 ≥ e−2λ(d+1−`)−2|µ|(`−1) ≥ e−2λd.

Further,
Vi
V1
≤ exp (i log `+ 2λd− 2λi(d+ 1− 2`)) .

This is smaller than 1/` so long as for every i,

i(2λ(d+ 1− 2`)− log `) > 2λd+ log(`),

which hold if the following conditions are true:

2λ(d+ 1− 2`) > log `

4λ(d+ 1− 2`) > 3 log `+ 2λd.

The above hold if λ(d + 2 − 4`) ≥ 3/2 log `, which is true under the conditions of the proposition
since ` < d/8, and since λ(d+ 2− 4`) ≥ λd/2 ≥ 3/2 log d.

Finally, it remains to show that Z̃`(λ, λ) is non-trivially large. But note that Z̃`(λ, λ) ≥ S0(λ) ≥ 1.

Thus, we have shown that

W ≤ 1 + 32` sinh2(µ(`− 1))e−2λ(d+1−`).

Proof of Lemma 32. For j ∈ [0 : d+ 1− `], let

Tj :=

(
d+ 1− `

j

)
e−2λj(d+1−2i−j).

Recall that Si =
∑
Tj . We will use the ratio trick again. To this end, observe that

Tj+1

Tj
=
d+ 1− `− j

j + 1
exp (−2λ(d− 2i− 2j) .
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Again treating j as a real number in [0 : d− `], let
τ(j) := log(d+ 1− `− j)− log(1 + j)− 2λ(d− 2i− 2j).

By considerations similar to the previous section, τ is strictly concave, and by Lemma F.2, τ has
exactly one root so long as τ(0) < 0 and τ(d− `) > 0. In this setting these conditions translate to

log(d+ 1− `) < 2λ(d− 2i)

log(d+ 1− `) < −2λ(d− 2i− 2(d− `)) = 2λ(d− 2(`− i)).

The above hold for every i so long as log(d+ 1− `) < 2λ(d+ 2− 2`).

Since τ has a single root and is initially negative, we again find that for all j ∈ [2 : d − 1 − `],
Tj ≤ max(T2, Td−1−`). Further,

T2

T1
=
d− `

2
exp (−2λ(d− 2− 2i)) ≤ d− `

2
exp (−2λ(d− 2`)) ≤ 1

d− `
Td−`−1

Td−`
=
d− `

2
exp (−2λ(d− 2(`− i)) ≤ 1

d− `
.

Further,

max

(
T1

T0
,
Td−`
Td+1−`

)
≤ (d+ 1− `)e−2λ(d−2`) ≤ 1/2.

Thus,
S1 ≤ T0 + Td+1−` + (1 + (d− `− 2)/(d− `)) max(T1, Td−`)

≤ T0 + Td+1−` + 2 max(T1, Td−`)

≤ 2(T0 + Td+1−`).

Now notice that
T0 = 1

Td−`+1 = exp (−2λ(d+ 1− `)(d+ 1− 2i− d− 1 + `)) = exp (−2λ(`− 2i)(d+ 1− `)) ,
and thus the claim follows.

We now prove the reverse direction, i.e. control on χ2(P‖Q). This is essentially a small variation
on the previous setting.

Proof of Proposition 27. Referring to the previous proof, we instead need to control

W ′ =
Z̃`(λ, λ)Z̃`(λ, λ+ 2µ)

Z̃`(λ, λ+ µ)2
.

Proceeding in the same way, we may conntrol

W ′ ≤ 1 +

∑`−1
i=1

(
`
i

)
(cosh(4µi(`− i))− 2 cosh(2µ(i(`− i)) + 1) e−2λi(d+1−`)Si(λ)

Z̃`(λ, λ+ µ)

For succinctness, let f(x) := cosh(4µx) − 2 cosh(2µx) + 1. Note that 1 ≤ f(x) ≤ e4|µ|x. Since
the Si are identical to the previous case, Lemma 32 applies, and

W ′ ≤ 1 + 8

∑`−1
i=1

(
`
i

)
f(i(`− i))e−2λi(d+1−`) (1 + e−2λ(`−2i)(d+1−`))

Z̃`(λ, λ+ µ)

≤ 1 + 16

∑`−1
i=1

(
`
i

)
f(i(`− i))e−2λi(d+1−`)

Z̃`(λ, λ+ µ)

≤ 1 +
16

Z̃`(λ, λ+ µ)

(
f(`− 1)e−2λ(d+1−`) +

`−1∑
i=2

(
`

i

)
e4|µ|i`−2λi(d+1−`)

)

≤1 +
16

Z̃`(λ, λ+ µ)

(
f(`− 1)e−2λ(d+1−`) +

`−1∑
i=2

(
`

i

)
e−2λi(d+1−3`)

)
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Notice the distinction that the exponent in the second sum contains a −3` instead of a −2`. Using
f(x) ≥ 1, the same control on the relative values of Si and the summation holds as long as

4λ(d+ 1− 3`) > 3 log `+ 2λd.

