
First of all, we would like to thank all the reviewers for their comments. Below we answer to the1

concerns of each reviewer separately.2

Reviewer 1: Thank you for the review and your comment. We will explain the motivation and3

the background in details and will give a clear description of the dynamic model and the difference4

between the streaming and the dynamic setting to improve the presentation of the paper. We will5

also write a complete related work section and the relation of our work to prior work specially a6

comparison between our work and the results from KZK18 and MKK17.7

Reviewers 1 and 3: a discussion for the update time and the memory constraint. Here we8

briefly mention the difference between the streaming and the dynamic setting. In the streaming setting9

the main concern is the space complexity. We often compute a sketch of the input that is revealed in a10

streaming fashion. At the end of the stream we compute a solution/function using the sketch that we11

maintained in the course of stream. On the other hand, in the dynamic setting the main complexity is12

the time. The idea is given the input that is revealed in a streaming fashion, one is interested in seeing13

the solution and the changes in the solution after every insert or delete. The main motivation is for14

learning highly dynamic and sensitive data (such as time series) that we need to take an action as15

soon as we see a shift in the function of the underlying data that we observe. Since we need to react16

to changes in the solution fast, we need to (re)-compute the solution as fast as we can. Indeed, we17

cannot wait till the end of the stream and take the corresponding action afterwards. The underlying18

assumption for the dynamic setting is nowadays with machines that can easily have (SD)RAMs of19

GBs and soon TBs, the space constraint won’t be a problem, but the time complexity is the main20

bottleneck. The results from KZK18 and MKK17 are streaming algorithms whose time complexities21

depend on the number of deletions (Theorem 1 of the second reference) which will be high if we22

want to (re)-compute a solution after each insertion or deletion.23

Reviewer 2: Thank you for your comments. We find them useful and will incorporate them to24

improve the presentation of the paper. Yes, the assumption that the function f is monotone has25

been used in the related results from KZK18 and MKK17. Also, in Lemma 3 we used the fact that26

the function must be monotone, but indeed it is a good question to see if we can develop dynamic27

algorithms for non-monotone functions and we will think about it. As for the method of getting a28

worst case bound in Section 3, we did not know about "A Deamortization Approach for Dynamic29

Spanner and Dynamic Maximal Matching". Definitely we will cite this paper.30

Reviewer 3: Thank you for the review and the comments. In the appendix we mentioned a version31

of our algorithm that doesn’t need to know the OPT value and has O(
√
n) time complexity. We32

recently found that a variant of our algorithm that does not need to know the OPT value and has33

poly-logarithmic dependency on n. The idea is to do our logarithmic rate of sampling and filtering34

besides maintaining a max-heap as we see new updates. We will add this new algorithm to the paper.35

Reviewer 4: Thank you for your comments. We find them useful and will incorporate them to36

improve the presentation of the paper. Yes, the running time of our algorithms is measured on the37

number of oracle calls to the function f and we will explain it explicitly in the paper. We do not know38

if 1/2 is the best that we can achieve or not. However, we think it will be very interesting to see if we39

can develop a dynamic algorithm with better than 1/2-approximation guarantee. Many thanks for40

pointing out to the new arXiv submission "Fully Dynamic Algorithm for Constrained Submodular41

Optimization". We did not know about this paper. We should mention that this paper presents a42

dynamic algorithm whose expected update time is poly-logarithmic in n and k. Our algorithm works43

with high probability. We think we can use our worst case framework in Section 3 to improve their44

running time bound from expected to a high probability bound.45

Reviewers 2 and 4: the dependence on k in the running time. we recently realized that a simple46

version of our algorithm has poly-logarithmic dependence on k in the running time. The idea is if at47

each step i of the recursion we sample O(ε−2k log n) elements and if we have many elements that48

are above the threshold, we collect more than one such element. We can then show that the number49

of elements that are survived after filtering at each step i drops by a factor of ε
−2

2k . Thus, every insert50

or delete that changes a partial solution set Gi happens with probability O(n/k), but the number51

of elements in the steps > i are an order of O(n/k) for which we have enough credit to re-run the52

following steps.53

1


