
Appendix
We first provide additional elements to corroborate our findings: alignment measurement (Section
A), and shallow baselines (Section B). We then discuss the process of adapting the considered
architectures for DFA (Section C), and the issue of weight transport in attention layers (Section D).
We provide some supplementary results for NeRF (Section E), including details of performance on
each scene of each datatset, and a discussion on possible mitigation of DFA shortcomings. Finally,
we outline steps necessary for reproduction of this work (Section F).

A Alignment

Alignment measurement In feedback alignment methods, the forward weights learn to align with
the random backward weights, making the delivered updates useful. This alignment can be quantified
by measuring the cosine similarity between the gradient signal delivered by DFA Biδay and the
gradient signal BP would have delivered WT

i+1δai+1. For learning to occur and DFA to work as
a training method, there must be alignment. This can be measured numerically [24]. Measuring
alignments allows to check whether or not the layers are effectively being trained by DFA, regardless
of performance metrics. We note that any alignment value superior to 0 signifies that learning is
occuring. Values closer to 1 indicate a better match with BP, but small alignment values are sufficient
to enable learning. We report values measured at the deepest DFA layer.

Recommender systems We measure alignment on the Criteo dataset, in the two architectures
featuring non-conventional fully-connected layers: Deep & Cross and AFN. Alignment is measured
after 15 epochs of training, and averaged over a random batch of 512 samples. Results are reported in
table A.1. These alignment measurements indicate that learning is indeed occurring in the cross and
logarithmic layers. High-variance of alignment in the cross layers is unique: it may be explained by
the absence of non-linearity, and account for the difference in performance between BP and DFA on
this architecture–which is higher than on the others.

Table A.1: Alignment cosine similarity (higher is better, standard deviation in parenthesis) of
recommender systems as measured on the Criteo dataset. Learning occurs in both architectures, and
high variance may explain the larger performance gap on Deep & Cross compared to other methods.

Deep & Cross AFN
Alignment 0.40 (0.91) 0.49 (0.08)

Graph convolutions We measure alignment on the Cora dataset, after 250 epochs of training,
averaging values over every sample available–train, validation, and test split included. Results are
reported in Table A.2. We observe high alignment values in all architectures, indicative that learning
is indeed occuring. Slightly lower values in SplineConv and GATConv may be explained by the use
of the Exponential Linear Unit (ELU) instead of the Rectified Linear Unit (ReLU) used as activation
in other architectures.

Table A.2: Alignment cosine similarity (standard deviation in parenthesis) of various graph convolu-
tions architectures as measured on the Cora dataset. These values corroborate that DFA successfully
trains all architectures considered.

ChebConv GraphConv SplineConv GATConv DNAConv
Alignment 0.87 (0.12) 0.77 (0.25) 0.56 (0.22) 0.63 (0.18) 0.92 (0.30)

B Shallow baselines

Shallow learning We compare DFA to BP, but also to shallow learning–where only the topmost
layer is trained. While DFA may not reach the performance level of BP, it should still vastly

16



Figure A.1: Comparisons of Tiny-NeRF trained with BP, DFA, and a shallow approach. Shallow
training is insufficient to learn scene geometry. Lego scene from the NeRF synthetic dataset.

outperform shallow learning: failure to do so would mean that the weight updates delivered by DFA
are useless. On a simple task like MNIST, a shallow baseline may be as high as 90%. However, given
the difficulty of the tasks we consider, the shallow baseline is here usually much lower.

NeRF Because NeRF models are expensive to train–up to 15 hours on a V100–we consider a
simplified setup for the shallow baseline, NeRF-Tiny. This setup operates at half the full resolution
of the training images available, runs for 5000 iterations only, and does away with view-dependant
characteristics. Furthermore, the network is cut down to 3 layers of half the width of NeRF, and
no coarse network is used to inform the sampling. We train this network on the Lego scene of the
NeRF-Synthetic dataset, and compare results.

Figure A.1 presents renders generated by NeRF-Tiny trained with BP, DFA, and a shallow approach.
While BP and DFA delivers similar renders, shallow training fails to reproduce even basic scene
geometry, instead outputting a diffuse cloud of colors. This highlights that while DFA may not reach
a level of performance on-par with BP on NeRF, it nonetheless delivers meaningful updates enabling
the learning of complex features.

