
Appendices
A Proofs

This part contains the proofs of Lemma 3.1 and Theorem 3.2. For notational convenience, we use
f(·) to substitute the Rs(·), and use x to substitute the γ, in Equations (2) and (3) of Section 3.2.
We also restate Lemma 3.1 and Theorem 3.2 using the new notations here, so that this part can be
self-contained. Under the new notations here, Equation (2) in Section 3.2 becomes:

f(x) = t‖x‖1 − ‖x− x̄1n‖1 =

n∑
i=1

t|xi| − |xi − x̄|, (t ∈ R, xi ∈ [0, a]) (5)

And Lemma 3.1 becomes:
Lemma A.1. f(x) defined in (5) is concave.

Proof. For any 0 < θ < 1 and xi, yi ∈ [0, a], we have:

|θxi + (1− θ)yi − [θx̄+ (1− θ)ȳ]|
=|θ(xi − x̄) + (1− θ)(yi − ȳ)|
≤θ|xi − x̄|+ (1− θ)|yi − ȳ| (6)

Using t(θxi + (1− θ)yi) to subtract both sides of inequality (6), we have:

t(θxi + (1− θ)yi)− |θxi + (1− θ)yi − [θx̄+ (1− θ)ȳ]|
≥θ (txi − |xi − x̄|) + (1− θ) (tyi − |yi − ȳ|)

Therefore,
n∑
i=1

t(θxi + (1− θ)yi)− |θxi + (1− θ)yi − [θx̄+ (1− θ)ȳ]|

≥θ
n∑
i=1

txi − |xi − x̄|+ (1− θ)
n∑
i=1

tyi − |yi − ȳ|

Note that when xi, yi ∈ [0, a],

f(x) =

n∑
i=1

txi − |xi − x̄|

f(θx+ (1− θ)y) =

n∑
i=1

t(θxi + (1− θ)yi)− |θxi + (1− θ)yi − [θx̄+ (1− θ)ȳ]|

So we have

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

which shows that f(x) is concave on x ∈ [0, a]n.

Under the new notations here, Equation (3) in Subection 3.2 becomes:

min
x∈[0,a]n

f(x) =

n∑
i=1

t|xi| − |xi − x̄|, (t ∈ R) (7)

Given k indices: 1 ≤ i1, · · · , ik ≤ n, and k values: v1, · · · , vk ∈ {0, a}, we define the notation:

Fi1,··· ,k,v1,··· ,k = {x ∈ [0, a]n|xi1 = v1, · · · , xik = vk} (8)

Then we prove the following lemma:

14

Lemma A.2. The optimal value of (7) is attained on the vertices of [0, a]n.

Proof. [0, a]n is an n-dimensional cube, and its boundary consists of 2n facets:

∂[0, a]n =

n⋃
i=1

({x ∈ [0, a]n|xi = 0} ∪ {x ∈ [0, a]n|xi = a})

=

n⋃
i=1

(Fi,0 ∪ Fi,a)

where the notation of (8) is used. Obviously, Fi,v(v = 0 or a) is a facet of [0, a]n. Note that
Fi,v = {x|xi = v,∀j 6= i, xj ∈ [0, a]}. So Fi,v is a n − 1 dimensional cube on the dimensions
1 ≤ j ≤ n, j 6= i. Actually, Fi1,··· ,k,v1,··· ,k is a n − k dimensional cube on dimensions 1 ≤ j ≤
n, j /∈ {i1,··· ,k}.
First step, we prove that the optimal value of (7) is attained on one facet of [0, a]n. Assume
x∗ ∈ [0, a]n is an optimal solution of (7). Because [0, a]n is a bounded and closed convex set on Rn,
then if x∗ /∈ ∂[0, a]n, there exists a line segment in [0, a]n passing through x∗ and intersects with
the boundary of [0, a]n on two points: x(n)

1 ,x
(n)
2 , i.e. ∃x(n)

1 ,x
(n)
2 ∈ ∂[0, a]n, and ∃θ ∈ (0, 1), such

that x∗ = θx
(n)
1 + (1 − θ)x(n)

2 . According to Lemma A.1, f(x) is concave on [0, a]n. Therefore
f(x∗) ≥ θf(x

(n)
1) + (1− θ)f(x

(n)
2) ≥ min{f(x

(n)
1), f(x

(n)
2)}. Without loss of generality, suppose

f(x
(n)
1) ≤ f(x

(n)
2), then f(x∗) ≥ f(x

(n)
1), which means x(n)

1 is also an optimal solution. Because
x
(n)
1 ∈ ∂[0, a]n, x(n)

1 must lie on one facet of [0, a]n. Let Fi1,v1 denote the facet that x(n)
1 lies on.

