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Abstract

We study reinforcement learning in continuous state and action spaces endowed
with a metric. We provide a refined analysis of the algorithm of Sinclair, Banerjee,
and Yu (2019) and show that its regret scales with the zooming dimension of the
instance. This parameter, which originates in the bandit literature, captures the
size of the subsets of near optimal actions and is always smaller than the covering
dimension used in previous analyses. As such, our results are the first provably
adaptive guarantees for reinforcement learning in metric spaces.

1 Introduction

In reinforcement learning (RL), an agent learns to selects actions to navigate a state space and
accumulate reward. In terms of theoretical results, the majority of results address the tabular setting,
where the number of states and actions are finite and comparatively small. However, tabular problems
are rarely encountered in practical applications, as state and action spaces are often large and may
even be continuous. To address these practically relevant settings, a growing body of work has
developed algorithmic principles and guarantees for reinforcement learning in continuous spaces.

In this paper, we contribute to this line of work on reinforcement learning in continuous spaces. We
consider episodic RL where the joint state-action space is endowed with a metric and we posit that the
optimal Q? function is Lipschitz continuous with respect to this metric. This setup has been studied
in several recent works establishing worst case regret bounds that scale with the covering dimension
of the metric space (Song and Sun, 2019; Sinclair et al., 2019; Touati et al., 2020). While these
results are encouraging, the guarantees are overly pessimistic, and intuition from the special case of
Lipschitz bandits suggests that much more adaptive guarantees are achievable. In particular, while
the Lipschitz contextual bandits setting of Slivkins (2014) is a special case of this setup, no existing
analysis recovers his adaptive guarantee that scales with the zooming dimension of the problem.

Our contribution. We give the first analysis for reinforcement learning in metric spaces that scales
with the zooming dimension of the instance instead of the covering dimension of the metric space.
The zooming dimension, originally defined by Kleinberg et al. (2019) in the context of Lipschitz
bandits, measures the size of the set of near-optimal actions, and can be much smaller than the
covering dimension in favorable instances. For reinforcement learning, the natural generalization
is to measure near-optimality relative to the Q? function; this recovers the definition of Kleinberg
et al. (2019) and Slivkins (2014) for bandits and contextual bandits, respectively as special cases.
As a consequence, our guarantees also strictly generalize theirs to the multi-step reinforcement
learning setting. In addition, our guarantee addresses an open problem of Sinclair et al. (2019) by
characterizing problems where refined guarantees are possible.

Our result is based on a refined analysis of the algorithm of Sinclair et al. (2019). This algorithm
uses optimism to select actions and an adaptive discretization scheme to carefully refine a coarse
partition of the state-action space to focus (“zoom in”) on promising regions. Adaptive discretization
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is essential for obtaining instance-dependent guarantees, but the bounds in Sinclair et al. (2019) do
not reflect this favorable behavior.

At a technical level, the main challenge is that, unlike in bandits, we cannot upper bound the number
of times a highly suboptimal arm will be selected by the optimistic strategy. Analysis for the bandit
setting uses these upper bounds to prove that the adaptive discretization scheme will not zoom in
on suboptimal regions, which is crucial for the instance-dependent bounds. However, in RL, the
algorithm actually can zoom in on and select actions at suboptimal regions, but only when there
is significant error at later time steps. Thus, in the analysis, we credit error incurred from a highly
suboptimal region to the later time step, so we can proceed as if we never zoomed in on this region at
all. Formally, this analysis uses the clipped regret decomposition of Simchowitz and Jamieson (2019)
as well as a careful bookkeeping argument to obtain the instance-dependent bound.

2 Preliminaries

We consider a finite-horizon episodic reinforcement learning setting in which an agent interacts with
an MDP, defined by a tuple (S,A, H,P, r). Here S the state space, A is the action space, H 2 N is
the horizon, P is the transition operator and r is the reward function. Formally, P : S ⇥A! �(S)
and r : S ⇥A! [0, 1] where �(·) denotes the set of distributions over its argument.1

A (nonstationary) policy ⇡ is a mapping from states to distributions over actions for each time. Every
policy has non-stationary value and action-value functions, defined as

V ⇡

h
(x) := E⇡

"
HX

h0=h

rh0(xh0 , ah0) | xh = x

#
, Q⇡

h
(x, a) := rh(x, a) + E

⇥
V ⇡

h+1(x
0) | x, a

⇤
.

