4 Appendix

In the appendix, we provide additional proofs that have been omitted from the main text.

4.1 Uniform improvement of Corollary 4 over 10

To see this, let M^{\prime} be the realization of $\Phi_{2 k,+}(M)$ with most columns (M^{\prime} will have at least k columns since adding a column to M^{\prime} will not decrease its maximum singular value). Note that $k \Phi_{2 k,-}(M) / \Phi_{2 k,+}(M) \leq k \sigma_{\min }^{2}\left(M^{\prime}\right) / \sigma_{\max }^{2}\left(M^{\prime}\right)$ by definition of Φ. We may assume that M^{\prime} has full column rank, otherwise the proof is trivial. Then, for any submatrix $Q \in \mathbb{R}^{n \times k}$ of M^{\prime}, we have $k \sigma_{\min }^{2}\left(M^{\prime}\right) / \sigma_{\max }^{2}\left(M^{\prime}\right) \leq k \sigma_{\min }^{2}(Q) / \sigma_{\max }^{2}(Q)$ (see, e.g., 2.2.33. of [41]). Next, $k \sigma_{\min }^{2}(Q) / \sigma_{\max }^{2}(Q) \leq\left\|\Lambda_{Q}\right\|_{1}^{2} /\left\|\Lambda_{Q}\right\|_{2}^{2}$ holds because $\sigma_{\max }^{2}(Q)\left\|\Lambda_{Q}\right\|_{1}^{2} \geq$ $k \sigma_{\text {min }}^{2}(Q)\left(\sigma_{\text {max }}^{2}(Q)\left\|\Lambda_{Q}\right\|_{1}\right) \geq k \sigma_{\text {min }}^{2}\left\|\Lambda_{Q}\right\|_{2}^{2}$. Combining these with Corollary 4 gives the claim.

4.2 Proof of Proposition 9

We first focus on the case where $M \in \mathbb{R}^{n \times n}$ is a square matrix. Recall that we defined $\lambda_{1} \geq \ldots \geq \lambda_{n}$ as the nonincreasing order of eigenvalues of matrix $M^{\top} M$.
The following result is due to Szarek [38].
Lemma 15 (Theorem 1.3, [38]). There exist universal constants $c_{1} c_{2}, c^{\prime}, C^{\prime}$ such that for any $k \leq(1 / 2) n$, with probability at least $1-C^{\prime} \exp \left(-c^{\prime} k^{2}\right)$,

$$
c_{1} k^{2} \leq \lambda_{n-k}\left(M^{\top} M\right) \leq c_{2} k^{2}
$$

We can take $k=n / 2$ (or $(n-1) / 2$ if n is odd; in the following we will be assuming n is even and the odd case follows similarly). It follows by the union bound that there are universal constants $c_{3} \cdot c_{4}, c, C$ such that with probability at least $1-C \exp \left(-c n^{2}\right)$,

$$
\begin{equation*}
n^{2} c_{3} \leq \lambda_{n / 2}\left(M^{\top} M\right) \leq \lambda_{1}\left(M^{\top} M\right) \leq n^{2} c_{4} \tag{22}
\end{equation*}
$$

Finally, we require the following lemma.
Lemma 16. Suppose $A \geq X>0$ and $B \geq Y>0$. Then,

$$
\frac{(A+X)^{2}}{B+Y} \geq \frac{A^{2}}{2 B}
$$

Proof. It suffices to show that $2 A^{2} B+4 A B X+2 B X^{2} \geq A^{2} B+A^{2} Y$ which follows directly by $A^{2} B \geq A^{2} Y$ and non-negativity of A, B, X.

