A Other related work

Kearns and Mansour [KM99] (see also [Kea96]) analyzed top-down impurity-based heuristics from the perspective of boosting, where the attributes queried in the tree are viewed as weak hypotheses.

Recent work of Blanc et al. [BLT20b] gives a top-down algorithm for learning decision trees that achieves provable guarantees for all target functions f. However, their algorithm makes crucial use of membership queries, which significantly limits its practical applicability and relevance. Furthermore, their guarantees only hold in the realizable setting, requiring that f is itself a size- s decision tree (i.e. $\mathrm{opt}_{s}=0$).

There has been extensive work in the learning theory literature on learning the concept class of decision trees [EH89, Blu92, KM93, OS07, GKK08, HKY18, CM19]. However, none of these algorithms proceed in a top-down manner like the practical heuristics that are the focus of this work; indeed, with the exception [EH89], these algorithms do not return a decision tree as their hypothesis. ([|EH89]'s algorithm constructs its decision tree hypothesis in a bottom-up manner.)

B Proof of Fact 2.1

Fact 2.1 is a simple consequence of the following lemma, whose proof also appears in [Jon16]:
Lemma B.1. For all $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $i \in[n]$,

$$
\mathrm{NS}_{\delta}(f)=\frac{1}{2} \mathrm{NS}_{\delta}\left(f_{x_{i}=-1}\right)+\frac{1}{2} \mathrm{NS}_{\delta}\left(f_{x_{i}=1}\right)+\frac{\delta}{2(1-\delta)} \cdot \operatorname{Inf}_{i}^{(\delta)}(f)
$$

Proof. Let $\boldsymbol{x} \sim\{ \pm 1\}^{n}$ be uniform random, and $\tilde{\boldsymbol{x}} \sim_{\delta} \boldsymbol{x}$ be a δ-noisy copy of \boldsymbol{x}. We first note that

$$
\begin{align*}
\mathbb{E}[f(\boldsymbol{x}) f(\tilde{\boldsymbol{x}})]= & \operatorname{Pr}\left[\boldsymbol{x}_{i}=\tilde{\boldsymbol{x}}_{i}\right] \cdot \mathbb{E}\left[f(\boldsymbol{x}) f(\tilde{\boldsymbol{x}}) \mid \boldsymbol{x}_{i}=\tilde{\boldsymbol{x}}_{i}\right]+\operatorname{Pr}\left[\boldsymbol{x}_{i} \neq \tilde{\boldsymbol{x}}_{i}\right] \cdot \mathbb{E}\left[f(\boldsymbol{x}) f(\tilde{\boldsymbol{x}}) \mid \boldsymbol{x}_{i} \neq \tilde{\boldsymbol{x}}_{i}\right] \\
= & \left(1-\frac{\delta}{2}\right)\left(\frac{1}{2} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=1}\right) f\left(\tilde{\boldsymbol{x}}^{i=1}\right)\right]+\frac{1}{2} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=-1}\right) f\left(\tilde{\boldsymbol{x}}^{i=-1}\right)\right]\right) \\
& +\frac{\delta}{2}\left(\frac{1}{2} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=1}\right) f\left(\tilde{\boldsymbol{x}}^{i=-1}\right)\right]+\frac{1}{2} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=-1}\right) f\left(\tilde{\boldsymbol{x}}^{i=1}\right)\right]\right) \tag{7}
\end{align*}
$$

Next, we have that

$$
\begin{align*}
\mathbb{E}\left[D_{i} f(\boldsymbol{x}) D_{i} f(\tilde{\boldsymbol{x}})\right]= & \frac{1}{4} \mathbb{E}\left[\left(f\left(\boldsymbol{x}^{i=1}\right)-f\left(\boldsymbol{x}^{i=-1}\right)\right)\left(f\left(\tilde{\boldsymbol{x}}^{i=1}\right)-f\left(\tilde{\boldsymbol{x}}^{i=-1}\right)\right)\right] \\
= & \frac{1}{4} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=1}\right) f\left(\tilde{\boldsymbol{x}}^{i=1}\right)\right]+\frac{1}{4} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=-1}\right) f\left(\tilde{\boldsymbol{x}}^{i=-1}\right)\right] \\
& -\frac{1}{4} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=1}\right) f\left(\tilde{\boldsymbol{x}}^{i=-1}\right)\right]-\frac{1}{4} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=-1}\right) f\left(\tilde{\boldsymbol{x}}^{i=1}\right)\right] . \tag{8}
\end{align*}
$$