Here E⇡ [·] denotes that all actions are chosen by policy ⇡ and transitions are given by P. The optimal
policy ⇡? and optimal action-value function Q? are defined recursively as

Q?

h
(x, a) := rh(x, a) + E

h
max
a0

Q?(x0, a0) | x, a
i
, ⇡?

h
(x) = argmax

a

Q?

h
(x, a).

The optimal value function V ?

h
is defined analogously.

The agent interacts with the MDP for K episodes, where in episode k the agent pick a policy ⇡k

and we generate the trajectory ⌧k = (xk

1 , a
k

1 , r
k

1 , x
k

2 , a
k

2 , r
k

2 . . . , x
k

H
, ak

H
, rk

H
) where (1) xk

1 is chosen
adversarially, (2) ak

h
= ⇡k(xk

h
), (3) xk

h+1 ⇠ P(· | xk

h
, ak

h
), (4) rk

h
= r(xk

h
, ak

h
). We would like to

choose actions to maximize the cumulative rewards
P

H

h=1 r
k

h
.

Equipped with these definitions, we can state our performance criterion. Over the course of K
episodes, we would like to accumulate reward that is comparable to the optimal policy, formalized
via the notion of regret:

Reg(K) :=
KX

k=1

 
V ?

1 (x
k

1)�
HX

h=1

rk
h

!
.

In particular, we seek algorithms with regret rate that is sublinear in K. Note that we have not assumed
that |S| and |A| are finite, and we also allow for the starting state xk

1 to be chosen adversarially in
each episode.

2.1 Metric spaces.

Instead of assuming that |S| and |A| are finite, we will posit a metric structure on these spaces. We
recall the key definitions for metric spaces. A space Y equipped with a function D : Y ⇥ Y ! R+

is a metric space if D satisfies (a) D(y, y0) = 0 iff y = y0 (b) D is symmetric, and (c) D satisfies
the triangle inequality D(x, y)  D(x, z) + D(z, y). If these properties hold then D is called
a metric. For a radius r > 0, we use the notation B(y, r) := {y0 2 Y : D(y, y0) < r} to
denote the open ball centered at y with radius r. For a subset Y 0 ✓ Y the diameter is defined as
diam(Y 0) := sup

y,y02Y 0 D(y, y0). We also use the standard notions of covering and packing to
measure the size of metric spaces.

1Deterministic rewards simplifies the presentation but has no bearing on the final results. In particular, we
can handle stochastic bounded rewards with minimal modification to the proofs.
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Definition 1 (Notions of size). A covering of Y at scale r (also called an r-covering) is a collection

of subsets of Y , each with diameter at most r, whose union equals Y . The minimum number of

subsets that form an r-covering is the r-covering number, denoted Nr(Y ). A packing of Y at scale r
(also called an r-packing) is a collection of points Z ⇢ Y such that minz 6=z02Z D(z, z0) � r. The

maximum number of points that form an r-packing is the r-packing number, denoted N pack

r
(Y ). An

r-net of Y is an r-packing S ⇢ Y for which {B(y, r)}y2S covers Y .

These definitions also apply to subsets of the metric space, which will be important for our develop-
ment. Also note that N pack

2r (Y )  Nr(Y )  N pack
r (Y ).

2.2 Main Assumptions.

We now state the main assumptions that we adopt in our analysis. These or closely related assumptions
are standard in the literature on bandits and reinforcement learning in metric spaces (Song and Sun,
2019; Sinclair et al., 2019; Touati et al., 2020; Slivkins, 2014).
Assumption 1. (S ⇥A,D) is a metric space with finite diameter diam(S ⇥A) = dmax <1.

Assumption 2. For every h 2 [H], Q?

h
is L-Lipschitz continuous with respect to D:

8(x, a), (x0, a0) : |Q?

h
(x, a)�Q?

h
(x0, a0)|  L · D((x, a), (x0, a0)). (1)

Additionally V ?

h
is L-Lipschitz with respect to the metric DX : (x, x0) 7! mina,a0 D((x, a), (x0, a0)):

8x, x0 : |V ?

h
(x)� V ?

h
(x0)|  L ·min

a,a0
D((x, a), (x0, a0)). (2)

Assumption 1 is a basic regularity condition, while the first part of Assumption 2 imposes continuity of
the Q? function. In particular, Lipschitz-continuity characterizes how the metric structure influences
the reinforcement learning problem. These assumptions appear in prior work, and we note that (1) is
strictly weaker than assuming that P is Lipschitz continuous (Kakade et al., 2003; Ortner and Ryabko,
2012).