This translates to demanding that 2λ(d−6`) > 3/2λd,which holds for ` ≤ d/12. Finally, Z̃`(λ, λ+
µ) ≥ 1 as well, and thus,

W ′ ≤ 1 + 32`e−2λ(d+1−`) (cosh(4µ(`− 1))− 2 cosh(2µ(`− 1)) + 1) .

Finally, we note that for any x,

cosh(4x)− 2 cosh(2x) + 1 = sinh2(2x) + (cosh(2x)− 1)2

= 4 sinh2 x cosh2 x+ 4 sinh4 x = 4 sinh2 x cosh2 x(1 + tanh2 x)

≤ 2 sinh2(2x).

F.2.3 Emmentaler Cliques

Proof of Proposition 28. Recall the setup - d + 1 nodes are divided into B = d/(` + 1) groups of
`+ 1 nodes each, denoted V1, . . . , VB , and the final node d+ 1 is kept separate. Recall that for a set
S, xS :=

∑
u∈S xu. Define

P`,λ,η =
1

Z`(λ, η)
exp

λ/2( B∑
i=1

xVi

)2

− λ/2
B∑
i=1

(x2
Vi) + λxv

B∑
i=2

xVi + ηxvxV1

 .

Then P = P`,Emmentaler = P`,λ,0, Q = Q`,Emmentaler = P`,λ,µ and Z2Q−P = Z`(λ, 2µ)
Marginalising over xv, we get

Z`(λ, η) = 2
∑
x

exp

λ/2( B∑
i=1

xVi

)2

− λ/2
B∑
i=1

(x2
Vi)

 cosh

(
λ

B∑
i=2

xVi + ηxV1

)

≤ 2 cosh(λ(d− `− 1) + η(`+ 1))
∑
x

exp

λ/2( B∑
i=1

xVi

)2

− λ/2
B∑
i=1

(x2
Vi)

 ,

while dropping all terms for which |
∑
i xVi | < d, we get

Z`(λ, η) ≥ 4 cosh(λ(d− `− 1) + η(`+ 1))eλ/2(B2−B)(`+1)2

= 4 cosh(λ(d′ − `− 1) + µ(`+ 1))eλ/2(d2−d(`+1)).

To control Z` from above, it is necessary to control the partition function of the Emmentaler graph
on d nodes (i.e., with only the groups V1, . . . VB , and without the extra node from above. We set this
equal to Y`(λ). Then, similarly tracking configurations by the number of negative xis in each part,

Y` :=
∑
x

exp

λ/2( B∑
i=1

xVi

)2

− λ/2
B∑
i=1

(x2
Vi)

 .

=
∑

j1,...,jB

∏(
`+ 1

ji

)
· exp

(
λ/2

(
(d− 2

∑
ji)

2 −
∑

(`+ 1− 2ji)
2
))

=eλ/2(d2−d(`+1))
∑

j1,...,jB

∏(
`+ 1

ji

)
· exp

(
−2λ

(
(d− `− 1)(

∑
ji) +

∑
j2
i − (

∑
ji)

2
))

For succinctness, let d′ := d − ` − 1. We establish the following lemma after concluding this
argument
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Lemma 33. If ` ≤ d/4 and λ(d− 4) ≥ 3 log(d), then

Y` ≤ 2eλ/2(d2−d(`+1))
(

1 + 2de−2λd′
)

Invoking the above lemma and the previously argued control on Z`, we get that

W := EP [(Q/P )2] =
Z`(λ, 0)Z`(λ, 2µ)

Z`(λ, µ)2

≤ cosh(λd′) cosh(λd′ + 2µ(`+ 1))

cosh2(λd′ + µ(`+ 1))

(
2Y`

4eλ/2(d2−d(`+1))

)2

≤
(

1 +
sinh2(µ(`+ 1))

cosh2(λd′ + µ(`+ 1))

)(
1 + 2de−2λd′

)2

≤
(

1 + 4 tanh2(µ(`+ 1))e−2λd′
)(

1 + 2de−2λd′
)2

Under the conditions of the theorem, both 4 tanh2(µ(` + 1))e−2λd′ and 2de−2λd′ are smaller than
1/4.But for x, y, it holds that (1+x)2 < 1+3x and (1+3x)(1+y) < 1+4(x+y) ≤ 1+8 max(x, y).
Lastly, 4 tanh2 x ≤ 4 ≤ d, and thus, we have shown the bound

W ≤ 1 + 32de−2λ(d−`−1).

