7 Appendix

In this section we provide a detailed proof for the main theorem. First we state some facts about the learning rate and the algorithm.
Lemma 7 (Lemma 4.1 from Jin et al. (2018)). Let $\alpha_{t}^{i}:=\alpha_{i} \prod_{j=i+1}^{t}\left(1-\alpha_{j}\right)$. Then for every $i \geq 1$:

$$
\sum_{t=i}^{\infty} \alpha_{t}^{i}=1+\frac{1}{H}
$$

Lemma 8 (Lemma 5.4 from Sinclair et al. (2019)). For any $h \in[H]$ and ball $B \in \mathcal{P}_{h}^{K}$ the number of time B is selected is bounded by

$$
\left|\left\{k: B_{h}^{k}=B\right\}\right| \leq \frac{3}{4}\left(\frac{d_{\max }}{r(B)}\right)^{2}
$$

Moreover, the number of times that ball B and its ancestors have been played is at least $\frac{1}{4}\left(\frac{d_{\max }}{r(B)}\right)^{2}$.
To bound the regret, our starting point is an upper bound on the difference between the optimistic Q-function and the optimal Q^{\star} function.
Lemma 9 (Lemma E. 7 from Sinclair et al. (2019)). For any $\delta \in(0,1)$ if $\beta_{t}=2 \sum_{i=1}^{t} \alpha_{t}^{i} b(i)$ then

$$
\beta_{t} \leq 8 \sqrt{\frac{H^{3} \log (4 H K / \delta)}{t}}+16 \frac{L d_{\max }}{\sqrt{t}}
$$

With probability at least $1-\delta / 2$ the following holds simultaneously for all $(x, a, h, k) \in \mathcal{S} \times \mathcal{A} \times$ $[H] \times[K]$ and ball B such that $(x, a) \in \operatorname{dom}_{h}^{k}(B) . t=n_{h}^{k}(B)$ and $k_{1}<\cdots<k_{t}$ are the episodes where B or its ancestors were encountered previously by the algorithm.

$$
0 \leq Q_{h}^{k}(B)-Q_{h}^{\star}(x, a) \leq \mathbf{1}_{[t=0]} H+\beta_{t}+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)
$$

This bound contains three parts. The first is an upper bound for the first step when there is no data. The second term, β_{t}, is the surplus that we add to be optimistic. The third part is an "average" of the estimated future regret. The key observation is that when β_{t} is small, it can be absorbed into the future surplus. So we can clip β_{t} proportional to the future regret, or gap. This enables a gap dependent regret bound.
Lemma 10 (Clipped upper bound). For any $\delta \in(0,1)$ if $\beta_{t}=2 \sum_{i=1}^{t} \alpha_{t}^{i} b(i)$. With probability at least $1-\delta / 2$, $\forall h \in[H], k \in[K]$,

$$
\begin{aligned}
Q_{h}^{k}\left(B_{h}^{k}\right)-Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{k}\right) \leq & \left(1+\frac{1}{H}\right)\left(\mathbf{1}_{[t=0]} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)\right) \\
& +\operatorname{clip}\left[\beta_{t} \mid \operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) /(H+1)\right]
\end{aligned}
$$

Proof. We use $a_{h}^{\star}: \mathcal{X} \rightarrow \mathcal{A}$ to denote a mapping from the state to the optimal action at stage h. By the definition of the gap

$$
\begin{aligned}
\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) & =Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{\star}\left(x_{h}^{k}\right)\right)-Q^{\star}\left(x_{h}^{k}, a_{h}^{k}\right) \leq Q_{h}^{k}\left(B_{h}^{k \star}\right)-Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{k}\right) \\
& \leq Q_{h}^{k}\left(B_{h}^{k}\right)-Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{k}\right) \leq \mathbf{1}_{[t=0]} H+\beta_{t}+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)
\end{aligned}
$$

where $B_{h}^{k \star}$ is the smallest ball that contains $\left(x_{h}^{k}, a_{h}^{\star}\left(x_{h}^{k}\right)\right)$. The first inequality is by the lower bound of Lemma 9. Note that $B_{h}^{k \star} \in \operatorname{dom}_{h}^{k}\left(x_{h}^{k}\right)$. The second uses the selection rule of choosing the ball with the largest $Q_{h}^{k}(B)$ for $B \in \operatorname{dom}_{h}^{k}\left(x_{h}^{k}\right)$. The third inequality is by the upper bound of Lemma 9 .