With Lemma 16 and 22, we see that with probability at least $1-C \exp \left(-c n^{2}\right)$,

$$
\frac{\|\Lambda\|_{1}^{2}}{\|\Lambda\|_{2}^{2}} \geq \frac{\left(\sum_{i=1}^{n / 2} \lambda_{i}\right)^{2}}{\sum_{i=1}^{n / 2} \lambda_{i}^{2}} \geq c_{6} n
$$

where c_{6} is a constant that depends on the universal constants c_{1}, c_{5}. We remark that it is easy to show that $c_{6}=c_{3}^{2} /\left(2 c_{4}^{2}\right)$ suffices, because

$$
\left(\sum_{i=1}^{n / 2} \lambda_{i}\right)^{2} \geq \frac{n^{6}}{4} c_{3}^{2}=\frac{c_{3}^{2}}{c_{4}^{2}} \cdot \frac{n^{6}}{4} c_{4}^{2} \geq \frac{c_{3}^{2}}{2 c_{4}^{2}} \cdot n \sum_{i=1}^{n / 2} \lambda_{i}^{2}
$$

This completes the proof of Proposition 9 for the case where M is a square matrix.
For a non-square matrix $M \in \mathbb{R}^{n \times d}$, we can without loss of generality assume that $d<n$, and the argument for $n>d$ follows similarly. Again, recall that we define $\lambda_{1} \geq \ldots \lambda_{d}$ as the nonincreasing order of eigenvalues of the matrix $M^{\top} M$. Now, if $d \geq \frac{3}{4} n$, we invoke the following lemma which is a direct consequence of Theorem 1 of [39].

Lemma 17. For any $d \times d$ submatrix D of M, let $\beta_{1} \geq \ldots \geq \beta_{d}$ be the eigenvalues of $D^{\top} D$. Then,

$$
\begin{cases}\lambda_{i} \geq \beta_{i} & \text { for } i=1,2, \ldots, d \\ \beta_{i} \geq \lambda_{i+n-d} & \text { for } i \leq 2 d-n\end{cases}
$$

Lemma 17 and Lemma 15 imply that there exists constants $c_{6}, c_{6}^{\prime}, c_{7}, c_{8}, c_{9}, c^{\prime \prime}, C^{\prime \prime}$ such that $\lambda_{d / 2} \geq$ $\beta_{d / 2} \geq c_{6} d^{2}=c_{6}^{\prime} n^{2}$ with probability at least $1-C^{\prime} \exp \left(-c^{\prime} d^{2}\right)$. On the other hand, we have $\lambda_{1} \leq c_{7} n^{2}$ with probability at least $1-c_{8} \exp \left(-c_{9} n\right)$ from the following classical tail bound (see, e.g., (26])

$$
\begin{equation*}
P\left((\sqrt{n}-\sqrt{d}-t)^{4} \leq \lambda_{d}\left(M^{\top} M\right) \leq \lambda_{1}\left(M^{\top} M\right) \leq(\sqrt{n}+\sqrt{d}-t)^{4}\right) \leq 2 e^{-t^{2} / 2}, \quad t \geq 0 \tag{23}
\end{equation*}
$$

It follows that we can use a similar argument as in the square matrix setting to complete the proof.
Finally, if $d<\frac{3}{4} n$, then our claim follows naturally by a direct analysis using (23).

4.3 Proof of Lemma 11

For any matrix $M \in \mathbb{R}^{n \times d}$, we can find an orthogonal matrix $Q \in \mathbb{R}^{d \times d}$ such that the first row of $M Q$ has only one non-zero component, and is in the first component. Then, the distribution of $M \theta$ is the same as the distribution as $M Q Q^{\top} \theta$. Analyzing the Fisher information $\mathcal{I}_{X}\left(m_{i}^{\top} \theta\right)$ is equivalent to analyzing the Fisher information $\mathcal{I}_{X}\left(\tilde{m}_{\tilde{\theta}}^{\top} \tilde{\theta}\right)$, where we take the transform $\tilde{M}=M Q$ and let \tilde{m}_{i} be the i-th row of \tilde{M}. The random variable $\tilde{\theta}:=Q^{\top} \theta$ follows a Gaussian distribution with covariance $\beta^{2} Q^{\top} Q=\beta^{2} \mathrm{I}_{d}$. Note that the norm of the first row \tilde{m}_{1} is $\left\|\tilde{m}_{1}\right\|_{2}^{2}=\left\|m_{1}^{\top} Q Q^{\top} m_{1}\right\|_{2}^{2}=\left\|m_{1}\right\|_{2}^{2}$.
This implies that we can discuss with the matrix \tilde{M} as our design matrix. We will do so, and drop the tilde sign for simplicity. In other words, we assume that m_{1} is such that only the first component is non-zero.
Let $A=\left[\begin{array}{lll}m_{2} & \ldots & m_{n}\end{array}\right]^{\top}$. Then, the conditional distribution of $A \theta$ given $m_{1}^{\top} \theta=t$ is a multivariate Gaussian with mean and variance given by