The second part of Assumption 2 reflects an additional structural assumption on the problem, which is
a departure from previous work. In detail, (2) posits that the optimal value function V ?

h
is L-Lipschitz

with respect to a metric defined only on the states that is derived from the original one. This metric
is dominated by the original one since for each (x, x0, a) we have mina1,a2 D((x, a1), (x0, a2)) 
D((x, a), (x0, a)), so this assumption is not directly implied by (1). However, whenever D is sub-
additive in the sense that D((x, a), (x0, a0))  DS(x, x0) + DA(a, a0), then the assumption holds
trivially. Sub-additivity holds for most metrics of interest, including those induced by `p norms for
p � 1. As such, this assumption is not particularly restrictive.

2.3 Related work

Reinforcement learning in the tabular setting, where the state and action spaces are finite, is relatively
well-understood (Azar et al., 2017; Dann et al., 2017; Zanette and Brunskill, 2019). Of this line of
work, the two most related papers are those of of Jin et al. (2018) and Simchowitz and Jamieson
(2019). Our results build on the model-free/martingale analysis of Jin et al. (2018), which has been
used in recent work on RL in metric spaces (Song and Sun, 2019; Sinclair et al., 2019; Touati et al.,
2020). We also employ techniques from the gap-dependent analysis of Simchowitz and Jamieson
(2019). In particular, we use a version of their “clipping” argument, as we will explain in Section 5.

Moving beyond the tabular setting, several papers study reinforcement learning in metric spaces,
originating with the results of Kakade et al. (2003) (c.f., Ortner and Ryabko (2012); Ortner (2013);
Song and Sun (2019); Ni et al. (2019); Sinclair et al. (2019); Touati et al. (2020)). Of these, the
most related result is that of Sinclair et al. (2019) who study the adaptive discretization algorithm
and give a worst-case regret analysis, showing that the algorithm has a regret rate of K

d+1
d+2 where

d is the covering dimension of the metric space. Essentially the same results appear in Touati et al.
(2020), although the algorithm is slightly different. However, none of these results give sharper
instance-dependence guarantees that reflect benign problem structure, as we will obtain.

For the special case of (contextual) bandits, several instance-dependent guarantees that yield improved
regret rates exist (Auer et al., 2007; Valko et al., 2013; Kleinberg et al., 2019; Bubeck et al., 2011;
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Slivkins, 2014; Krishnamurthy et al., 2019). For non-contextual bandits, the results and assumptions
vary considerably, but most results quantify a benign instance in terms of the size of the set of
near-optimal actions. The formulation that we adopt is the notion of zooming dimension, which
measures the growth rate of the r-packing number of the set of O(r)-suboptimal arms. This notion
has been used in several works on bandits and contextual bandits in metric spaces, and we will recover
some of these results as a special case of our main theorem.

3 Main Results

Our main result is a regret bound that scales with the zooming dimension. We introduce this parameter
with a sequence of definitions. First, we define the gap function, which describes the sub-optimality
of an action a for state x.
Definition 2 (Gap). For any (x, a) 2 S ⇥A, for h 2 [H], the stage-dependent sub-optimality gap is

gap
h
(x, a) := V ?

h
(x)�Q?

h
(x, a).

We use the gaps to define the subset of the metric space that is near-optimal.
Definition 3 (Near-optimal set). We define near-optimal set as

PQ
?

h,r
:=

⇢
(x, a) 2 S ⇥A : gap

h
(x, a) 

✓
2(H + 1)

dmax

+ 2L

◆
r

�
.

Intuitively, PQ
?

h,r
is the set of state-action pairs with gap that is O(r) at stage h. The constant in the

definition is a consequence of our analysis, but it is quite similar to the constant in the definition
of Slivkins (2014) for contextual bandits. In particular, he considers dmax = 1, H = 1, L = 1 and
obtains a constant of 12, while we obtain a constant of 6 in this case.