Proof of Lemma 33. Fix a vector (j1, . . . , jB) and let k :=
∑
ji. We will argue the claim by con-

trolling the terms in Y` with a given value of k.

Lemma 34. If
∑
ji = k ∈ [2 : d− 2], `+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log(d), then∏(

`+ 1

ji

)
· exp

(
−2λ

(
d′(
∑

ji) +
∑

j2
i − (

∑
ji)

2
))
≤ 1

dmin(k,d−k)
e−2λd′ .

Thus, we have the bound

Y`
eλ/2(d2−d(`+1))

≤ 2
(

1 +B(`+ 1)e−2λd′
)

+

d−2∑
k=2

Nk
dmin(k,d−k)

e−2λd′ ,

where
Nk =

∣∣∣{j ∈ [0 : `+ 1]B :
∑

ji = k
}
.
∣∣∣

Notice that Nk = Nd−k. Further, for k ≤ d/2, by stars and bars,

Nk ≤
(
k +B − 1

k

)
≤ (1 + (B − 1)/k)k−1 ≤ Bk ≤ dk

Consequently, Nk ≤ dmin(k,d−k), and we have established the upper bound

Y`
2eλ/2(d2−d(`+1))

≤ 1 + 2de−2λd′ .

Proof of Lemma 34. Note that
(
n
m

)
≤ nmin(m,n−m). Therefore,∏(

`+ 1

ji

)
≤ exp (min(k, d− k) log(`+ 1)) .

Next, by Cauchy-Schwarz, ∑
j2
i ≥

(
∑
ji)

2

B
= k2

(
1− d′

d

)
.
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Let LHS,RHS be the left and right hand sides of the inequality claimed in the Lemma. Using the
above,

log
LHS

RHS
≤ min(k, d− k) log(d(`+ 1))− 2λ

(
d′k + k2d′/d− d′

)
= min(k, d− k) log(d(`+ 1))− 2λ

d′

d
(k(d− k)− d) .

Let f(k) be the upper bound above. Notice that f(k) = f(d − k). Thus, it suffices to show that
f(u) ≤ 0 for every real number u ∈ [2, d/2].

For a real number u ∈ [2, d/2), it holds that f ′′(u) = 4λ > 0. It follows that f attains its maxima
on {2, d/2}. Since `+ 1 < d/4, we have d′/d ≥ 3/4, and thus

f(2) = 2 log(d(`+ 1))− 2λ
d′

d
(d− 4) ≤ 4 log(d)− 3

2
λ(d− 4) < 0

f(d/2) =
d

2

(
log(d(`+ 1)− 2λ

d′

d
· (d− 4)

2

)
=
d

4
f(2) < 0.

F.2.4 Emmentaler v/s Full Clique

Proof of Proposition 29. Let

P`,λ,η(x) :=
1

Z`(λ, η)
exp

λ/2
( B∑

i=1

xVi

)2

− d

− (λ− η)/2

B∑
i=1

(x2
Vi − (`+ 1))

 .

Then P` = P`,λ,0, Q` = P`,λ,µ. Let d′ = d− 1− `. Developing this a little, one can write

Z`(λ, η) = C`,λ,η
∑

j1,...,jB

∏(
`+ 1

ji

)
· e−2λ(d′

∑
ji+

∑
j2i−(

∑
ji)

2)−2η((`+1)
∑
ji−

∑
j2i ),

where
C`,λ,η = exp

(
λ/2(d2 − d(`+ 1)) + ηd(`+ 1)/2

)
.

Notice that
C`,λ,0C`,λ,2µ

C2
`,λ,µ

= 1,

and thus

W := EP [(Q/P )2] =
Z`(λ, 0)Z`(λ, 2µ)

Z`(λ, µ)2
=
Z̃`(λ, 0)Z̃`(λ, 2µ)

Z̃`(λ, µ)2
,

where

Z̃`(λ, η) :=
Z`(λ, η)

C`λ,η
=

d∑
k=0

e−2λ(d′k−k2)−2η(`+1)k
∑

j1,...,jB∑
ji=k

∏(
`+ 1

ji

)
· e−2(λ−η)

∑
j2i .