$$
\begin{equation*}
\text { mean }=\underbrace{\frac{A m_{1}}{\left\|m_{1}\right\|_{2}^{2}}}_{:=\mu} \cdot t \quad \Sigma=\left(A A^{\top}-\frac{A m_{1} m_{1}^{\top} A^{\top}}{\left\|m_{1}\right\|_{2}^{2}}\right) \beta^{2} \tag{24}
\end{equation*}
$$

Here, we defined the vector μ as $\mu:=A m_{1} /\left\|m_{1}\right\|_{2}^{2}$. We further define the following quantities: we define the function $q(s \mid t)$ as the conditional density of $A \theta=s, s \in \mathbb{R}^{n-1}$ given $m_{1}^{\top} \theta=t$, $t \in \mathbb{R}$, and define $f(x \mid \cdot)$ as the conditional density of X given (\cdot). We define $f^{\prime}\left(\cdot \mid \cdot, m_{1}^{\top} \theta=t\right)$ and $q^{\prime}\left(\cdot \mid m_{1}^{\top} \theta=t\right)$ as the corresponding derivatives with respect to t. Consequently, we may calculate the Fisher information $\mathcal{I}_{X}\left(m_{i}^{\top} \theta=t\right)$ as

$$
\begin{align*}
& \mathcal{I}_{X}\left(m_{i}^{\top} \theta=t\right) \\
& =\int_{\mathcal{X}} \frac{\left[f^{\prime}\left(x \mid m_{1}^{\top} \theta=t\right)\right]^{2}}{f\left(x \mid m_{1}^{\top} \theta=t\right)} d \lambda(x) \\
& \stackrel{(a)}{=} \int_{\mathcal{X}} \frac{\left[\int_{\mathbb{R}^{n-1}}\left(f^{\prime}\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q(s \mid t)+f\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q^{\prime}(s \mid t)\right) d s\right]^{2}}{\int_{\mathbb{R}^{n-1}} f\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q(s \mid t) d s} d \lambda(x) \\
& \stackrel{(b)}{\leq} \int_{\mathcal{X}} \int_{\mathbb{R}^{n-1}} \frac{\left[f^{\prime}\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q(s \mid t)+f\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q^{\prime}(s \mid t)\right]^{2}}{f\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q(s \mid t)} d s d \lambda(x) \\
& \stackrel{(c)}{=} \int_{\mathcal{X}} \int_{\mathbb{R}^{n-1}} f\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) q(s \mid t) \mathbf{T} d s d \lambda(x) \\
& \stackrel{(d)}{=} \frac{L}{s(\sigma)} \cdot \sum_{i=1}^{n} \frac{\left(m_{i}^{\top} m_{1}\right)^{2}}{\left\|m_{1}\right\|_{2}^{4}}+\mu^{\top} \Sigma^{\dagger} \mu \\
& =\frac{L}{s(\sigma)} \cdot \frac{\left\|M m_{1}\right\|_{2}^{2}}{\left\|m_{1}\right\|_{2}^{4}}+\mu^{\top} \Sigma^{\dagger} \mu . \tag{25}
\end{align*}
$$