Combining Equations (7) and (8),

$$
\begin{aligned}
\mathbb{E}[f(\boldsymbol{x}) f(\tilde{\boldsymbol{x}})] & =\frac{1}{2} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=1}\right) f\left(\tilde{\boldsymbol{x}}^{i=1}\right)\right]+\frac{1}{2} \mathbb{E}\left[f\left(\boldsymbol{x}^{i=-1}\right) f\left(\tilde{\boldsymbol{x}}^{i=-1}\right)\right]-\delta \mathbb{E}\left[D_{i} f(\boldsymbol{x}) D_{i} f(\tilde{\boldsymbol{x}})\right] \\
& =\frac{1}{2} \mathbb{E}\left[f_{x_{i}=1}(\boldsymbol{x}) f_{x_{i}=1}(\tilde{\boldsymbol{x}})\right]+\frac{1}{2} \mathbb{E}\left[f_{x_{i}=-1}(\boldsymbol{x}) f_{x_{i}=-1}(\tilde{\boldsymbol{x}})\right]-\frac{\delta}{1-\delta} \cdot \operatorname{Inf}_{i}^{(\delta)}(f) .
\end{aligned}
$$

Since $\mathrm{NS}_{\delta}(f)=\operatorname{Pr}[f(\boldsymbol{x}) \neq f(\tilde{\boldsymbol{x}})]=\frac{1}{2}-\frac{1}{2} \mathbb{E}[f(\boldsymbol{x}) f(\tilde{\boldsymbol{x}})]$, the lemma follows from the above by rearranging.

Proof of Fact 2.1 We first note that

$$
\begin{aligned}
\mathrm{NS}_{\delta}\left(f, T_{\ell^{\star} \rightarrow x_{i}}^{\circ}\right)= & \sum_{\text {leaves } \ell \in T_{\ell^{\star} \rightarrow x_{i}}^{\circ}} 2^{-|\ell|} \cdot \mathrm{NS}_{\delta}\left(f_{\ell}\right) \\
= & \sum_{\text {leaves } \ell \in T^{\circ}} 2^{-|\ell|} \cdot \mathrm{NS}_{\delta}\left(f_{\ell}\right) \\
& \quad+2^{-\left(\left|\ell^{\star}\right|+1\right)} \cdot \mathrm{NS}_{\delta}\left(f_{\ell^{\star}, x_{i}=-1}\right)+2^{-\left(\left|\ell^{\star}\right|+1\right)} \cdot \mathrm{NS}_{\delta}\left(f_{\ell^{\star}, x_{i}=1}\right)-2^{-\left|\ell^{\star}\right|} \cdot \mathrm{NS}_{\delta}\left(f_{\ell^{\star}}\right) \\
= & \operatorname{NS}_{\delta}\left(f, T^{\circ}\right)+2^{-\left|\ell^{\star}\right|}\left(\frac{1}{2} \mathrm{NS}_{\delta}\left(f_{\ell^{\star}, x_{i}=-1}\right)+\frac{1}{2} \mathrm{NS}_{\delta}\left(f_{\ell^{\star}, x_{i}=1}\right)-\mathrm{NS}_{\delta}\left(f_{\ell^{\star}}\right)\right)
\end{aligned}
$$

Applying Lemma B. 1 with its ' f ' being $f_{\ell^{\star}}$, we have that

$$
\frac{1}{2} \mathrm{NS}_{\delta}\left(f_{\ell^{\star}, x_{i}=-1}\right)+\frac{1}{2} \mathrm{NS}_{\delta}\left(f_{\ell^{\star}, x_{i}=1}\right)-\mathrm{NS}_{\delta}\left(f_{\ell^{\star}}\right)=-\frac{\delta}{2(1-\delta)} \cdot \operatorname{Inf}_{i}^{(\delta)}\left(f_{\ell^{\star}}\right),
$$

and this completes the proof.