Recommender systems Because recommender systems require fine-tuning, we perform the same
hyperparameter search for shallow learning than for DFA and BP. Results are detailed in Table A.3.
Performance of shallow training is always well under BP and DFA–remember that 0.001-level matter
in recommender systems. In particular, in Deep & Cross, where there was the biggest gap between
BP and DFA, the performance of the shallow method is extremely poor, well below the FM baseline.
Finally, it is expected to see that DeepFM recovers more or less the performance of FM even with a
shallow baseline.

Table A.3: Shallow baseline for recommender system models on the Criteo dataset. Performance is
always well below BP and DFA, as expected.

DeepFM Deep&Cross AFN
AUC 0.7920 0.7324 0.7859
Loss 0.4682 0.5010 0.4685

Graph convolutions We use the same hyperparameters as for DFA to produce the shallow baseline
on graph datasets. Results are reported in Table A.4. Performance is always much worse than BP
and DFA. GATConv recovers the best performance: random attention layers may still deliver useful
features [88], as do random convolutions.

We also produce t-SNE visualizations of the hidden layer activations for a BP-trained network
and a shallow-trained one (Figure A.2). t-SNE hyperparameters are identical between all three
visualizations. In the shallow case, the hidden layer is not trained at all and remained in its random
initialized state: in this case, t-SNE is unable to extract any structure.

17



Figure A.2: t-SNE visualization of the hidden layer activations of a two-layer GraphConv trained
on Cora with a shallow approach, BP, and DFA. The shallow approach does not train the hidden
layer and t-SNE fail to extract any information from the randomly initialized layer. DFA and BP
visualizations show identical level of separation between clusters.

Table A.4: Shallow baseline for GCNNs on Cora, CiteSeer, and PubMed [65]. Performance is always
well below BP and DFA.

ChebConv GraphConv SplineConv GATConv DNAConv
Cora 23.3 37.0 39.6 59.4 30.2
CiteSeer 27.4 33.8 30.1 49.8 24.0
PubMed 37.6 44.8 44.2 67.8 42.2

Transformers In the baseline setting (optimizer and hyper-parameters of [63]), a Transformer
trained in the shallow regime yields a perplexity of 428 on WikiText-103. We do not consider
other settings, as the cost of training a Transformer is high and we do not expect any meaningful
improvements–as with NeRF above.

C Adapting architectures to DFA

In general, our implementation of DFA for all architecture follows the spirit of the original paper [19].
We introduce a random feedback Bδay after every non-linearity, and do not use any architecture-
specific structure or operation to build the feedback. For graphs and transformers, we do share the
backward random matrix for all nodes in a graph and for all tokens in a sentence. This is not only
more computationally efficient, but also necessary for proper training: if the random matrix was
different for each node/token, the graph/attention layers would receive incoherent feedbacks coming
from different random matrices and alignment would be impossible. Finally, our global feedback
matrix is initialized from U(−1, 1) and normalized with the square root of the output dimension of
every layer.

NeRF We use an architecture identical to the one used in [39], but based on the effective code
implementation rather than the description in the paper1. During our tests, we have found that
lowering the learning rate to 1.10−4 rather than 5.10−4 works best with DFA.

Recommender systems For all training methods (BP, DFA, and shallow), we have conducted
independent hyperparameter searches. We performed a grid search over the learning rate, from
1.10−4 to 1.10−3 in 1.10−4 steps, as well as over the dropout probability, from 0.1 to 0.5 in 0.1 steps
(where applicable). On DeepFM, this search leads to reduce the learning rate from 3.10−4 with BP
to 5.10−5 with DFA, but to keep the 0.5 dropout rate. On Deep & Cross, we reduce learning rate
from 2.10−4 to 5.10−5, with no dropout in both cases. In AFN, we reduce dropout from 4.10−4 to
3.10−4 and dropout from 0.3 to 0.

Graph convolutions We manually test for a few hyperparameters configuration on the Cora dataset,
focusing on learning rate, weight decay, and dropout. We do not consider architectural changes, such

1https://github.com/bmild/nerf/issues/11

18

https://github.com/bmild/nerf/issues/11


as changing the number of filters or of attention heads. For ChebConv and GraphConv, we reduce
weight decay to 1.10−4 instead of 5.10−4, and set the dropout rate to 0 and 0.1 respectively, instead
of 0.5 with BP. For SplineConv, we find that no change in the hyperparameters are necessary. For
GATConv, we reduce weight decay to 1.10−4 instead of 5.10−4 and reduce dedicated dropout layer
to 0.1 instead of 0.6 but keep the 0.6 dropout rate within the GAT layer. Finally, on DNAConv we
disable weight decay entirely, instead of an original value of 5.10−4, double the learning rate from
5.10−3 to 1.10−2, and disable dropout entirely. In all cases, we share the backward random matrix
across all nodes in a graph.