Finally, we define the zooming number and the zooming dimension.
Definition 4 (Zooming number and dimension). The r-zooming number is the r-packing number of

the near-optimal set PQ
?

h,r
, that is N pack

r
(PQ

?

h,r
). The stage-dependent zooming dimension is defined as

zh,c := inf
n
d > 0 : N pack

r
(PQ

?

h,r
)  cr�d, 8r 2 (0, dmax]

o
.

The zooming dimension for the instance as the largest among all stages zc = maxh2[H] zh,c.

x

a

near optimal
actions for x

Figure 1: An example where the zoom-
ing dimension is 1 while the the covering
dimension is 2.

Intuitively, the zooming dimension measures how the near-
optimal region grows as we change the sub-optimality
level r. Importantly, we use r both to parametrize the
radius in the packing number and the sub-optimality.
Thus, the zooming number captures how many r-separated
points can be packed into the O(r) sub-optimal region.

The more standard notion of complexity of a metric space
is the covering dimension, defined as

dc := inf{d > 0, N pack
r

(S ⇥A)  cr�d, 8r 2 (0, dmax]}.

Examining the definitions, it is clear that we have zc  dc,
since the packing numbers are only smaller. However, in benign instances where the sub-optimal
region concentrates to a low dimensional manifold, we may have zc < dc (and possibly much
smaller), which will enable sharper regret bounds. An example is illustrated in Figure 1, where the
set of near-optimal actions concentrates on a narrow band for each x. Thus the entire space and hence
the covering dimension is 2-dimensional, but the zooming dimension is 1. More generally, if S is
a dS dimensional space and A is a dA dimensional space, then the covering dimension could be
⌦(dS + dA) while the zooming dimension could be as small as O(dS).

With these definitions, we can now state the main theorem.
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Theorem 1. For any initial states {xk

1 : k 2 [K]}, and any � 2 (0, 1), with probability at least, 1� �
Adaptive Q-learning has the following regret

2

Reg(K) Õ

0

@H3/2 inf
r02(0,dmax]

0

@
HX

h=1

X

r=dmax2�i,r�r0

N pack

r
(PQ

?

h,r
)
dmax

r
+

Kr0
dmax

1

A

1

A

+ Õ
⇣
H2 +

p
H3K log(1/�)

⌘
.

Before turning to a discussion of the theorem, we state some corollaries. First, by optimizing r0, we
obtain a regret bound in terms of the zooming dimension.
Corollary 2. For any initial states {xk

1 : k 2 [K]}, and any � 2 (0, 1), with probability at least

1� � Adaptive Q-learning has Reg(K)  Õ
⇣
H5/2K

zc+1
zc+2

⌘
, for any constant c > 0.

Finally, we recover the regret rate of Slivkins (2014) in the special case of contextual bandits.

Corollary 3 (Contextual bandits). If H = 1, then Adaptive Q-learning has regret Õ
⇣
K

zc+1
zc+2

⌘
, which

recovers the regret rate of Slivkins (2014).

We now turn to the remarks:

• Theorem 1 gives a regret bound that depends on the packing numbers of the near-optimal set
(Definition 3). This bound should be compared with the “metric-specific” regret guarantee
of Sinclair et al. (2019) or the “refined regret bound” of Touati et al. (2020). Both of these
results have the same form as ours with all terms in agreement, but with N pack

r (S ⇥A) in
the place of N pack

r (PQ
?

h,r
). As PQ

?

h,r
⇢ S ⇥A, our bound is always sharper.

• The more-interpretable bound is in terms of the zooming dimension (Definition 4), which
highlights the dependence on the number of episodes K. We obtain a regret rate of K

zc+1
zc+2

for any constant c > 0, which should be compared with the non-adaptive rate K
dc+1
dc+2 that

scales with the covering dimension (Song and Sun, 2019; Sinclair et al., 2019; Touati et al.,
2020).3 As the zooming dimension can be smaller than covering dimension (recall Figure 1),
this bound demonstrates a polynomial improvement over non-adaptive approaches.

• Corollary 3 shows that our bound recovers the guarantee from Slivkins (2014), although his
bound does not require that (2) holds. We give a more detailed explanation on the necessity
of (2) in Section 5. Nevertheless, the fact that we essentially recover his bound suggests that
our results are the natural generalization to multi-step RL.

