
Appendix of DynaBERT: Dynamic BERT with
Adaptive Width and Depth

A Layer Pruning Strategy and Hidden States Matching

In the training of DynaBERT with adaptive width and depth, when md < 1, we use the “Every Other”
strategy in [2] and drop layers evenly to get a balanced network. Specifically, for depth multiplier md

(i.e., prune layers with a rate 1−md), we drop layers at depth d which satisfies mod(d, 1
1−md

) ≡ 0,
because the lower layers in the student network which are found to change less from pre-training
to fine-tuning [6]. We then match the hidden states of the remaining layers with those from all
layers in the teacher model except those at depth d which satisfies mod(d+ 1, 1

1−md
) ≡ 0. In this

way, we keep the knowledge learned in the last layer of the teacher network which is shown to be
important in [12]. For a BERT model with 12 Transformer layers indexed by 1, 2, 3, · · · , 12, when
md = 0.75, we drop the layers with indices 4, 8, 12 of the student model. Then we match hidden
states of the remaining 9 layers LS = {1, 2, 3, 4, 5, 6, 7, 8, 9} in the student with those indexed
LT = {1, 2, 4, 5, 6, 8, 9, 10, 12} from the teacher network. When md = 0.5, we drop the layers
indexed 2, 4, 6, 8, 10, 12 of the student model. Then we match hidden states of the kept 6 layers
LS = {1, 2, 3, 4, 5, 6} in the student with those indexed LT = {2, 4, 6, 8, 10, 12} from the teacher
network. The loss `hidn is computed as

`′hidn(H
(mw,md),H(mw)) =

∑
l,l′∈LS ,LT

MSE(H(mw,md)
l ,H

(mw)
l′ ).

B More Experiment Settings

B.1 Description of Data sets in the GLUE benchmark

The GLUE benchmark [11] is a collection of diverse natural language understanding tasks, including
textual entailment (RTE and MNLI), question answering (QNLI), similarity and paraphrase (MRPC,
QQP, STS-B), sentiment analysis (SST-2) and linguistic acceptability (CoLA). For MNLI, we
use both the matched (MNLI-m) and mismatched (MNLI-mm) sections. We do not experiment on
Winograd Schema (WNLI) because even a majority baseline outperforms many methods on it. We
use the default train/validation/test splits from the official website1.

B.2 Hyperparameters

GLUE benchmark. On the GLUE benchmark, the detailed hyperparameters for training
DynaBERTW in Section 2.1 and DynaBERT in Section 2.2 are shown in Table 1. The same hyperpa-
rameters as in Table 1 are used for DynaRoBERTa.

SQuAD. Since Lemb + Lhidn is several magnitudes larger than Lpred in this task, for both
DynaBERTW and DynaBERT, we separate the training into two stages, i.e., first using Lemb +Lhidn

as the objective and then Lpred. When training with objective Lemb + Lhidn, we use the augmented
data from [4] and train for 2 epochs. When training with objective Lpred, we use the original
training data and train for 10 epochs. The batch size is 12 throughout the training process. The other
hyperparameters are the same as the GLUE benchmark in Table 1.

1https://gluebenchmark.com/tasks

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://gluebenchmark.com/tasks


Table 1: Hyperparameters for different stages in training DynaBERT and DynaRoBERTa on the
GLUE benchmark.

DynaBERTW DynaBERT
Width-adaptive Width- and depth-adaptive Final fine-tuning

Width mutipliers [1.0, 0.75,0.5,0.25] [1.0, 0.75,0.5,0.25] [1.0, 0.75,0.5,0.25]
Depth multipliers 1 [1.0, 0.75,0.5] [1.0, 0.75,0.5]

Batch Size 32 32 32
Learning Rate 2e− 5 2e− 5 2e− 5
Warmup Steps 0 0 0

Learning Rate Decay Linear Linear Linear
Weight Decay 0 0 0

Gradient Clipping 1 1 1
Dropout 0.1 0.1 0.1

Attention Dropout 0.1 0.1 0.1
Distillation y y n
λ1, λ2 1.0, 0.1 1.0,1.0 -

Data augmentation y y n
Training Epochs (MNLI, QQP) 1 1 3

Training Epochs (other data sets) 3 3 3

B.3 FLOPs and Latency

To count the floating-point operations (FLOPs), we follow the setting in [1] and infer FLOPs with
batch size 1 and sequence length 128. Unlike [1], we do not count the operations in the embedding
lookup because the inference time in this part is negligible compared to that in the Transformer layers
[10]. To evaluate the inference speed on GPU, we follow [4], and experiment on the QNLI training
set with batch size 128 and sequence length 128. The numbers are the average running time of 100
batches on an Nvidia K40 GPU. To evaluate the inference speed on CPU, we experiment on Kirin
810 A76 ARM CPU with batch size 1 and sequence length 128.