C Proof of Theorem 3

Proof. We apply Theorem 2 with ' T ' being T^{\star}, ' g ' being $f_{\delta}^{\leq d}$, and ρ being the semimetric $\rho(a, b)=$ $(a-b)^{2} / 2$. As shown by [OSSS05] (and as can be easily verified), $\operatorname{Def}_{k}(\rho) \leq k$ for this choice of ρ, and so

$$
\begin{equation*}
\operatorname{Cov}_{\rho}\left(T^{\star}, f_{\delta}^{\leq d}\right) \leq k \sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right) \cdot \frac{1}{2} \mathbb{E}\left[\left(f_{\delta}^{\leq d}(\boldsymbol{x})-f_{\delta}^{\leq d}\left(\boldsymbol{x}^{\sim i}\right)\right)^{2}\right] \tag{9}
\end{equation*}
$$

We first analyze the quantity on the LHS of Equation (9). For $\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim\{ \pm 1\}^{n}$ uniform and independent,

$$
\begin{align*}
\operatorname{Cov}_{\rho}\left(T^{\star}, f_{\delta}^{\leq d}\right) & =\frac{1}{2}\left(\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}^{\leq d}\left(\boldsymbol{x}^{\prime}\right)\right)^{2}\right]-\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}^{\leq d}(\boldsymbol{x})\right)^{2}\right]\right) \\
& \geq \frac{1}{4} \mathbb{E}\left[\left(f_{\delta}^{\leq d}(\boldsymbol{x})-f_{\delta}^{\leq d}\left(\boldsymbol{x}^{\prime}\right)\right)^{2}\right]-\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}^{\leq d}(\boldsymbol{x})\right)^{2}\right] \\
& =\frac{1}{2} \operatorname{Var}\left(f_{\delta}^{\leq d}\right)-\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}^{\leq d}(\boldsymbol{x})\right)^{2}\right] \tag{10}
\end{align*}
$$

where the inequality uses the "almost-triangle" inequality $(a-c)^{2} \leq 2\left((a-b)^{2}+(b-c)^{2}\right)$ for $a, b, c \in \mathbb{R}$. Furthermore, we have

$$
\begin{aligned}
& \operatorname{Var}\left(f_{\delta}\right)=\sum_{S \neq \emptyset}(1-\delta)^{2|S|} \widehat{f}(S)^{2} \quad \text { (Fourier formulas for } f_{\delta} \text { (5) and variance (4)) } \\
& =\sum_{S \neq \emptyset}(1-\delta)^{2|S|} \widehat{f}(S)^{2}+\sum_{|S|>d}(1-\delta)^{2|S|} \widehat{f}(S)^{2} \\
& |S| \leq d \\
& \leq \operatorname{Var}\left(f_{\delta}^{\leq d}\right)+\sum_{|S|>d} e^{(-\delta) 2|S|} \widehat{f}(S)^{2} \quad\left(1+a \leq e^{a}\right) \\
& \left.\leq \operatorname{Var}\left(f_{\delta}^{\leq d}\right)+e^{-2 d \delta} \sum_{|S|>d} \widehat{f}(S)^{2} \quad \quad \text { (Since }|S|>d\right) \\
& \left.\leq \operatorname{Var}\left(f_{\delta}^{\leq d}\right)+e^{-2 d \delta} \quad \text { (Parseval's identity } \sqrt{3}:: \sum_{S \subseteq[n]} \widehat{f}(S)^{2}=1\right) \\
& \left.\leq \operatorname{Var}\left(f_{\delta}^{\leq d}\right)+\varepsilon . \quad \text { (Since } d=\log (1 / \varepsilon) / \delta\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}^{\leq d}(\boldsymbol{x})\right)^{2}\right] \leq & 2\left(\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}(\boldsymbol{x})\right)^{2}\right]+\mathbb{E}\left[\left(f_{\delta}(\boldsymbol{x})-f_{\delta}^{\leq d}(\boldsymbol{x})\right)^{2}\right]\right) \\
& =2\left(\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}(\boldsymbol{x})\right)^{2}\right]+\sum_{|S|>d}(1-\delta)^{|S|} \widehat{f}(S)^{2}\right) \\
\leq & \quad \text { "almost-triangle" inequality) } \\
\leq & 2\left(\mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}(\boldsymbol{x})\right)^{2}\right]+\varepsilon\right) . \quad(\text { Since } d=\log (1 / \varepsilon) / \delta)
\end{aligned}
$$