• Finally, we remark that we can instantiate the result in the tabular setting with finite S,A by
taking the metric to be D((x, a), (x0, a0)) = 1{(x, a) 6= (x0, a0)}. In this case we obtain a
“partial” gap-dependent bound of the form:

poly(H) ·

0

@
p
|S|K +

HX

h=1

X

x2S

X

a:gaph(x,a)>0

log(K)

gap
h
(x, a)

1

A .

This is not a fully gap-dependent bound because of the
p
|S|K term, but it does recover an

intermediate result of Simchowitz and Jamieson (2019). In particular, this confirms that the
model-free methods can achieve a partial gap-dependent guarantee for the tabular setting.

4 Algorithm

As we have mentioned, the algorithm we analyze is the Adaptive Q-learning algorithm of Sinclair
et al. (2019). For completeness, the pseudocode is reproduced in Algorithm 1. The algorithm
adaptively partitions the state-action space to focus on the informative regions, and it uses optimism
to explore the space and drive the agent to regions with high reward.

2Throughout the paper Õ(·) suppresses logarithmic dependence in its argument.
3We always treat c as a universal constant, so its dependence in the regret bounds is suppressed.
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Algorithm 1 Adaptive Q–learning
1: For h 2 [H], initialize P1

h
to be a single ball Bh with radius dmax. Q1

h
(Bh) H .

2: for each episode k = 1, 2, . . . ,K do

3: Receive xk

1 .
4: for stage h = 1, 2, . . . , H do

5: Bk

h
= argmax

B2relkh(x
k
h)
Qk

h
(B)

6: Play action ak
h

for some (xk

h
, ak

h
) 2 domk

h
(Bk

h
)

7: Receive rk
h
, xk

h+1, update t = nk+1
h

(Bk

h
) = nk

h
(Bk

h
) + 1

8: V k

h+1(x
k

h+1) = min
n
H,max

B2relkh+1(x
k
h+1)

Qk

h+1(B)
o

.

9: Qk+1
h

(Bk

h
) = (1� ↵t)Qk

h
(Bk

h
) + ↵t(rkh + bt + V k

h+1(x
k

h+1)).

10: if tk+1
h

(Bk

h
) �

⇣
dmax

r(Bk
h)

⌘2
then split Bk

h
:

11: Create a set of balls Bk

h
= { 1

2r(B
k

h
)-net of domk

h
(Bk

h
)}.

12: Inherit the count and Qk

h
from Bk

h
. Set Pk+1

h
= Pk

h
[ Bk

h
.

13: end if

14: end for

15: end for

During the execution, the algorithm creates many balls B ⇢ S ⇥A for each stage h. We use Pk

h
to

denote the set of balls created for stage h up until episode k. Every ball B has a radius, denoted r(B)
and a domain, denoted domk

h
(B). The domain is the set of points contained in this ball, but not in

any other active ball with smaller radius. Formally,
domk

h
(B) := B \ {[

B02Pk
h :r(B

0)<r(B)B
0}.

For each ball, we also maintain a counter t = nk

h
(B) which denotes the number of times we have

chosen state-action pairs in B or its ancestors. Parents and ancestors are defined via the splitting rule:
when a ball is split in line 10, the resulting balls are called the children. Finally, we maintain a scalar
Qk

h
(B) which serves as an upper bound on max(x,a)2B Q?

h
(x, a).

In stage h of episode k, we select the action for state xk

h
as follows: we consider all the smallest balls

that contains xk

h
, defined as “relevant” balls

relk
h
(x) := {B|9a, (x, a) 2 domk

h
(B)}.

Among the relevant balls, the algorithm select the ball Bk

h
with the highest Qk

h
(B) value and plays

an arbitrary action such that (xk

h
, a) 2 Bk

h
. We increment the sample count nk

h
(Bk

h
) for this ball and

at the end of the episode, we update Qk

h
(Bk

h
) via

Qk+1
h

(Bk

h
) = (1� ↵t)Q

k

h
(Bk

h
) + ↵t(r

k

h
+ bt + V k

h+1(x
k

h+1))

V k

h+1(x) = min

(
H, max

B2relkh+1(x)
Qk

h+1(B)

)
.

where the ↵t is the learning rate and b(t) is the bonus added to ensure Qk

h
is optimistic. Formally,

↵t :=
H + 1

H + t
, bt := 2

r
H3 log(4HK/�)

t
+

4Ldmaxp
t

.