C More Experiment Results

C.1 More Results on the GLUE Benchmark

Test Set Results. Table 2 shows the test set results. Again, the proposed DynaBERT achieves
comparable accuracy as BERTBASE with the same size. Interestingly, the proposed DynaRoBERTa
outperforms RoBERTaBASE on seven out of eight tasks. A possible reason is that allowing adaptive
width and depth increases the training difficulty and acts as regularization, and so contributes positively
to the performance.

Table 2: Test set results of the GLUE benchmark.
MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE

BERTBASE 84.6 83.6 71.9 90.7 93.4 51.5 85.2 87.5 69.6
DynaBERT (mw,md = 1, 1) 84.5 84.1 72.1 91.3 93.0 54.9 84.4 87.9 69.9
RoBERTaBASE 86.0 85.4 70.9 92.5 94.6 50.5 88.1 90.0 73.0
DynaRoBERTa (mw,md = 1, 1) 86.9 86.7 71.9 92.5 94.7 54.1 88.4 90.8 73.7

Comparison with Other Methods on All GLUE Tasks. Figure 1 shows the comparison of our
proposed DynaBERT and DynaRoBERTa with other compression methods on all GLUE tasks, under
different efficiency constraints, including #parameters, FLOPs, latency on Nvidia K40 GPU and
Kirin 810 A76 ARM CPU.

As can be seen, on all tasks, the proposed DynaBERT and DynaRoBERTa achieve comparable
accuracy as BERTBASE and RoBERTaBASE, but often require fewer parameters, FLOPs or lower
latency. Similar to the observations in Section 3.1, under the same efficiency constraint, sub-networks
extracted from our proposed DynaBERT outperform DistilBERT on all data sets except STS-B under
#parameters, and outperforms TinyBERT on all data sets except MRPC; Sub-networks extracted from
DynaRoBERTa outperform LayerDrop and even LayerDrop trained with much more data.

C.2 Full Results of Ablation Study

Training DynaBERTW with Adaptive Width. Table 3 shows the accuracy for each width multi-
plier in the ablation study in the training of DynaBERTW. As can be seen, DynaBERTW performs
similarly as the separate network baseline at its largest width and significantly better at smaller widths.

2



BERT RoBERTa DistilBERT TinyBERT LayerDrop LayerDrop+more data DynaBERT DynaRoBERTa

40 60 80 100 120
#parameters(G)

30

40

50

60

70

M
at

th
ew

s c
or

re
la

tio
n

CoLA

40 60 80 100 120
#parameters(G)

86

87

88

89

90

91

92

Sp
ea

rm
an

 c
or

re
la

tio
n

STS-B

40 60 80 100 120
#parameters(G)

75

80

85

90

Ac
cu

ra
cy

 (%
)

MRPC

40 60 80 100 120
#parameters(G)

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

RTE

40 60 80 100 120
#parameters(G)

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

MNLI

40 60 80 100 120
#parameters(G)

89

90

91

92

Ac
cu

ra
cy

 (%
)

QQP

40 60 80 100 120
#parameters(G)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

QNLI

40 60 80 100 120
#parameters(G)

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

SST-2

(a) #Parameters(G).

0 5 10 15 20 25
FLOPs(G)

30

40

50

60

70

M
at

th
ew

s c
or

re
la

tio
n

CoLA

0 5 10 15 20 25
FLOPs(G)

86

87

88

89

90

91

92

Sp
ea

rm
an

 c
or

re
la

tio
n

STS-B

0 5 10 15 20 25
FLOPs(G)

75

80

85

90

Ac
cu

ra
cy

 (%
)

MRPC

0 5 10 15 20 25
FLOPs(G)

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

RTE

0 5 10 15 20 25
FLOPs(G)

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

MNLI

0 5 10 15 20 25
FLOPs(G)

89

90

91

92

Ac
cu

ra
cy

 (%
)

QQP

0 5 10 15 20 25 30
FLOPs(G)

86

88

90

92

94
Ac

cu
ra

cy
 (%

)
QNLI

0 5 10 15 20 25
FLOPs(G)

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

SST-2

(b) FLOPs(G).