Second step, note that Fi1,v1 is an n− 1 dimensional cube, x(n)
1 ∈ Fi1,v1 is an optimal solution of

(7), and f(x) is concave on Fi1,v1 . For the same reasons as in the first step, the optimal value of (7)
is attained on one facet of Fi1,v1 . Without loss of generality, suppose Fi1,2,v1,2 is the facet that the
optimal solution lies on. Obviously, Fi1,2,v1,2 is an n− 2 dimensional cube.

We can iteratively apply the same reasoning as the 2 steps above until we reach the n-th step, in which
case the optimal solution y∗ = (y∗1 , y

∗
2 , · · · , y∗n) lies on a 1-dimensional cube Fi1,··· ,n−1,v1,··· ,n−1

.
Let {j} = {1, · · · , n} \ {i1,··· ,n−1}, then y∗j ∈ [0, a], and ∀i 6= j(1 ≤ i ≤ n), y∗i ∈ {0, a}.
Suppose y∗j = ξa, (0 ≤ ξ ≤ 1), and let y1 = (y∗1 , · · · , y∗j−1, a, y∗j+1, · · · , y∗n) and y2 =
(y∗1 , · · · , y∗j−1, 0, y∗j+1, · · · , y∗n), then both y1 and y2 are vertices of [0, a]n, and y∗ = ξy1+(1−ξ)y2.
Because f(x) is concave, we have f(y∗) ≥ ξf(y1) + (1 − ξ)f(y2) ≥ min{f(y1), f(y2)}, i.e.
f(y∗) ≥ f(y1) or f(y∗) ≥ f(y2). Because both y1 and y2 are vertices of [0, a]n, this shows that
the optimal value is attained on vertices of [0, a]n.

Under the new notations here, Theorem 3.2 in Subection 3.2 becomes:

Theorem A.3. A class of optimal solutions of (7) is that either bnρc or bnρc + 1 number of
xi, (1 ≤ i ≤ n) are a, and the rest are 0, where:

ρ =

{ −t/4 + 1/2, −2 ≤ t ≤ 2
0, t > 2
1, t < −2

(9)

Proof. By Lemma A.2, the optimal solution of (7) can be found on the vertices of [0, a]n: {x|xi ∈
{0, a}, 1 ≤ i ≤ n}. So (7) is solved by:

min
xi∈{0,a}

f(x) =

n∑
i=1

t|xi| − |xi − x̄| (10)

Suppose k variables of xi, (1 ≤ i ≤ n) equal a, and the rest n− k variables equal 0. Then

f(x) = a

(
tk −

[
k|1− k

n
|+ (n− k)|0− k

n
|
])

= a

(
k(t− 1 +

k

n
)− (n− k)

k

n

)

15

This shows that k determines the value of f(x), which is permutation invariant. And because a > 0,
solving (10) is equivalent to solving the following problem:

min
1≤k≤n

g(k) = k(t− 1 +
k

n
)− (n− k)

k

n
(11)

Let ρ = k/n, and define

h(ρ) =
g(k)

n
= ρ(t− 1 + ρ)− (1− ρ)ρ

= 2ρ2 + (t− 2)ρ

Because k can only be integers, the values of ρ are discrete. We first relax this discreteness constraint
and assume ρ is a continuous variable in [0, 1]. Then (11) is simplified to:

min
0≤ρ≤1

h(ρ) = 2ρ2 + (t− 2)ρ (12)

Solving (12), we get the optimal solution:

ρ∗ =

{ −t/4 + 1/2, −2 ≤ t ≤ 2
0, t > 2
1, t < −2

Now we consider the discreteness constraint. When t > 2, the optimal solution of (11) is 0. When
t < −2, the optimal solution of (11) is n. When t ∈ [−2, 2], ρ∗ ∈ [0, 1]. If ρ∗ = m/n, where
m ∈ {0, 1, · · · , n}, then the optimal solution of (11) is m. Otherwise, ρ∗ must lie in some interval
(m/n, (m + 1)/n), where m ∈ {0, 1, · · · , n − 1}. Because ρ = ρ∗ is the symmetric axis of the
quadratic function (12), the minimal value of (12) on the discrete points {0, 1/n, 2/n, · · · , 1} must
be attained either on m/n or on (m+ 1)/n. So the optimal solution of (11) is either m or m+ 1.

B Detailed Parameters in Training

The detailed parameters in the training and pruning stages of our method are listed in Table 4. We use
the most commonly used batch size, training epochs and learning rate decay scheme as in [Zagoruyko
and Komodakis, 2016, Liu et al., 2017]. For example, in the training stage on ImageNet, the learning
rate decay scheme “0.1,0.01,0.001@30,60” means that the learning rate in the first 30 epochs is 0.1,
in epochs 31 to 60 is 0.01, and in epochs after 60 is 0.001. And “0.05 cosine lr decay” means using
cosine learning rate decay strategy with the initial learning rate 0.05.

Table 4: Training hyper-parameters for sparsity training and fine-tuning. Learning rate denotes the
learning rates and corresponding decay milestones.