Now we consider two cases, if $\beta_{t}>\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) /(H+1)$, the bound is trivially implied by Lemma 9. If $\beta_{t} \leq \operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) /(H+1)$,

$$
\begin{aligned}
\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) & \leq \mathbf{1}_{[t=0]} H+\beta_{t}+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right) \\
& \leq \mathbf{1}_{[t=0]} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)+\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) /(H+1)
\end{aligned}
$$

Taking the gap to one side we have

$$
\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) \leq \frac{H+1}{H}\left(\mathbf{1}_{[t=0]} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)\right)
$$

By Lemma 9 and our assumption

$$
\begin{aligned}
Q_{h}^{k}\left(B_{h}^{k}\right)-Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{k}\right) & \leq \mathbf{1}_{[t=0]} H+\beta_{t}+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right) \\
& <\mathbf{1}_{[t=0]} H+\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right) /(H+1)+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right) \\
& \leq\left(1+\frac{1}{H}\right)\left(\mathbf{1}_{[t=0]} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)\right)
\end{aligned}
$$

The next step is to replace the future regret to V^{\star} with the future regret of $V^{\pi_{k}}$, so that we can solve for the $h=1$ case recursively.
Lemma 11 (Clipped recursion). For any $\delta \in(0,1)$ if $\beta_{t}=2 \sum_{i=1}^{t} \alpha_{t}^{i} b(i)$. With probability at least $1-\delta / 2, \forall h \in[H], k \in[K]$,

$$
\begin{aligned}
\sum_{k=1}^{K}\left(V_{h}^{k}-V_{h}^{\pi^{k}}\right)\left(x_{h}^{k}\right) \leq & \sum_{k=1}^{K}\left(1+\frac{1}{H}\right)\left(H \mathbf{1}_{\left[n_{h}^{k}=0\right]}+\xi_{h+1}^{k}+\operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right]\right) \\
& +\left(1+\frac{1}{H}\right)^{2} \sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right)
\end{aligned}
$$

where $\xi_{h+1}^{k}=\mathbb{E}\left[V_{h+1}^{\star}(x)-V_{h+1}^{\pi_{k}}(x) \mid x_{h}^{k}, a_{h}^{k}\right]-\left(V_{h+1}^{\star}-V_{h+1}^{\pi_{k}}\right)\left(x_{h+1}^{k}\right)$.
Proof.

$$
\begin{aligned}
V_{h}^{k}\left(x_{h}^{k}\right)-V_{h}^{\pi^{k}}\left(x_{h}^{k}\right) \leq & \max _{B \in \operatorname{rel}_{h}^{k}\left(x_{h}^{k}\right)} Q_{h}^{k}(B)-Q_{h}^{\pi^{k}}\left(x_{h}^{k}, a_{x}^{k}\right)=Q_{h}^{k}\left(B_{h}^{k}\right)-Q_{h}^{\pi^{k}}\left(x_{h}^{k}, a_{x}^{k}\right) \\
= & Q_{h}^{k}\left(B_{h}^{k}\right)-Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{k}\right)+Q_{h}^{\star}\left(x_{h}^{k}, a_{h}^{k}\right)-Q_{h}^{\pi^{k}}\left(x_{h}^{k}, a_{x}^{k}\right) \\
= & \left(1+\frac{1}{H}\right)\left(\mathbf{1}_{[t=0]} H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{k_{i}}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}}\right)\right)+\operatorname{clip}\left[\beta_{t} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right] \\
& \quad+\left(V_{h+1}^{\star}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right)+\xi_{h+1}^{k} .
\end{aligned}
$$

Summing over the episodes, let $n_{h}^{k}=n_{h}^{k}\left(B_{h}^{k}\right)$ and $k_{i}\left(B_{h}^{k}\right)$ be the episode where B_{h}^{k} or its ancestors are sampled for the i-th time.

$$
\begin{aligned}
\sum_{k=1}^{K} V_{h}^{k}\left(x_{h}^{k}\right)-V_{h}^{\pi^{k}}\left(x_{h}^{k}\right) \leq \sum_{k=1}^{K} & \left(1+\frac{1}{H}\right)\left(\mathbf{1}_{[t=0]} H+\operatorname{clip}\left[\beta_{t}, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right]\right) \\
& +\left(1+\frac{1}{H}\right) \sum_{k=1}^{K} \sum_{i=1}^{n_{h}^{k}} \alpha_{n_{h}^{k}}^{i}\left(V_{h+1}^{k_{i}\left(B_{h}^{k}\right)}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}\left(B_{h}^{k}\right)}\right) \\
& +\sum_{k=1}^{K}\left(\left(V_{h+1}^{\star}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right)+\xi_{h+1}^{k}\right)
\end{aligned}
$$