Here, we define \mathbf{T} as

$$
\mathbf{T}=\left(\frac{x_{1}-\Phi^{\prime}(t)}{s(\sigma)} \cdot \frac{m_{1}^{\top} m_{1}}{\left\|m_{1}\right\|_{2}^{2}}+\sum_{i=2}^{n}\left(\frac{x_{i}-\Phi^{\prime}\left(s_{i-1}\right)}{s(\sigma)} \cdot \frac{m_{i}^{\top} m_{1}}{\left\|m_{1}\right\|_{2}^{2}}\right)+\mu^{\top} \Sigma^{\dagger}(s-\mu t)\right)^{2}
$$

The term Σ^{\dagger} corresponds to the pseudo-inverse of the covariance matrix Σ. Equality (a) is an exchange of integration and differentiation, justified by the Leibniz rule and smoothness of both the normal distribution and the regularity of the generalized linear model. Inequality (b) follows from Cauchy-Schwarz. Equality (c) follows from the observation that $f^{\prime}\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right)$ can be written as

$$
\begin{aligned}
& f^{\prime}\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right) \\
& =f\left(x \mid A \theta=s, m_{1}^{\top} \theta=t\right)\left(\frac{x_{1}-\Phi^{\prime}(t)}{s(\sigma)} \cdot \frac{m_{1}^{\top} m_{1}}{\left\|m_{1}\right\|_{2}^{2}}+\sum_{i=2}^{n}\left(\frac{x_{i}-\Phi^{\prime}\left(s_{i-1}\right)}{s(\sigma)} \cdot \frac{m_{i}^{\top} m_{1}}{\left\|m_{1}\right\|_{2}^{2}}\right)\right)
\end{aligned}
$$

and $q^{\prime}(s \mid t)=q(s \mid t) \mu^{\top} \Sigma^{\dagger}(s-\mu t)$. Equality (d) follows from Lemma 2 and independence between X_{i}, X_{j} for $i \neq j$.
Let's write the SVD of $A=U S V^{\top}$ with $U \in \mathbb{R}^{(n-1) \times(n-1)}, S \in \mathbb{R}^{(n-1) \times d}, V \in \mathbb{R}^{d \times d}$. Further, let's write A in terms of the following block matrix form

$$
A=\left[\begin{array}{ll}
a_{1} & A_{2}
\end{array}\right]
$$

where $a_{1} \in \mathbb{R}^{(n-1) \times 1}$ and $A_{2} \in \mathbb{R}^{(n-1) \times(d-1)}$. Then,

$$
\begin{align*}
\beta^{2} \mu^{\top} \Sigma^{\dagger} \mu & =\frac{1}{\left\|m_{1}\right\|_{2}^{4}} m_{1}^{\top} A^{\top}\left(A\left(I-\frac{m_{1} m_{1}^{\top}}{\left\|m_{1}\right\|_{2}^{2}}\right) A^{\top}\right)^{\dagger} A m_{1} \\
& =\frac{1}{\left\|m_{1}\right\|_{2}^{2}} a_{1}^{\top}\left(A_{2} A_{2}^{\top}\right)^{\dagger} a_{1} . \tag{26}
\end{align*}
$$

Note that the vectors and matrices a_{1}, A_{2} are uniquely determined by M and rotational matrix Q. Finally, we define the function $\Psi_{1}(\cdot)$ (and corresponding $\Psi_{i}(\cdot)$) as

$$
\Psi_{1}(M):=\frac{1}{\left\|m_{1}\right\|_{2}^{2}} a_{1}^{\top}\left(A_{2} A_{2}^{\top}\right)^{\dagger} a_{1}
$$