Combining these bounds with Equation (10), we have the following lower bound on the LHS of Equation (9).

$$
\begin{align*}
\operatorname{Cov}\left(T^{\star}, f_{\delta}^{\leq d}\right) & \geq \frac{1}{2}\left(\operatorname{Var}\left(f_{\delta}\right)-\varepsilon\right)-\left(2 \mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}(\boldsymbol{x})\right)^{2}\right]+2 \varepsilon\right) . \\
& =\frac{1}{2} \operatorname{Var}\left(f_{\delta}\right)-\left(2 \mathbb{E}\left[\left(T^{\star}(\boldsymbol{x})-f_{\delta}(\boldsymbol{x})\right)^{2}\right]+\frac{5}{2} \varepsilon\right) \tag{11}
\end{align*}
$$

We now turn to analyzing the RHS of Equation (9)

$$
\begin{aligned}
& k \sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right) \cdot \frac{1}{2} \mathbb{E}\left[\left(f_{\delta}^{\leq d}(\boldsymbol{x})-f_{\delta}^{\leq d}\left(\boldsymbol{x}^{\sim i}\right)\right)^{2}\right] \\
= & k \sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right) \cdot \frac{1}{4} \mathbb{E}\left[\left(f_{\delta}^{\leq d}(\boldsymbol{x})-f_{\delta}^{\leq d}\left(\boldsymbol{x}^{\oplus i}\right)\right)^{2}\right] \quad\left(\boldsymbol{x}^{\oplus i}=\boldsymbol{x} \text { with its } i\right. \text {-th coordinate flipped) } \\
= & k \sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right) \cdot \mathbb{E}\left[D_{i} f_{\delta}^{\leq d}(\boldsymbol{x})^{2}\right] \\
= & k \sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right) \cdot \operatorname{Inf}_{i}\left(f_{\delta}^{\leq d}\right) \\
= & k \cdot \max _{i \in[n]}\left\{\operatorname{Inf}_{i}\left(f_{\delta}^{\leq d}\right)\right\} \cdot \sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right) \leq k \cdot \max _{i \in[n]}\left\{\operatorname{Inf}_{i}\left(f_{\delta}^{\leq d}\right)\right\} \cdot \log s
\end{aligned}
$$

where the final inequality holds because

$$
\sum_{i=1}^{n} \lambda_{i}\left(T^{\star}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left[T^{\star} \text { queries } \boldsymbol{x}_{i}\right]=\sum_{\text {leaves } \ell \in T^{\star}} 2^{-|\ell|} \cdot|\ell| \leq \log s
$$

Finally, we note that:

$$
\begin{aligned}
\operatorname{Inf}_{i}\left(f_{\delta}^{\leq d}\right) & =\sum_{\substack{S \ni i \\
|S| \leq d}}(1-\delta)^{2|S|} \widehat{f}(S)^{2} \quad \text { (Fourier formula for influence; Definition 2) } \\
& \leq \sum_{\substack{S \ni i \\
|S| \leq d}}(1-\delta)^{|S|} \widehat{f}(S)^{2}=\operatorname{Inf}_{i}^{(\delta, d)}(f)
\end{aligned}
$$

Combining this with Equations (9) (11) and (12) and rearranging completes the proof.