Using the observation in Jin et al. (2018); Song and Sun (2019), for the second term we can rearrange the sum and use Lemma 7

$$
\begin{aligned}
\sum_{k=1}^{K} \sum_{i=1}^{n_{h}^{k}} \alpha_{n_{h}^{k}}^{i}\left(V_{h+1}^{k_{i}\left(B_{h}^{k}\right)}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k_{i}\left(B_{h}^{k}\right)}\right) & \leq \sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k}\right) \sum_{t=n_{h}^{k}}^{\infty} \alpha_{t}^{n_{h}^{k}} \\
& \leq\left(1+\frac{1}{H}\right) \sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k}\right)
\end{aligned}
$$

Since $V_{h+1}^{\pi^{k}}\left(x_{h+1}^{k}\right) \leq V_{h+1}^{\star}\left(x_{h+1}^{k}\right)$, we have

$$
\begin{aligned}
& \left(1+\frac{1}{H}\right)^{2} \sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k}\right)+\sum_{k=1}^{K}\left(V_{h+1}^{\star}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right) \\
& \leq\left(1+\frac{1}{H}\right)^{2}\left(\sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\star}\right)\left(x_{h+1}^{k}\right)+\sum_{k=1}^{K}\left(V_{h+1}^{\star}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right)\right) \\
& =\left(1+\frac{1}{H}\right)^{2} \sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right)
\end{aligned}
$$

So we have

$$
\begin{aligned}
\sum_{k=1}^{K}\left(V_{h}^{k}-V_{h}^{\pi^{k}}\right)\left(x_{h}^{k}\right) \leq & \sum_{k=1}^{K}\left(1+\frac{1}{H}\right)\left(H \mathbf{1}_{\left[n_{h}^{k}=0\right]}+\xi_{h+1}^{k}+\operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right]\right) \\
& +\left(1+\frac{1}{H}\right)^{2} \sum_{k=1}^{K}\left(V_{h+1}^{k}-V_{h+1}^{\pi^{k}}\right)\left(x_{h+1}^{k}\right)
\end{aligned}
$$

There are two terms that we need to bound. The ξ_{h+1}^{k} term can be bounded by a concentration argument as shown in Sinclair et al. (2019).
Lemma 12 (Azuma-Hoeffding bound, Lemma E. 9 from Sinclair et al. (2019)). For any $\delta \in(0,1)$, with probability at least $1-\delta / 2$

$$
\sum_{h=1}^{H} \sum_{k=1}^{k} \xi_{h+1}^{k} \leq 2 \sqrt{2 H^{3} K \log (4 H K / \delta)}
$$

The clipped β_{t} term requires a more refined treatment to relate it to the zooming number or zooming dimension. Recall our definition of the near-optimal space

$$
\mathcal{P}_{h, r}^{Q^{\star}}=\left\{(x, a): \operatorname{gap}_{h}(x, a) \leq c_{1} r\right\},
$$

where $c_{1}=\frac{2(H+1)}{d_{\max }}+2 L$. Define the stage-dependent zooming number as

$$
z_{h, c}=\inf \left\{d>0:\left|\mathcal{P}_{h, r}^{Q^{\star}}\right| \leq c r^{-d}\right\}
$$

The following is our key lemma that bounds surplus β_{t} using the zooming number.
Lemma 13.

$$
\begin{aligned}
\sum_{h=1}^{H} \sum_{k=1}^{K} \operatorname{clip}\left[\beta_{n_{h}^{k}}, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right] \leq & \sum_{h=1}^{H} 32\left(\sqrt{H^{3} \log (4 H K / \delta)}+L d_{\max }\right) \\
& \inf _{r_{0} \in\left(0, d_{\max }\right]}\left(\sum_{r=d_{\max } 2^{-i}, r \geq r_{0}} N_{r}^{\text {pack }}\left(\mathcal{P}_{h, r}^{Q^{\star}}\right) \frac{d_{\max }}{r}+\frac{K r_{0}}{d_{\max }}\right)
\end{aligned}
$$

Proof. Let $c_{2}=16\left(\sqrt{H^{3} \log (4 H K / \delta)}+L d_{\max }\right)$. By Lemma 9 we have

$$
\beta_{n_{h}^{k}} \leq 16\left(\sqrt{H^{3} \log (4 H K / \delta)}+L d_{\max }\right) \frac{1}{\sqrt{n_{h}^{k}}}=c_{2} \frac{1}{\sqrt{n_{h}^{k}}}
$$