0 50 100 150 200
Nvidia K40 latency (s)

30

40

50

60

70

M
at

th
ew

s c
or

re
la

tio
n

CoLA

0 50 100 150 200
Nvidia K40 latency (s)

86

87

88

89

90

91

92

Sp
ea

rm
an

 c
or

re
la

tio
n

STS-B

0 50 100 150 200
Nvidia K40 latency (s)

75

80

85

90

Ac
cu

ra
cy

 (%
)

MRPC

0 50 100 150 200
Nvidia K40 latency (s)

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

RTE

0 50 100 150 200
Nvidia K40 latency (s)

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

MNLI

0 50 100 150 200
Nvidia K40 latency (s)

89

90

91

92

Ac
cu

ra
cy

 (%
)

QQP

0 50 100 150 200
Nvidia K40 latency (s)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

QNLI

0 50 100 150 200
Nvidia K40 latency (s)

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

SST-2

(c) Nvidia K40 GPU latency(s).

0 100 200 300 400 500
Kirin 810 latency (ms)

30

40

50

60

70

M
at

th
ew

s c
or

re
la

tio
n

CoLA

0 100 200 300 400 500
Kirin 810 latency (ms)

86

87

88

89

90

91

92

Sp
ea

rm
an

 c
or

re
la

tio
n

STS-B

0 100 200 300 400 500
Kirin 810 latency (ms)

75

80

85

90

Ac
cu

ra
cy

 (%
)

MRPC

0 100 200 300 400 500
Kirin 810 latency (ms)

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

RTE

0 100 200 300 400 500
Kirin 810 latency (ms)

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

MNLI

0 100 200 300 400 500
Kirin 810 latency (ms)

89

90

91

92

Ac
cu

ra
cy

 (%
)

QQP

0 100 200 300 400 500
Kirin 810 latency (ms)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

QNLI

0 100 200 300 400 500
Kirin 810 latency (ms)

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

SST-2

(d) Kirin 810 ARM CPU latency(ms).

Figure 1: Comparison of #parameters(G), FLOPs(G), Nvidia K40 GPU latency(s) and Kirin 810
ARM CPU latency(ms) between our proposed DynaBERT and DynaRoBERTa and other methods on
the GLUE benchmark. Average accuracy of MNLI-m and MNLI-mm is plotted.

3



The smaller the width, the more significant the accuracy gain. From Table 3, after network rewiring,
the average accuracy is over 2 points higher than the counterpart without rewiring. The accuracy gain
is larger when the width of the model is smaller.

Table 3: Ablation study in the training of DynaBERTW. Results on the development set are reported.
The highest average accuracy of four width multipliers is highlighted.

mw MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE avg.
1.0x 84.8 84.9 90.9 92.0 92.9 58.1 89.8 87.7 71.1 83.6
0.75x 84.2 84.1 90.6 89.7 92.9 48.0 87.2 82.8 66.1 80.6

Separate network 0.5x 81.7 81.7 89.7 86 91.4 37.2 84.5 75.5 55.2 75.9
0.25x 77.9 77.9 89.9 83.7 86.7 14.7 77.4 71.3 57.4 70.8
avg. 82.2 82.2 90.3 87.8 91.0 39.9 84.6 78.8 61.6 77.6
1.0x 84.5 85.1 91.3 91.7 92.9 58.1 89.9 83.3 69.3 82.9
0.75x 83.5 84.0 91.1 90.1 91.7 54.5 88.7 82.6 65.7 81.3

Vanilla DynaBERTW 0.5x 82.1 82.3 90.7 88.9 91.6 46.9 87.3 83.1 61 79.3
0.25x 78.6 78.4 89.1 85.6 88.5 16.4 83.5 72.8 60.6 72.6
avg. 82.2 82.5 90.6 89.1 91.2 44.0 87.4 80.5 64.2 79.0
1.0x 84.9 84.9 91.4 91.6 91.9 56.3 90.0 84.6 70.0 82.8
0.75x 84.3 84.2 91.3 91.7 92.4 56.4 89.9 86.0 71.1 83.0