Transformers The model hyper-parameters were fixed across all of our experiments, except for
the number of attention heads in one case, that we will precise below, and dropout. We tested several
values of dropout probability between 0 and 0.5, but found the original value of 0.1 to perform
best. We manually tested a number of optimizers, optimizer parameters and attention mechanisms.
We tested four combinations of optimizers and schedulers : Adam with the scheduler used in [63],
Adam alone, RAdam [89] alone, and Adam with a scheduler that reduces the learning rate when
the validation perplexity plateaus. We found it necessary to reduce the initial learning rate of Adam
from 1.10−4 to 5.10−5, although it could be set back to 1.10−4 with a scheduler. We tried two values
of β2: 0.98 and 0.999. We also tried to change β1 and observed some small differences that were
not significant enough for the main text. Finally, we tried three attention mechanisms in addition to
the standard multihead scaled dot-product attention: the dense and random (learnable) Synthesizers
of [88], as well as the fixed attention patterns of [90]. The latter needed to be adapted to language
modelling to prevent attending to future tokens, which led us to reduced the number of attention
heads to 4. The backward random matrix is always shared across all tokens and batches.

D Weight transport and attention

We consider an attention layer operating on input x. The queries, keys, and values are respectively
q = xWQ;k = xWK ;v = xWV , and dk is the dimension of the queries and keys. The layer
performs:

Attention(q,k,v) = softmax
(
qkT

√
dk

)
v (4)

When using DFA on attention, we deliver the random feedback to the top of the layer. Accordingly,
to obtain updates to WQ,WK , and WV we still to have to backpropagate through the attention
mechanism itself. This involves weight transport on WV , sacrificing some biological realism for
simplicity. Overall weight transport between layers still does not occur, and updating the layers in
parallel remains possible.

Beside using FA or DFA within the attention layer, alternative mechanisms like the synthesizer
[88]–which uses random attention in place of the query and key system–or fixed attention [90] can
remove the need for weight transport. Implementing these mechanisms in DFA-trained Transformers,
or other attention-powered architectures, will require further research.

E Supplementary NeRF results

Quantitative results We report per-scene scores for each dataset in Table A.5. BP values are taken
from [39]. On three scenes of the synthetic datasets, NeRF-DFA even outperforms past state-of-the-art
methods trained with BP. Note that Neural Volumes (NV) is not applicable to forward-facing view
synthesis–as is required in LLFF-Real–and thus no results are reported.

Qualitative results We report sample renders from the NeRF-Synthetic dataset (Figure A.3) and
the LLFF-Real dataset (Figure A.3), for every scene available. However, we recommend readers to
consult the supplementary video2 to make better sense of characteristics like multi-view consistency
and view-dependent effects (most visible on the LLFF-Real Room scene).

2https://www.youtube.com/watch?v=sinch7013LY

19

https://www.youtube.com/watch?v=sinch7013LY


Possible future directions Despite retranscribing scene geometry in a multi-view consistent way,
NeRF produces renders of a lower quality when trained with DFA instead of BP. In particular, it
struggles to transcribe small-scale details, resulting in "blurry" renders. Moreover, it displays high-
frequency artefacts: not in the scene geometry, but in individual pixels taking values very distant from
their neighborhood. Interestingly, this noise phenomenon is unique to NeRF-DFA: it is not observed
on NeRF-BP with similar PSNR values (achieved during training) or on other methods with similar
or lower PSNR. This leads us to hypothesize this is an aspect unique to DFA, possibly due to the
alignment process. Indeed, DFA creates a bias on the weights, by encouraging them to be "aligned"
with an arbitrary values dependant on the random matrix used. It is possible this could introduce
random noise in the final renders–though we leave a more principled experiment to future research.

To attempt to alleviate this issue, we first consider NeRF-Dual. In NeRF-Dual, we average the
pixel-wise prediction between the fine and coarse network, to attempt to remove some of the noise.
To do so, we first still use the coarse network to create a probability distribution for the hierarchical
sampling. Then, we evaluate again both the coarse and fine networks at the locations informed by
this probability distribution. Compared to vanilla NeRF, this requires an extra batch of evaluation of
the coarse network for all rays–rougly speaking, this increases inference time by 30-50% depending
on the coarse network architecture considered. We note that this is not applied during training, so that
training times remain identical.