Let $n_{\min }(B)=\frac{1}{4}\left(\frac{d_{\text {max }}}{r(B)}\right)^{2}$, and $n_{\max }(B)=\left(\frac{d_{\text {max }}}{r(B)}\right)^{2}$. Considering Lemma 8 and the fact that a ball inherits samples from its parent, we know that for all h and k,

$$
n_{\min }(B) \leq n_{h}^{k}(B) \leq n_{\max }(B)
$$

We rearrange the sum for each ball.

$$
\begin{aligned}
\sum_{k=1}^{K} \operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right] & \leq \sum_{B \in \mathcal{P}_{h}^{K}} \sum_{n=n_{\min }(B)}^{n_{\max }(B)} \operatorname{clip}\left[c_{2} \frac{1}{\sqrt{n}} \left\lvert\, \frac{\operatorname{gap}_{h}(B)}{H+1}\right.\right] \\
& \leq c_{2} \sum_{B \in \mathcal{P}_{h}^{K}} \sum_{n=n_{\min }(B)}^{n_{\max }(B)} \operatorname{cip}\left[\frac{1}{\sqrt{n}}, \frac{\operatorname{gap}_{h}(B)}{H+1}\right]
\end{aligned}
$$

The last step is due to the fact that $c_{2}>1$ and if $\frac{c_{2}}{\sqrt{n}}<\frac{\operatorname{gap}_{h}(B)}{H+1}$ then $\frac{1}{\sqrt{n}}<\frac{\operatorname{gap}_{h}(B)}{H+1}$. Now, ignoring clipping, the inner sum can be bounded by

$$
\sum_{n=n_{\min }(B)}^{n_{\max }(B)} \frac{1}{\sqrt{n}} \leq \int_{i=1}^{\frac{3}{4}\left(\frac{d_{\max }}{r(B)}\right)^{2}} \frac{1}{\sqrt{i+\frac{1}{4}\left(\frac{d_{\max }}{r(B)}\right)^{2}}} \leq 2 \frac{d_{\max }}{r(B)}
$$

For clipping, let $\operatorname{gap}_{h}(B)=\min _{(x, a) \in B} \operatorname{gap}_{h}(x, a)$ be the gap for a ball B. We consider two cases.
Case 1: $\operatorname{gap}_{h}(B) \geq \frac{2(H+1) r(B)}{d_{\max }}$, we have

$$
\frac{1}{\sqrt{n_{h}^{k}(B)}} \leq \frac{1}{\sqrt{n_{\min }(B)}}=\frac{2 r(B)}{d_{\max }} \leq \frac{\operatorname{gap}_{h}(B)}{H+1}
$$

So in this case the regret on ball B is always clipped.
Case 2: $\operatorname{gap}_{h}(B)<\frac{2(H+1) r(B)}{d_{\max }}$
Let $\left(x_{c}, a_{c}\right)$ be the center of B and $\left(x_{m}, a_{m}\right) \in B$ be the point that has the minimum gap, i.e. the point that achieves $\operatorname{gap}_{h}(B)$. Using the assumption that Q^{\star} and V^{\star} are Lipschitz:

$$
\begin{aligned}
\operatorname{gap}_{h}\left(x_{c}, a_{c}\right)-\operatorname{gap}_{h}(B) & =Q_{h}^{\star}\left(x_{c}, a_{h}^{\star}\left(x_{c}\right)\right)-Q_{h}^{\star}\left(x_{c}, a_{c}\right)-\left(Q_{h}^{\star}\left(x_{m}, a_{h}^{\star}\left(x_{m}\right)\right)-Q_{h}^{\star}\left(x_{m}, a_{m}\right)\right) \\
& \leq 2 \operatorname{Lr}(B)
\end{aligned}
$$

So we know that all the points in B have small gaps relative to r.

$$
\operatorname{gap}_{h}\left(x_{c}, a_{c}\right) \leq \operatorname{gap}_{h}(B)+2 \operatorname{Lr}(B) \leq \frac{2(H+1) r(B)}{d_{\max }}+2 L r(B)
$$

Thus, we have $\left(x_{c}, a_{c}\right) \in \mathcal{P}_{h, r(B)}^{Q^{\star}}$. Now we are ready bound the sum. Note that for a ball $B \in \mathcal{P}_{h}^{K}$, either B gets clipped, or the center of B is in $\mathcal{P}_{h, r(B)}^{Q^{\star}}$. Since all the balls of radius r are at least r apart, we can have at most $N_{r}^{\text {pack }}\left(\mathcal{P}_{h, r}^{Q^{\star}}\right)$ in the latter case.