Now, by virtue of the pseudo-inverse, if $A_{2} A_{2}^{\top}$ is a zero-matrix, $\left(A_{2} A_{2}^{\top}\right)^{\dagger}$ is also a zero matrix and hence $\Psi_{1}(M)=0$. Otherwise, $A_{2} A_{2}^{\top}$ will always have a finite nonnegative eigenvalue, and therefore $\lambda_{\max }\left(\left(A_{2} A_{2}^{\top}\right)^{\dagger}\right)$ is finite and positive. Hence, by the matrix identity $v^{\top} A v \leq \lambda_{\max }(A) \cdot v^{\top} v$ for vector v and positive semidefinite matrix A, we can conclude that the function $\Psi_{1}(M)$ is always finite and non-negative. Finally, we combine with (25) to conclude that

$$
\mathcal{I}_{X}\left(m_{1}^{\top} \theta=t\right) \leq \frac{L}{s(\sigma)} \cdot \frac{\left\|M m_{1}\right\|_{2}^{2}}{\left\|m_{1}\right\|_{2}^{4}}+\frac{1}{\beta^{2}} \Psi_{1}(M)
$$

Taking the expectation over all possible $m_{1}^{\top} \theta=t$ completes the proof. The same reasoning follows through for each $i=2, \ldots, n$. We remark that the analysis of Fisher information $\mathcal{I}_{X}\left(m_{i}^{\top} \theta\right)$ is independent for different $i=2, \ldots, n$, and so the rotations we take in the start of this section for $i=1$ do not affect the rotations for other $i=2, \ldots, n$.

4.4 Proof of Lemma 12

For the Gaussian linear model, we can have a direct analysis of Fisher information due to joint Gaussianity. In particular, we again consider $\theta \sim \mathcal{N}\left(0, \beta^{2} \mathrm{I}_{d}\right)$. We follow the notation from before and define $A=\left[\begin{array}{lll}m_{2} & \ldots & m_{n}\end{array}\right]^{\top}$. Then, consider the joint Gaussian variable $Y:=\left(X, A \theta, m_{1}^{\top} \theta\right)$. The covariance matrix Σ of Y is given by
$\Sigma=\mathbb{E}\left[(Y-\mathbb{E} Y)(Y-\mathbb{E} Y)^{\top}\right]=\left[\begin{array}{cccc}\beta^{2} A A^{\top}+\sigma^{2} \mathrm{I}_{n-1} & \beta^{2} A m_{1} & \beta^{2} A A^{\top} & \beta^{2} A m_{1} \\ \beta^{2} m_{1}^{\top} A^{\top} & \beta^{2}\left\|m_{1}\right\|_{2}^{2}+\sigma^{2} & \beta^{2} m_{1}^{\top} A^{\top} & \beta^{2}\left\|m_{1}\right\|_{2}^{2} \\ \beta^{2} A A^{\top} & \beta^{2} A m_{1} & \beta^{2} A A^{\top} & \beta^{2} A m_{1} \\ \beta^{2} m_{1}^{\top} A^{\top} & \beta^{2}\left\|m_{1}\right\|_{2}^{2} & \beta^{2} m_{1}^{\top} A^{\top} & \beta^{2}\left\|m_{1}\right\|_{2}^{2}\end{array}\right]$.

By joint Gaussianality, from straightforward computation the conditional distribution of X given $m_{1}^{\top} \theta=t$ has mean $\left[\begin{array}{c}A m_{1} /\left\|m_{1}\right\|_{2}^{2} \\ 1\end{array}\right] t$ and covariance

$$
\left[\begin{array}{cc}
\beta^{2} A A^{\top}-\frac{\beta^{2} A m_{1} m_{1}^{\top} A^{\top}}{\left\|m_{1}\right\|_{2}^{2}}+\sigma^{2} \mathrm{I}_{n-1} & 0 \\
0 & \sigma^{2}
\end{array}\right]
$$

and hence, we readily calculate the Fisher information $\mathcal{I}_{X}\left(m_{1}^{\top} \theta=t\right)$ as