D Proofs of Facts 4.1 and 4.2 and Propositions E. 1 and E. 2

Proof of Fact 4.1 This follows by combining the bounds $\operatorname{Inf}(T) \leq \log s$ (see e.g. OS07]) and $\mathrm{NS}_{\delta}(f) \leq \delta \cdot \operatorname{Inf}(f)$ for all $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ O'D14, Exercise 2.42].

Proof of Fact 4.2 Let $\boldsymbol{x} \sim\{ \pm 1\}^{n}$ be uniform random and $\tilde{\boldsymbol{x}} \sim_{\delta} \boldsymbol{x}$ be a δ-noisy copy of \boldsymbol{x}. Then

$$
\begin{aligned}
\mathrm{NS}_{\delta}(f) & =\operatorname{Pr}[f(\boldsymbol{x}) \neq f(\tilde{\boldsymbol{x}})] \\
& \leq \operatorname{Pr}[T(\boldsymbol{x}) \neq T(\tilde{\boldsymbol{x}})]+\operatorname{Pr}[T(\boldsymbol{x}) \neq f(\boldsymbol{x})]+\operatorname{Pr}[T(\tilde{\boldsymbol{x}}) \neq f(\tilde{\boldsymbol{x}})] \\
& \leq \mathrm{NS}_{\delta}(T)+2 \operatorname{Pr}[T(\boldsymbol{x}) \neq f(\boldsymbol{x})]
\end{aligned}
$$

where the final inequality uses that fact that \boldsymbol{x} and $\tilde{\boldsymbol{x}}$ are distributed identically.

E The case analysis in the proof of Theorem 4

Case 1: $\underset{\ell}{\mathbb{E}}\left[\operatorname{Var}\left(\left(f_{\ell}\right)_{\delta}\right)\right] \geq 4 \underset{\ell}{\mathbb{E}}\left[\left\|\left(f_{\ell}\right)_{\delta}-T_{\mathrm{opt}}^{\mathrm{trunc}}\right\|_{2}^{2}\right]+7 \varepsilon$.

In this case we claim that there is a leaf ℓ^{\star} of T° with a high score, where we recall that the score of a leaf ℓ is defined to be

$$
\operatorname{score}(\ell):=2^{-|\ell|} \cdot \max _{i \in[n]}\left\{\operatorname{Inf}_{i}^{(\delta, d)}\left(f_{\ell}\right)\right\}
$$

Applying Theorem 3 with its ' T^{\star} ' being $T_{\text {opt }}^{\text {trunc }}$ and its ' f ' being f_{ℓ} for each leaf $\ell \in T^{\circ}$, we have that

$$
\begin{align*}
\underset{\ell}{\mathbb{E}}\left[\max _{i \in[n]}\left\{\operatorname{Inf}_{i}^{(\delta, d)}\left(f_{\ell}\right)\right\}\right] & \geq \frac{\left.\frac{1}{2} \underset{\ell}{\mathbb{E}}\left[\operatorname{Var}\left(f_{\ell}\right)_{\delta}\right)\right]-\left(2 \underset{\ell}{\mathbb{E}}\left[\left\|T_{\mathrm{opt}}^{\operatorname{trunc}}-\left(f_{\ell}\right)_{\delta}\right\|_{2}^{2}\right]+\frac{5}{2} \varepsilon\right)}{\log (s / \varepsilon) \log s} \\
& \geq \frac{\varepsilon}{\log (s / \varepsilon) \log s} \tag{13}
\end{align*}
$$

where the second inequality is by the assumption that we are in Case 1. Equivalently,

$$
\sum_{\ell \in T^{\circ}} 2^{-|\ell|} \cdot \max _{i \in[n]}\left\{\operatorname{Inf}_{i}^{\delta, d}\left(f_{\ell}\right)\right\} \geq \frac{\varepsilon}{\log (s / \varepsilon) \log s}
$$

and so there must exist a leaf $\ell^{\star} \in T^{\circ}$ such that

$$
\operatorname{score}\left(\ell^{\star}\right)=2^{-\left|\ell^{\star}\right|} \cdot \max _{i \in[n]}\left\{\operatorname{Inf}_{i}^{(\delta, d)}\left(f_{\ell^{\star}}\right)\right\} \geq \frac{\varepsilon}{\left|T^{\circ}\right| \log (s / \varepsilon) \log s},
$$

where $\left|T^{\circ}\right|$ denotes the size of T°.