$$
\begin{aligned}
\sum_{k=1}^{K} \operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right] & \leq \sum_{B \in \mathcal{P}_{h}^{K}} \sum_{n=n_{\min }(B)}^{n_{\max }(B)} \operatorname{clip}\left[c_{2} \frac{1}{\sqrt{n}} \left\lvert\, \frac{\operatorname{gap}_{h}(B)}{H+1}\right.\right] \\
\leq c_{2} & \inf _{r_{0} \in\left(0, d_{\max }\right]}\left(\sum_{r=d_{\max } 2^{-i}, r \geq r_{0}} N_{r}^{\text {pack }}\left(\mathcal{P}_{h, r}^{Q^{\star}}\right) \frac{2 d_{\max }}{r}+\frac{2 K r_{0}}{d_{\max }}\right)
\end{aligned}
$$

The second term uses the fact that for any ball B with $r(B) \leq r_{0}$, we have $n_{\min } \leq \frac{1}{4}\left(\frac{d_{\max }}{r_{0}}\right)^{2}$.

Now we are ready to prove Theorem 1.
Proof of Theorem 1. We apply Lemma 11 recursively.

$$
\begin{aligned}
& \sum_{k=1}^{K}\left(V_{1}^{k}-V_{1}^{\pi^{k}}\right)\left(x_{1}^{k}\right) \\
\leq & (H+1)+\sum_{k=1}^{K}\left(1+\frac{1}{H}\right)\left(\xi_{2}^{k}+\operatorname{clip}\left[\beta_{n_{1}^{k}} \left\lvert\, \frac{\operatorname{gap}_{1}\left(x_{1}^{k}, a_{1}^{k}\right)}{H+1}\right.\right]\right)+\left(1+\frac{1}{H}\right)^{2} \sum_{k=1}^{K}\left(V_{2}^{k}-V_{2}^{\pi^{k}}\right)\left(x_{2}^{k}\right) \\
\leq & \sum_{h=1}^{H} H\left(1+\frac{1}{H}\right)^{2 h-1}+\sum_{h=1}^{H}\left(1+\frac{1}{H}\right)^{2 h-1} \sum_{k=1}^{K}\left(\xi_{h+1}^{k}+\operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right]\right) \\
\leq & 9 H^{2}+9 \sum_{h=1}^{H} \sum_{k=1}^{K}\left(\operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right]+\xi_{h+1}^{k}\right)
\end{aligned}
$$

Note that $\sum_{h=1}^{H}(1+1 / H)^{2 h-1} \leq \sum_{h=1}^{H}\left((1+1 / H)^{H}\right)^{2} \leq e^{2} H \leq 9 H$. Finally,

$$
\begin{aligned}
\sum_{k=1}^{K}\left(V_{1}^{k}-V_{1}^{\pi^{k}}\right)\left(x_{1}^{k}\right) \leq & 9 H^{2}+9 \sum_{h=1}^{H} \sum_{k=1}^{K}\left(\operatorname{clip}\left[\beta_{n_{h}^{k}} \left\lvert\, \frac{\operatorname{gap}_{h}\left(x_{h}^{k}, a_{h}^{k}\right)}{H+1}\right.\right]+\xi_{h+1}^{k}\right) \\
\leq & 9 H^{2}+18 \sqrt{2 H^{3} K \log (4 H K / \delta)}+\sum_{h=1}^{H} 288\left(\sqrt{H^{3} \log (4 H K / \delta)}+L d_{\max }\right) \\
\times & \inf _{r_{0} \in\left(0, d_{\max }\right]}\left(\sum_{r=d_{\max } 2^{-i}, r \geq r_{0}} N_{r}^{\text {pack }}\left(\mathcal{P}_{h, r}^{Q^{\star}}\right) \frac{d_{\max }}{r}+\frac{K r_{0}}{d_{\max }}\right) \\
= & \tilde{O}\left(H^{3 / 2} \inf _{r_{0} \in\left(0, d_{\max }\right]}\left(\sum_{h=1}^{H} \sum_{r=d_{\max } 2^{-i}, r \geq r_{0}} N_{r}^{\text {pack }}\left(\mathcal{P}_{h, r}^{Q^{\star}}\right) \frac{d_{\max }}{r}+\frac{K r_{0}}{d_{\max }}\right)\right)
\end{aligned}
$$