+ Network rewiring 0.5x 82.9 82.9 91.0 90.6 91.9 47.7 89.2 84.1 71.5 81.3
0.25x 80.4 80.0 90.0 87.8 90.4 45.1 87.3 80.4 66.0 78.6
avg. 83.1 83.0 90.9 90.4 91.7 51.4 89.1 83.8 69.7 81.4
1.0x 85.1 85.4 91.1 92.5 92.9 59.0 90.0 86.0 70.0 83.5
0.75x 84.9 85.6 91.1 92.4 93.1 57.9 90.0 87.0 70.8 83.6

+ Distillation and DA 0.5x 84.4 84.9 91.0 92.3 93.0 56.7 89.9 87.3 71.5 83.4
0.25x 83.4 83.8 90.6 91.2 91.7 49.9 89.0 84.1 65.7 81.0
avg. 84.5 84.9 91.0 92.1 92.7 55.9 89.7 86.1 69.5 82.9

Training DynaBERT with Adaptive Width and Depth. Table 4 shows the accuracy for each
width and depth multiplier in the ablation study in the training of DynaBERT.

Table 4: Ablation study in the training of DynaBERT. Results on the development set are reported.
The highest average accuracy of four width multipliers for each depth multiplier is highlighted.

SST-2 CoLA MRPC RTE

mw
md 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x

1.0x 92.0 91.6 90.9 58.5 57.7 42.9 85.3 83.8 78.4 67.9 66.8 66.4
Vanilla DynaBERT 0.75x 92.3 91.6 91.1 57.9 56.4 42.4 86.0 83.1 78.7 69.0 66.8 63.9

0.5x 91.9 91.9 90.6 55.9 53.3 40.6 86.0 83.1 79.7 68.2 65.0 63.9
0.25x 91.6 91.3 89.0 52.0 50.0 27.6 83.1 80.4 77.5 65.3 63.5 60.3
avg. 92.0 91.6 90.4 56.1 54.4 38.4 85.1 82.6 78.6 67.6 65.5 63.6
mw

md 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x
1.0x 92.9 93.3 92.7 57.1 56.7 52.6 86.3 85.8 85.0 72.2 70.4 66.1

+ Distillation and 0.75x 93.1 93.1 92.1 57.7 55.4 51.9 86.5 85.5 84.1 72.6 72.2 64.6
Data augmentation 0.5x 92.9 92.1 91.3 54.1 53.7 47.5 84.8 84.1 83.1 72.9 72.6 66.1

0.25x 92.5 91.7 91.6 50.7 51.0 44.6 83.8 83.8 81.4 67.5 67.9 62.5
avg. 92.9 92.6 91.9 54.9 54.2 49.2 85.4 84.8 83.4 71.3 70.8 64.8
mw

md 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x 1.0x 0.75x 0.5x
1.0x 93.2 93.3 92.7 59.7 59.1 54.6 84.1 83.6 82.6 72.2 71.8 66.1

+ Fine-tuning 0.75x 93.0 93.1 92.8 60.8 59.6 53.2 84.8 83.6 82.8 71.8 73.3 65.7
0.5x 93.3 92.7 91.6 58.4 56.8 48.5 83.6 83.3 82.6 72.2 72.2 67.9
0.25x 92.8 92.0 92.0 50.9 51.6 43.7 82.6 83.6 81.1 68.6 68.6 63.2
avg. 93.1 92.8 92.3 57.5 56.8 50.0 83.8 83.5 82.3 71.2 71.5 65.7

C.3 Full Results of Different Methods to Train DynaBERTW

Progressive Rewiring. Instead of rewiring the network only once before training, “progressive
rewiring” progressively rewires the network as more width multipliers are supported throughout the
training. Specifically, for four width multipliers [1.0, 0.75, 0.5, 0.25], progressive rewiring first sorts
the attention heads and neurons and rewires the corresponding connections before training to support
width multipliers [1.0, 0.75]. Then the attention heads and neurons are sorted and the network is
rewired again before supporting [1.0, 0.75, 0.5]. Finally, the network is again sorted and rewired
before supporting all four width multipliers. For “progressive rewiring”, we tune the initial learning
rate from {2e− 5, 1e− 5, 2e− 5, 5e− 6, 2e− 6} and pick the best-performing initial learning rate
1e− 5. Table 5 shows the development set accuracy on the GLUE benchmark for using progressive
rewiring. Since progressive rewiring requires progressive training and is time-consuming, we do not
use data augmentation and distillation. We use cross-entropy loss between predicted labels and the

4



ground-truth labels as the training loss. By comparing with Table 3 in Section 3.3, using progressive
rewiring has no significant gain over rewiring only once.