$$
\begin{aligned}
\mathcal{I}_{X}\left(m_{1}^{\top} \theta=t\right) & =\left[\begin{array}{ll}
\frac{m_{1}^{\top} A^{\top}}{\left\|m_{1}\right\|_{2}^{2}} & 1
\end{array}\right]\left[\begin{array}{cc}
\beta^{2} A A^{\top}-\frac{\beta^{2} A m_{1} m_{1}^{\top} A^{\top}}{\left\|m_{1}\right\|_{2}^{2}}+\sigma^{2} \mathrm{I}_{n-1} & 0 \\
0 & \sigma^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{A m_{1}}{\left\|m_{1}\right\|_{2}^{2}} \\
1
\end{array}\right] \\
& =\frac{1}{\sigma^{2}}+\frac{m_{1}^{\top} A^{\top}}{\left\|m_{1}\right\|_{2}^{2}}\left(\beta^{2} A A^{\top}-\frac{\beta^{2} A m_{1} m_{1}^{\top} A^{\top}}{\left\|m_{1}\right\|_{2}^{2}}+\sigma^{2} \mathrm{I}_{n-1}\right)^{-1} \frac{A m_{1}}{\left\|m_{1}\right\|_{2}^{2}} .
\end{aligned}
$$

Then, note that

$$
\begin{aligned}
\sigma^{2} \cdot \mathcal{I}_{X}\left(m_{1}^{\top} \theta=t\right) & =1+\frac{1}{\left\|m_{1}\right\|_{2}^{4}} \cdot m_{1}^{\top} A^{\top}\left(\frac{\beta^{2}}{\sigma^{2}} A\left(\mathrm{I}_{d}-\frac{m_{1} m_{1}^{\top}}{\left\|m_{1}\right\|^{2}}\right) A^{\top}+\mathrm{I}_{n-1}\right)^{-1} A m_{1} \\
& \stackrel{(a)}{=} 1+\frac{1}{\left\|m_{1}\right\|_{2}^{4}} \cdot m_{1}^{\top} A^{\top}\left(A W^{\top} W A^{\top}+\mathrm{I}_{n-1}\right)^{-1} A m_{1} \\
& \stackrel{(b)}{=} 1+\frac{1}{\left\|m_{1}\right\|_{2}^{4}} \cdot m_{1}^{\top} A^{\top}\left(\mathrm{I}_{n-1}-A W^{\top}\left(\mathrm{I}_{d}+W A^{\top} A W^{\top}\right)^{-1} W A^{\top}\right) A m_{1} \\
& \stackrel{(c)}{\leq} 1+\frac{1}{\left\|m_{1}\right\|_{2}^{4}} \cdot m_{1}^{\top} A^{\top} A m_{1} \\
& =1+\frac{1}{\left\|m_{1}\right\|_{2}^{4}} \cdot m_{1}^{\top}\left(M^{\top} M-m_{1} m_{1}^{\top}\right) m_{1} \\
& =\frac{\left\|M m_{1}\right\|_{2}^{2}}{\left\|m_{1}\right\|_{2}^{4}} .
\end{aligned}
$$

In (a), the matrix $W \in \mathbb{R}^{d \times d}$ is chosen to satisfy $\frac{\beta^{2}}{\sigma^{2}}\left(\mathrm{I}_{d}-\frac{m_{1} m_{1}^{\top}}{\left\|m_{1}\right\|^{2}}\right)=W^{\top} W$; from taking the SVD of $\frac{\beta^{2}}{\sigma^{2}}\left(I_{d}-\frac{m_{1} m_{1}^{\top}}{\left\|m_{1}\right\|^{2}}\right)$ one can easily find such a matrix W. The inequality (c) follows since

$$
m_{1}^{\top} A^{\top} A W^{\top}\left(I+W A^{\top} A W^{\top}\right)^{-1} W A^{\top} A m_{1} \geq 0
$$

Equation (b) follows from the following Woodbury matrix identity.
Lemma 18 (Woodbury Matrix Identity). For any two matrices $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{k \times n}$, $\left(\mathrm{I}_{n}+\right.$ $U V)^{-1}=\mathrm{I}_{n}-U\left(\mathrm{I}_{k}+V U\right)^{-1} V$.

Finally, taking the expectation over all possible $m_{1}^{\top} \theta=t$ and dividing both sides by σ^{2} concludes the proof. The same reasoning follows through for $i=2, \ldots, n$.