Case 2: $\underset{\ell}{\mathbb{E}}\left[\operatorname{Var}\left(\left(f_{\ell}\right)_{\delta}\right)\right]<4 \underset{\ell}{\mathbb{E}}\left[\left\|\left(f_{\ell}\right)_{\delta}-T_{\mathrm{opt}}^{\mathrm{trunc}}\right\|_{2}^{2}\right]+7 \varepsilon$.

In this case, we claim that $\operatorname{error}_{f}\left(T_{f}^{\circ}\right) \leq O\left(\right.$ opt $\left._{s}+\kappa+\varepsilon\right)$. We will need a couple of propositions:
Proposition E.1. $\underset{\ell}{\mathbb{E}}\left[\left\|\left(f_{\ell}\right)_{\delta}-f_{\ell}\right\|_{2}^{2}\right] \leq 4 \kappa$.

Proof. We first note that

$$
\begin{aligned}
\underset{\boldsymbol{\ell}}{\mathbb{E}}\left[\left\|\left(f_{\ell}\right)_{\delta}-f_{\boldsymbol{\ell}}\right\|_{2}^{2}\right] & \leq 2 \underset{\boldsymbol{\ell}}{\mathbb{E}}\left[\left\|\left(f_{\boldsymbol{\ell}}\right)_{\delta}-f_{\boldsymbol{\ell}}\right\|_{1}\right] \quad \quad \text { Since } f_{\ell} \text { and }\left(f_{\ell}\right)_{\delta} \text { are }[-1,1] \text {-valued) } \\
& =2 \underset{\boldsymbol{\ell}}{\mathbb{E}}\left[\underset{\boldsymbol{x}}{\mathbb{E}}\left[\left|\left(f_{\ell}\right)_{\delta}(\boldsymbol{x})-f_{\ell}(\boldsymbol{x})\right|\right]\right] \\
& =2 \underset{\boldsymbol{\ell}}{\mathbb{E}}\left[\underset{\tilde{\boldsymbol{x}} \sim_{\delta} \boldsymbol{x}}{\mathbb{E}}\left[\left|\left(f_{\ell}\right)(\tilde{\boldsymbol{x}})-f_{\ell}(\boldsymbol{x})\right|\right]\right] \\
& =2 \underset{\boldsymbol{\ell}}{\mathbb{E}}\left[2 \underset{\substack{\boldsymbol{x} \\
\underset{\boldsymbol{x}}{ } \\
\operatorname{Pr}}}{\operatorname{Pr}}\left[f_{\ell}(\tilde{\boldsymbol{x}}) \neq f_{\boldsymbol{\ell}}(\boldsymbol{x})\right]\right] \\
& =4 \underset{\boldsymbol{\ell}}{\mathbb{E}}\left[\mathrm{NS}_{\delta}\left(f_{\ell}\right)\right]=4 \mathrm{NS}_{\delta}\left(f, T^{\circ}\right)
\end{aligned}
$$

By Fact 2.1. we have that $\mathrm{NS}_{\delta}\left(f, T^{\circ}\right) \leq \mathrm{NS}_{\delta}(f)$, and the claim follows.
Proposition E.2. For each leaf $\ell \in T^{\circ}$, we have $\mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-\operatorname{sign}\left(\mathbb{E}\left[f_{\ell}\right]\right)^{2}\right] \leq 2 \mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-c\right)^{2}\right]\right.$ for all constants $c \in \mathbb{R}$.