Table 5: Training DynaBERTW using progressive rewiring (PR).
mw MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE avg.
1.0x 84.6 84.5 91.5 91.6 92.4 57.4 90.1 86.5 70.0 83.2
0.75x 83.6 84.0 91.2 91.4 91.7 56.6 89.7 84.8 70.8 82.6
0.5x 82.5 82.9 91.0 90.8 91.9 52.2 89.1 84.1 72.9 81.9
0.25x 78.3 79.7 89.9 87.9 90.4 45.1 87.6 82.4 67.5 78.8
avg. 82.3 82.8 90.9 90.4 91.6 52.8 89.1 84.5 70.3 81.6

Universally Slimmable Training. Instead of using a pre-defined list of width multipliers, univer-
sally slimmable training [13] samples several width multipliers in each training iteration. Following
[13], we also use inplace distillation for universally slimmable training. For universally slimmable
training, we tune (λ1, λ2) in {(1, 1), (1, 0), (0, 1), (1, 0.1), (0.1, 1), (0.1, 0.1)} on MRPC and choose
the best-performing one (λ1, λ2) = (0.1, 0.1). The corresponding results for can be found in Table 6.
For better comparison with using pre-defined width multipliers, we also report results when the width
multipliers are [1.0, 0.75, 0.5, 0.25]. We do not use data augmentation here. By comparing with
Table 3 in Section 3.3, there is no significant difference between using universally slimmable training
and the alternative training as used in Algorithm 1.

Table 6: Training DynaBERTW using universally slimmable training (US).
mw MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE avg.
1.0x 84.6 85.0 91.2 91.7 92.4 59.7 90.0 85.3 69.0 83.2
0.75x 84.0 84.5 91.1 91.3 92.5 56.7 90.0 85.3 70.4 82.9
0.5x 82.2 82.6 90.7 90.5 91.1 52.1 89.2 85.3 71.5 81.7
0.25x 79.7 79.5 89.3 87.5 90.1 36.4 87.3 79.4 67.5 77.4
avg. 82.6 82.9 90.6 90.3 91.5 51.2 89.1 83.8 69.6 81.3

C.4 Looking into DynaBERT

CoLA. CoLA is abbreviated for the “Corpus of Linguistic Acceptability” and is a binary single-
sentence classification task, where the goal is to predict whether an English sentence is linguistically
“acceptable”. Figure 2 shows the attention maps of the learned DynaBERT with two different width
multipliers mw = 1.0 and 0.25. We use both a linguistically acceptable sentence “the cat sat on
the mat.” and a non-acceptable one “.mat the on sat cat the” whose words are in the reverse order.
As can be seen, in the last two Transformer layers of DynaBERT of both widths, for the linguistic
non-acceptable sentence, the attention heads do not encode useful information, with each word
attending to every other word with almost equal probability. Figure 3 shows the attention maps
obtained by BERTBASE fine-tuned on CoLA, with the same linguistic acceptable and non-acceptable
sentence as in Figure 2. As can be seen, unlike DynaBERT, the attention maps in the final two
layers still show positional or syntactic patterns. This observation reveals the enhanced ability of the
proposed DynaBERT in distinguishing linguistic acceptable and non-acceptable sentences. Similar
observations are also found in other samples in CoLA data set.

SST-2. SST-2 (the Stanford Sentiment Treebank) is a binary single-sentence classification task
consisting of sentences extracted from movie reviews with human annotations of their sentiment.
Figure 4 shows the attention maps obtained by DynaBERT with annotations of both positive and
negative sentiment. The sentence with positive sentiment is “a smile on your face.”. The sentence
with negative sentiment is “an extremely unpleasant film .”. As can be seen, for both mw = 1 and
0.25, most attention maps in the final few layers point to the last token “[SEP]”, which is not used in
the downstream task. This indicates that there is redundancy in the Transformer layers. This is also
consistent with the finding in Section 3.1 that, even when the depth multiplier is only md = 0.5 (i.e.,
6 Transformer layers), the model has only less than 1 point of accuracy degradation for both widths.

5



(a) “the cat sat on the mat.”

(b) “.mat the on sat cat the”

Figure 2: Attention maps in sub-networks with different widths in DynaBERT trained on CoLA.

6



(a) “the cat sat on the mat.”

(b) “.mat the on sat cat the”

Figure 3: Attention maps in BERTBASE fine-tuned on CoLA.

7



(a) “a smile on your face.”

(b) “an extremely unpleasant film.”