Let Tk be the kth term in the above. It holds that Tk = Td−k. Indeed, the original terms are invariant
under the map x 7→ −x, and for j = (j1, . . . , jB), this maps to (` + 1)1 − j which has the sum
d− k.
Further, since ∑

j2
i ≤ max

i
(ji)

∑
ji ≤ (`+ 1)

∑
ji,

it holds that each term, which depends on η as e−2η((`+1)
∑
ji−

∑
j2i decreases as η increases (or

equivalently, ∂
∂η Z̃`(λ, η) ≤ 0)
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Due to the above, for µ > 0,

ρ1 :=
Z̃`(λ, 0)− Z̃`(λ, µ)

Z̃`(λ, µ)
≥ 0

ρ2 :=
Z̃`(λ, 2µ)− Z̃`(λ, µ)

Z̃`(λ, µ)
≤ 0,

yielding,

W =
Z̃`(λ, 0)Z̃`(λ, 2µ)

Z̃`(λ, µ)2
≤ 1 + ρ1 + ρ2.

(For µ < 0, the signs of both ρ1 and ρ2 are flipped, giving the same bound.)

We now offer control on ρ1 + ρ2, to complete the argument. To this end, note that

1− 2e−2µ((`+1)k−
∑
j2i ) + e−4µ((`+1)k−

∑
j2i ) =

(
1− e−2µ((`+1)k−

∑
j2i )
)2

,

and thus

Z̃`(λ, µ)(ρ1 + ρ2) =
d−1∑
k=1

∑
j:
∑
ji=k

∏(
`+ 1

ji

)
e−2λ(d′k−k2+

∑
j2i )
(

1− e−2µ((`+1)k−
∑
j2i )
)2

≤ 2

bd/2c∑
k=1

∑
j:
∑
ji=k

∏(
`+ 1

ji

)
e−2λ(d′k−k2+

∑
j2i )
(

1− e−2µ((`+1)k−
∑
j2i )
)2

,

where we have used the symmetry of the Tks above.

We argue below that the first term in the above strongly dominates all subsequent terms.

Lemma 35. If
∑
ji = k ∈ [2 : bd/2c], `+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log(d), then∏(

`+ 1

ji

)
e−2λ(d′k−k2+

∑
j2i ) ≤ 1

dk
e−2λd′ .

Using the above, along with
∑
j2
i ≥

∑
ji and the fact that the number of B-tuples of whole

numbers that sum up to k is at most
(
k+B−1

k

)
≤ (eB)k ≤ dk, we immediately have

Z̃`(λ, µ)(ρ1 + ρ2) ≤ 2de−2λd′
d/2∑
k=1

(
1− e−2µ`k

)2
.

We bound the sum above in two ways - firstly, each term is ≤ 1, and so the sum is at most d/2.
Further, using 1− e−x ≤ x, the sum is at most 4

∑
µ2`2k2 ≤ µ2d5. This gives ,

Z̃`(λ, µ)(ρ1 + ρ2) ≤ 2d2 min(1, µ2d4)e−2λ(d−1−`)

The bound on W now follows since Z̃`(λ, µ) ≥ 2 trivially.

Proof of Lemma 35. This is essentially the same as Lemma 33, and may be proved similarly.

F.2.5 The Clique versus the Empty Graph in High Temperatures

Proof of Proposition 22. This proof heavily relies on techniques we encountered in [CNL18]. The
principal idea is via the following representation of the law of an Ising model with uniform edge
weights, and the subsequent expression (and upper bound) for its partition function, both of which
we encountered in the cited paper.

Let τ = tanh(µ). Then the law of the Ising model on a m-vertex graph G with uniform weights α
is

P (X = x) =

∏
(i,j)∈G(1 + τXiXj)

2mE0[
∏

(i,j)∈G(1 + τXiXj)
,
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where E0 denotes expectation with respect to the uniform law on {−1, 1}m. This is shown by
noticing that exp (x) = cosh(x)(1 + tanh(x)), and then observing that for x = µXiXj , since
XiXj = ±1, the same is equal to cosh(µ)(1 + tanh(µ)XiXj). The cosh(µ) term is fixed for
all entries, and thus vanishes under the normalisation. The denominator is simply a restatement of∑
{−1,1}m

∏
(i,j)∈G(1 + τXiXj).