Proof. Let $p:=\operatorname{Pr}\left[f_{\ell}(\boldsymbol{x})=1\right]$ and assume without loss of generality that $p \geq \frac{1}{2}$. On one hand, we have that $\mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-\operatorname{sign}\left(\mathbb{E}\left[f_{\ell}\right]\right)^{2}\right]=\mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-1\right)^{2}\right]=4(1-p)\right.$. On the other hand, since

$$
\mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-c\right)^{2}\right]=p(1-c)^{2}+(1-p)(1+c)^{2}
$$

this quantity is minimized for $c=2 p-1$ and attains value $4 p(1-p)$ at this minimum. Therefore indeed

$$
\min _{c}\left\{\mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-c\right)^{2}\right]\right\}=4 p(1-p) \geq 2(1-p)=\frac{1}{2} \mathbb{E}\left[\left(f_{\ell}(\boldsymbol{x})-\operatorname{sign}\left(\mathbb{E}\left[f_{\ell}\right]\right)^{2}\right]\right.
$$

and the proposition follows.

With Propositions E. 1 and E. 2 in hand, we are ready to bound $\operatorname{error}_{f}\left(T_{f}^{\circ}\right)$. Recall that T_{f}° is the completion of T° that we obtain by labeling each leaf ℓ with $\operatorname{sign}\left(\mathbb{E}\left[f_{\ell}\right]\right)$. Therefore,

$$
\begin{aligned}
\operatorname{error}_{f}\left(T_{f}^{\circ}\right) & =\underset{\ell}{\mathbb{E}}\left[\operatorname{dist}\left(f_{\ell}, \operatorname{sign}\left(\mathbb{E}\left[f_{\ell}\right]\right)\right)\right] \\
& =\frac{1}{4} \underset{\ell}{\mathbb{E}}\left[\left\|f_{\ell}-\operatorname{sign}\left(\mathbb{E}\left[f_{\ell}\right]\right)\right\|_{2}^{2}\right] \\
& \leq \frac{1}{2} \underset{\ell}{\mathbb{E}}\left[\left\|f_{\ell}-\mathbb{E}\left[\left(f_{\ell}\right)_{\delta}\right]\right\|_{2}^{2}\right] \\
& \leq \underset{\ell}{\mathbb{E}}\left[\left\|f_{\ell}-\left(f_{\ell}\right)_{\delta}\right\|_{2}^{2}\right]+\underset{\ell}{\mathbb{E}}\left[\left\|\left(f_{\ell}\right)_{\delta}-\mathbb{E}\left[\left(f_{\ell}\right)_{\delta}\right]\right\|_{2}^{2}\right] \\
& \leq 4 \kappa+\underset{\ell}{\mathbb{E}}\left[\operatorname{Var}\left(\left(f_{\ell}\right)_{\delta}\right)\right]
\end{aligned}
$$

By the assumption that we are in Case 2, we have that:

$$
\begin{aligned}
\underset{\ell}{\mathbb{E}}\left[\operatorname{Var}\left(\left(f_{\ell}\right)_{\delta}\right)\right] & <4 \underset{\ell}{\mathbb{E}}\left[\left\|\left(f_{\ell}\right)_{\delta}-T_{\mathrm{opt}}^{\mathrm{trunc}}\right\|_{2}^{2}\right]+7 \varepsilon \\
& \leq 8\left(4 \kappa+\underset{\ell}{\mathbb{E}}\left[\left\|f_{\ell}-T_{\mathrm{opt}}^{\mathrm{trunc}}\right\|_{2}^{2}\right]\right)+7 \varepsilon \\
& =8\left(4 \kappa+4 \underset{\ell}{\mathbb{E}}\left[\operatorname{dist}\left(f_{\ell}, T_{\mathrm{opt}}^{\mathrm{trunc}}\right)\right]\right)+7 \varepsilon \\
& =8\left(4 \kappa+4\left(\mathrm{opt}_{s}+\varepsilon\right)\right)+7 \varepsilon \\
& \leq O\left(\mathrm{opt}_{s}+\kappa+\varepsilon\right)
\end{aligned}
$$

and so we have shown that $\operatorname{error}_{f}\left(T_{f}^{\circ}\right) \leq O\left(\right.$ opt $\left._{s}+\kappa+\varepsilon\right)$.