For all other balls at stage h, we set Qk+1
h

(B) Qk

h
(B), with no update.

We split a ball B as soon as nk

h
(B) �

⇣
dmax
r(B)

⌘2
. When splitting, we create a set of new “children”

balls with radius r(B)/2 that forms an r(B)/2-net of domk

h
(B). These balls inherit the count nk

h

and the estimate Qk

h
from the “parent” ball B, and we add them to Pk+1

h
. This splitting rule leads to

the following invariant
Lemma 4 (Lemma 5.3 in Sinclair et al. (2019)). For every (h, k) 2 [H]⇥ [K], we have

1. (Covering) The domains of balls in Pk

h
covers S ⇥A.

2. (Separation) For any two balls of radius r, their centers are at distance at least r.
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Computational considerations. As discussed in Sinclair et al. (2019), this algorithm can be
implemented in a computationally efficient manner provided that the metric space allows certain
natural operations. Formally, we operate in an oracle model, which allows us to query the metric to
compute dom(B), rel(x), and to construct an r-net for any r and any subset of the metric space.

5 Proof sketch

In this section we describe the main steps of the proof, with details deferred to the appendix.

It is worth reviewing prior regret analyses for episodic RL (Jin et al., 2018). The arguments establish
a regret decomposition that relates the estimate V k

1 to V ⇡k , the expected reward collected in episode
k. The decomposition is recursive in nature, involving differences between Qk

h
and Q?

h
. These are

controlled by the update rule and the design of the learning rate. In particular, we can bound Qk

h
�Q?

h

by an immediate “surplus” �t and the downstream value function error. Formally for any ball B with
(x, a) 2 domk

h
(B)

Qk

h
(B)�Q?

h
(x, a)  1[t=0]H +

tX

i=1

↵i

t
(V ki

h+1 � V ?

h+1)(x
ki
h+1) + �t, (3)

where t = nk

h
(B),↵t

i
= ↵i

Q
t

j=i+1(1 � ↵j) and �t = 2
P

t

i=1 ↵
t

i
bi. Here ki is the index of the

episode where B was selected for the ith time. Summing over all episodes and grouping terms
appropriately, we obtain

KX

k=1

(V k

h
� V ⇡k

h
)(xk

h
) 

KX

k=1

⇣
H1[nk

h=0] + �
n
k
h
+ ⇠k

h

⌘
+ (1 + 1/H)

KX

k=1

�
V k

h+1 � V ⇡k
h+1

�
(xk

h+1),

where ⇠k
h+1 is a stochastic term that can be ignored for this discussion. Note that, as long as V k

h
is

optimistic (which we will verify), this also provides a bound on the regret.

For the tabular setting, Jin et al. (2018) use this regret decomposition to obtain a worst-case bound.
The leading term arises from the “surplus” term �

n
k
h

, which leads to a poly(H)
p
SAK regret bound

for the tabular setting. On the other hand for our setting, the splitting rule implies that for any ball B,
we must have nk

h
 (dmax/r(B))2. We can use this to obtain a bound that depends on the number of

active balls at each scale r times dmax/r. If we could bound the number of active balls at scale r in
terms of the packing number N pack

r (PQ
?

h,r
), then we would obtain the instance-dependent bound.

Unfortunately, this is not possible. In general, the algorithm will activate balls outside of the near-
optimal region, because we may have to select a highly suboptimal ball many times to reduce
downstream over-estimation error. So indeed the number of active balls at scale r could be much
larger than the packing of the near-optimal set.

We address this with the following key observation. If the surplus �
n
k
h

is small compared to gap, and
we choose this ball, it must be the case that the downstream regret is quite large, otherwise we would
not have chosen this ball. If this is true, we can account for the surplus by adding a small constant
fraction of the future regret. In otherwords, we can “clip” the surplus to zero once it is proportional to
the gap, and we only pay a constant factor in the recursive term. This is the clipping trick developed
by Simchowitz and Jamieson (2019) to establish gap dependent bounds for tabular MDP. Formally
instead of (3), we have the following lemma.
Lemma 5 (Clipped upper bound). For any � 2 (0, 1) with probability at least 1� �/2, 8h 2 [H],

Qk

h
(Bk

h
)�Q?

h
(xk

h
, ak

h
)  (1 + 1/H)

 
1[t=0]H +

tX

i=1

↵i

t
(V ki

h+1 � V ?

h+1)(x
ki
h+1)

!