Figure 4: Attention maps in sub-networks with different widths in DynaBERT trained on SST-2.

8



D Related Work on the Capacity of Language Models

There are also related works that study the relationship between the capacity and performance of
language models. It is shown in [6, 8] that considerable redundancy and over-parametrization exists in
BERT models. In [3], it is shown that the BERT’s layers encode a hierarchy of linguistic information,
with surface features at the bottom, syntactic features in the middle and semantic features at the top.
The capacity of other language models besides BERT like character CNN and recurrent networks
are also studied in [5, 7]. In [9], it is shown that pre-trained language models with moderate sized
representations are able to recover arbitrary sentences.

E Preliminary Results of Applying DynaBERT in the Pretraining Phase

In this section, we use the proposed method for pre-training a BERT with adaptive width and
depth. We use a pre-trained 6-layer BERT downloaded from the official Google BERT repository
https://github.com/google-research/bert as the backbone model. To make sub-
networks of DynaBERT the same size as those small models, for width, we also adapt the hidden
state size H = 128, 256, 512, 768 besides attention heads and intermediate layer neurons. For depth,
we adjust the number of layers to be L = 4, 6. Distillation loss over the hidden states in the last layer
is used as the training objective. The number of training epochs is 5. After pre-training DynaBERT,
we fine-tune each separate sub-network with the original task-specific data on MNLI-m and report the
development set results in Table 7. We compare with separately pre-trained small models in Google
BERT repository. As can be seen, sub-networks of the pre-trained DynaBERT outperform separately
pre-trained small networks.

Table 7: Development set accuracy on MNLI-m of separately pre-trained BERT models and sub-
networks of a pre-trained DynaBERT.

(L, H) (6, 768) (6, 512) (6, 256) (6, 128) (4, 768) (4, 512) (4, 256) (4, 128)
Separate small networks 81.8 80.3 76.0 72.4 80.1 78.6 74.9 70.7
Sub-networks of DynaBERT 82.0 81.0 77.8 73.0 81.5 80.4 76.1 71.4

9

https://github.com/google-research/bert


References
[1] K. Clark, M. Luong, Q. V. Le, and C. D. Manning. Electra: Pre-training text encoders as

discriminators rather than generators. In International Conference on Learning Representations,
2019.

[2] A. Fan, E. Grave, and A. Joulin. Reducing transformer depth on demand with structured dropout.
In International Conference on Learning Representations, 2019.

[3] G. Jawahar, B. Sagot, and D. Seddah. What does bert learn about the structure of language? In
Annual Meeting of the Association for Computational Linguistics, 2019.

[4] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu. Tinybert: Distilling
bert for natural language understanding. Preprint arXiv:1909.10351, 2019.

[5] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language
modeling. Preprint arXiv:1602.02410, 2016.

[6] O. Kovaleva, A. Romanov, A. Rogers, and A. Rumshisky. Revealing the dark secrets of bert. In
Conference on Empirical Methods in Natural Language Processing, pages 4356–4365, 2019.

[7] G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language
models. In International Conference on Learning Representations, 2018.

[8] A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in bertology: What we know about how
bert works. Preprint arXiv:2002.12327, 2020.

[9] N. Subramani, S. Bowman, and K. Cho. Can unconditional language models recover arbitrary
sentences? In Advances in Neural Information Processing Systems, pages 15258–15268, 2019.

[10] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou. Mobilebert: Task-agnostic compression of
bert by progressive knowledge transfer. In Annual Meeting of the Association for Computational
Linguistics, 2020.

[11] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task bench-
mark and analysis platform for natural language understanding. In International Conference on
Learning Representations, 2019.

[12] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. Minilm: Deep self-attention distil-
lation for task-agnostic compression of pre-trained transformers. Preprint arXiv:2002.10957,
2020.

[13] J. Yu and T. S. Huang. Universally slimmable networks and improved training techniques. In
IEEE International Conference on Computer Vision, pages 1803–1811, 2019.

10


	Layer Pruning Strategy and Hidden States Matching
	More Experiment Settings
	Description of Data sets in the GLUE benchmark
	Hyperparameters
	FLOPs and Latency

	More Experiment Results
	More Results on the GLUE Benchmark
	Full Results of Ablation Study
	Full Results of Different Methods to Train DynaBERTW
	Looking into DynaBERT

	Related Work on the Capacity of Language Models
	Preliminary Results of Applying DynaBERT in the Pretraining Phase 