Let the denominator of the above be denoted 2mΦ(τ ;G). We further have the expansion

Φ(τ ;G) =
∑
u≥0

E (u,G)τu,

where E (j,G) denotes the number of ‘Eulerian subgraphs of G’, where we call a graph Eulerian if
each of its connected components is Eulerian (and recall that a connected graph is Eulerian if and
only if each of its nodes has even degree). This arises by expanding the above product out to get

Φ(τ ;G) =
∑
u≥0

τu ·
∑

choices of u edges (i1, j1), (i2, j2), . . . (iu, ju)

E0[Xi1Xj1 . . . XiuXju ].

Now, due to the independence, if any node of the Xis or the Xjs appears an odd number of times
in the product, the expectation of that term under E0 is zero. If they all appear an even number of
times, the value is of course 1. Thus the inner sum, after expectation, amounts to the number of
groups of u edges such that each node occurs an even number of times in this set of edges, which
corresponds to the number of Eulerian subgraphs of G, defined in the above way.

A further subsidiary lemma controls the size of E (u,G) as follows, where we abuse notation and
use G to denote the adjacency matrix of the graph G.

E (u,G) ≤ (2‖G‖F )u.

The idea behind this is to first control the number of length-v closed walks in a graph, by noticing
that the total number of length v walks from i to i is (Gv)i,i, summing which up gives an upper
bound on the number of closed length v walks of Tr(Gv) ≤ ‖G‖vF . Next, we note that to get an
Eulerian subgraph of G with u edges, we can either take a closed walk of length u in G, or we can
add a closed walk of length v ≤ u − 2 to an Eulerian subgraph with u − v edges. This yields a
Grönwall-style inequality that the authors solve inductively. Please see [CNL18, Lemma A.1].

Now, let P be the Ising model Km with uniform weight α, and let Q be the Ising model on the
empty graph on m nodes. Using the above expression for the law of an Ising model, we have

1 + χ2(Q‖P ) = EQ[Q/P ] = E0[
∏
i<j

(1 + τXiXj)]E0[
∏
i<j

(1 + τXiXj)
−1],

which, by multiplying and dividing each term in the second expression by 1 − τXiXj , and noting
that X2

iX
2
j = 1, may further be written as

1 + χ2(Q‖P ) = E[
∏
i<j

(1 + τXiXj)]E

[∏
i<j(1− τXiXj)

(1− τ2)−(m2 )

]
= Φ(τ ;Km)Φ(−τ ;Km)(1− τ2)−(m2 ).

Since the above expression is invariant under a sign flip of τ, we may assume, without loss of
generality, that τ ≥ 0. Next, notice, due to the expansion in terms of E of Φ, that Φ(−τ ;Km) ≤
Φ(τ ;Km) for τ ≥ 0. Further, for τ ≥ 0, using the bound on E (u,G),

Φ(τ ;Km) ≤ E (0;Km) + tE (1;Km) + t2E (2;Km) +
∑
u≥3

(2t‖Km‖F )u.

Now notice that E (0;Km) = 1, and E (1;Km) = E (2;Km) = 0. The first of these is because
there is only a single empty graph, while the other two follow since Km is a simple graph. Further,
‖Km‖F =

√
m(m− 1) ≤ m. Thus, we have

Φ(τ ;Km) ≤ 1 +
∑
u≥3

(2tm)u.
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Now, since 2 tanh(α)m ≤ 2αm ≤ 1/16 < 1/2, we sum up and bound the geometric series to
conclude that Φ(τ ;Km) ≤ 1 + 16(tm)3 ≤ 1 + (tm)2, and as a consequence,

Φ(τ ;Km)2 ≤ (1 + (tm)2)2 ≤ 1 + 3(tm)2 ≤ exp
(
3(tm)2

)
.

Further, since τm < 1/32, and m ≥ 1, we have τ < 1/32, which in turn implies that (1− τ2)−1 ≤
exp

(
2τ2
)
. Thus, we find that

1 + χ2(P‖Q) ≤ exp
(
3(τm)2

)
· (exp

(
2τ2
)
)m

2/2 ≤ exp
(
4(τm)2

)
≤ 1 + 8(τm)2,

where the final inequality uses the fact that for x < ln(2), ex ≤ 1 + 2x, which applies since
4(τm)2 ≤ 4/(32)2 < ln(2).

It is worth noting that Proposition 21 is also shown in the above framework by [CNL18]. The main
difference, however, is that in the χ2 computations, the square of

∏
(1 + τXiXj) appears. The

technique the authors use is to extend the notion of E to multigraphs, and show the same expansion
for these, along with the same upper bound for E (u,G), this time with the entries of G denoting the
number of edges between the corresponding nodes.
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