Dataset Model Batch size Training Fine-tuning

Epoch Learning rate Epoch Learning rate

ImageNet ResNet 512 120 {0.1, 0.01, 0.001}
@{40,80} 128 0.05 cosine lr decay

[Loshchilov and Hutter, 2017]

ImageNet MobileNet v2 1024 256 0.4 cosine lr decay with warmup 256 0.05 cosine lr decay

CIFAR ResNet &
VGG 128 200 {0.01, 0.1, 0.02, 0.004, 0.0008}

@{1,60,120,160} 200 {0.001, 0.0005, 0.00025, 0.0001}
@{20,60,150}

C Details on Pruning ResNet-50

The main building block of ResNet-50 is the bottleneck block [He et al., 2016], as shown in Figure 5.
The polarization regularizer is applied to the scale factors of the first two BN layers in each bottleneck
block, i.e. the “bn1” and “bn2” in Figure 5. In the baseline ResNet-50 model, many scaling factors
in the “bn3” of a bottleneck block are already 0 or very close to 0. So we do not apply any extra
regularization on “bn3”, either in our polarization pruning method or in our implementation of the
NS method [Liu et al., 2017]. We visualize the layer-wise distribution of scaling factors in Figure 6.
Figure 6 compares the layer-wise distributions of scaling factors between the baseline ResNet-50
model and the model trained with our polarization regularizer on ImageNet dataset. Due to space
limit, we only visualize the distributions in the “conv2” and “conv3” layers as defined in [He et al.,
2016], where “conv2” and “conv3” contains 3 and 4 bottleneck blocks respectively. Figure 6 shows
that our polarization regularizer also makes the scaling factors more separable in layer-level.

16

xi xi+1+

3x3
conv

bn2 ReLU
1x1
conv

bn1 ReLU
1x1
conv

bn3 ReLU

Figure 5: A “bottleneck” block in ResNet-50.

0.0 0.1 0.2 0.3
0

10

20

30

Polarization
conv2_1_bn1

0.1 0.2 0.3 0.4
0

2

4

Baseline
conv2_1_bn1

0.0 0.1 0.2
0

20

40

Polarization
conv2_1_bn2

0.0 0.1 0.2
0

2

4

6

Baseline
conv2_1_bn2

0.0 0.1 0.2 0.3
0

10

20

30

Polarization
conv2_2_bn1

0.0 0.1 0.2 0.3
0

2

4

Baseline
conv2_2_bn1

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

Polarization
conv2_2_bn2

0.0 0.1 0.2 0.3
0

2

4

6

Baseline
conv2_2_bn2

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

Polarization
conv2_3_bn1

0.00 0.05 0.10 0.15 0.20 0.25
0

2

4

6

Baseline
conv2_3_bn1

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

Polarization
conv2_3_bn2

0.0 0.1 0.2 0.3
0

2

4

6

Baseline
conv2_3_bn2

0.0 0.1 0.2 0.3
0

20

40

60

Polarization
conv3_1_bn1

0.15 0.20 0.25 0.30
0

2

4

6

Baseline
conv3_1_bn1

0.00 0.05 0.10 0.15 0.20
0

10

20

30

Polarization
conv3_1_bn2

0.150 0.175 0.200 0.225 0.250
0.0

2.5

5.0

7.5

Baseline
conv3_1_bn2

0.00 0.05 0.10 0.15
0

25

50

75

Polarization
conv3_2_bn1

0.075 0.100 0.125 0.150 0.175
0

2

4

6

Baseline
conv3_2_bn1

0.00 0.05 0.10 0.15
0

20

40

60

Polarization
conv3_2_bn2

0.10 0.15 0.20 0.25
0

2

4

6

Baseline
conv3_2_bn2

0.00 0.05 0.10 0.15
0

20

40

Polarization
conv3_3_bn1

0.10 0.15 0.20 0.25
0

2

4

6

Baseline
conv3_3_bn1

0.00 0.05 0.10 0.15
0

10

20

30

Polarization
conv3_3_bn2

0.15 0.20 0.25
0

2

4

6

Baseline
conv3_3_bn2

0.00 0.05 0.10 0.15
0

20

40

Polarization
conv3_4_bn1

0.12 0.14 0.16 0.18 0.20 0.22
0

2

4

6

Baseline
conv3_4_bn1

0.00 0.05 0.10 0.15 0.20
0

10

20

30

Polarization
conv3_4_bn2

0.15 0.20 0.25
0

2

4

6

Baseline
conv3_4_bn2

Figure 6: Comparison of the layer-wise scaling factor distributions between baseline ResNet-50
model and the model trained with our polarization regularizer on ImageNet dataset. The left two
columns show the distributions of scaling factors in “bn1” of the bottleneck block. The right two
columns show the distributions of scaling factors in “bn2” of the bottleneck block. The top 3 rows
show scaling factor distributions in each bottleneck block of the “conv2” layer. The bottom 4 rows
show scaling factor distributions in each bottleneck block of the “conv3” layer.

17