+ clip


�t |

gap
h
(xk

h
, ak

h
)

H + 1

�
,

where t = nk

h
(B),↵t

i
= ↵i

Q
t

j=i+1(1� ↵j) and �t = 2
P

t

i=1 ↵
t

i
bi and clip[µ | ⌫] := µ1{µ � ⌫}.

This bound should be compared with (3). On one hand the recursive term is multiplied by 1 + 1/H,
but, on the other, we are able to clip the surpluses �t. The former will exponentiate but will asymptote
to e, while the latter is crucial for our instance dependent bounds.
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Using this lemma, we can bound the difference between V k

h
and V ⇡k

h
.

Lemma 6 (Clipped recursion, informal). For any � 2 (0, 1), with probability at least 1 � �/2,

8h 2 [H],

KX

k=1

(V k

h
� V ⇡

k

h
)(xk

h
) 

KX

k=1

(1 + 1/H)↵0
t
+ clip

h
�
n
k
h
| gap

h
(xk

h
, ak

h
)/(H + 1)

i
+ ⇠k

h+1

+ (1 + 1/H)2
KX

k=1

(V k

h+1 � V ⇡
k

h+1)(x
k

h+1),

where ⇠k
h+1 is conditionally centered random variable with range H .

We bound V k

1 � V ⇡k
1 , and by optimism the regret, by applying Lemma 6 recursively.

The last step is to show that the sum of clipped surpluses can be related to the zooming dimension.
First note that for any ball B, its ancestors must be played at least 1/4 (dmax/r(B))2 times before it
becomes activated. Since the ball inherits data from its ancestors, if it becomes activated but only
contains points with large gap, we can always clip the surplus term. Thus all active balls B that have
r(B)⌧ minx,a2B gap(x, a) do not contribute to the regret.

Next, if a ball with radius r contains a point where the gap is small, we cannot appeal to clipping.
However, by Lipschitzness, all points in the ball must have small gaps, which means that this ball is
contained in the near optimal set at scale r. As above, the surplus for each of these balls contributes
at most dmax/r to the regret. Then, since all balls with radius r are at least r apart and we only incur
regret for those entirely contained in the near-optimal region, we obtain the bound that depends on
N pack

r (PQ
?

h,r
).

Remarks on Assumption 2. We give some intuition on why our proof requires (2), which is
slightly stronger than what is required for the zooming dimension analysis of Slivkins (2014) for
contextual bandits. In Slivkins (2014), the optimistic selection rule ensures that the context-action
pairs chosen by the algorithm have small gap, but this is not true in the multi-step setting. In the RL
setting, we might select an action (in a ball) with a large gap because the downstream regret is large.
In this case, we can clip the surplus, but we can only clip at the minimum gap among all (x, a) pairs
in the ball. To obtain a zooming dimension bound, we must argue that this ball is contained in the
near-optimal set, but this requires that the value functions, and hence the gaps, are Lipschitz. We
recall that (2) is implied by (1) if the metric is sub-additive.

6 Discussion

In this paper, we give a refined analysis of the Adaptive Q-learning algorithm of Sinclair, Banerjee and
Yu (2019) for sample efficient reinforcement learning in metric spaces. We show that the algorithm
has a regret bound that depends on the zooming dimension of the instance, with rate K

z+1
z+2 when

the zooming dimension is z. This always improves on the worst-case bound that depends on the
covering dimension, and can be much better when the Q? function concentrates quickly onto a
low-dimensional set of actions. The bound also recovers that of Slivkins (2014) for contextual bandits
in metric spaces, under a slightly stronger assumption. The key technique is the clipped regret
decomposition of Simchowitz and Jamieson (2019), which we complement with a book-keeping
argument. Our results show that adaptivity to benign instances is possible in RL with metric spaces,
and partially mitigate the curse of dimensionality in such settings.

Broader Impact

This is primarily a theoretical contribution, so the broader impacts of the results are quite minimal.
As the algorithm we analyze has already been developed and used in experiments (Sinclair et al.,
2019), we do not expect our results would have any bearing on whether this algorithm is used in
practice. On the other hand, we do believe that adaptive algorithms for reinforcement learning will be
essential for applications where data collection is costly, such as applications in tutoring systems. We
hope that our results can inspire future work into these important applications.
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