Figure A.3 and Figure A.4 showcase comparisons between NeRF and NeRF-Dual trained with DFA
on all scenes. When viewed at high resolution–such as in our supplementary video–the NeRF-Dual
renders are more pleasing, especially for the full scenes. They remove most of the high-frequency
noise, leading to smoother renders. However, this averaging process further blurs small-scale details in
the render. This is especially visible in the NeRF-Synthetic dataset, on scenes like Ficus. Furthermore,
NeRF-Dual introduces novel artefacts in the Mic and Ship scenes, with areas improperly colored
with a violet tint. The cause for these artefacts is unknown, but they show that NeRF-Dual is far from
a silver bullet. The PSNR is also minimally increased, by less than 0.5 per scene. Nevertheless, this
shows some promise in possibilities to allievate the shortcomings of NeRF-DFA. It is possible that
changes to the overall rendering process, or the use of classic image processing techniques, may help
enhance the NeRF-DFA images.

Table A.5: Per-scene PSNR for NeRF DFA and BP against other state-of-the-art methods on the
Nerf-Synthetic and LLFF-Real. DFA performance is fairly homogeneous across each dataset and in
line with the differences in other methods.

NV SRN LLFF NeRF
BP BP BP BP DFA

NeRF-Synthetic 26.05 22.26 24.88 31.01 25.41
Chair 28.33 26.96 28.72 33.00 28.74
Drums 22.58 17.18 21.13 25.01 22.15
Ficus 24.79 20.73 21.79 30.13 25.61
Hotdog 30.71 26.81 31.41 36.18 28.03
Lego 26.08 20.85 24.54 32.54 24.93
Materials 24.22 18.09 20.72 29.62 25.15
Mic 27.78 26.85 27.48 32.91 25.43
Ship 23.93 20.60 23.22 28.65 23.25

LLFF-Real 22.84 24.13 26.50 20.77
Room 27.29 28.42 32.70 24.20
Fern 21.37 22.95 25.17 21.82
Leaves 18.24 19.52 20.92 16.50
Fortress 26.63 29.40 31.16 25.16
Orchids 17.37 18.52 20.36 16.73
Flower 26.63 25.46 27.40 21.55
T-Rex 22.87 24.15 26.80 19.43
Horns 24.33 24.70 27.45 20.75

20



Finally, we also experimented with increasing the capacity of the fine network, by widening its layers
to 512 neurons. We call this architecture NeRF-XL. However, we have not succeeded in getting
PSNR values higher than with vanilla NeRF on DFA. In particular, the training process becomes
much more cumbersome, as multi-GPU parallelism is needed to fit the model. It is possible that
higher network capacity may help learning both the task at hand and to align simultaneously, but
further work is required.

F Reproducibility

Hardware used All main experiments require at most a single NVIDIA V100 GPU with 16GB
of memory to reproduce. Alignment measurement on large architectures (NeRF and Transformers)
require a second identical GPU to keep a copy of the network to evaluate BP gradients.

We estimate that a total of around 10,000 GPU-hours on V100s were necessary for this paper.
Accordingly, we estimate the cloud-computing carbon impact of this paper to be of 1700 kgCO2eq3.

However, without hyperparameter searches, our results can be reproduced with less than 500 GPU-
hours on V100s, with most of that budget going to NeRF and Transformers.

Implementation We use the shared random matrix trick from [24] to reduce memory use in DFA
and enable its scaling to large networks. We use PyTorch [91] for all experiments. For reference
implementation of the methods considered, we relied on various sources. Our NeRF implementation
is based on the PyTorch implementation by Krishna Murthy4, with modifications to allow for proper
test and validation, as well as DFA and multi-GPU support. For recommender systems, we use
the torchfm package5. Finally, we use PyTorch Geometric [64] for all graph operations. Our
Transformer implementation is our own. Our code is available as supplementary material.

NeRF We provide training, testing, and rendering code along with the configurations used to obtain
our results. An example to reproduce our results is given in the supplementary code repository. Given
the computing cost associated with training a NeRF, we also provide our trained models.

Recommender systems We provide bash scripts to reproduce the results in Table 2 and A.3, with
the results of our hyperparameter search. We provide code to reproduce the results in Table A.1.

Graph convolutions We provide the code to reproduce all of our results. Note that the t-SNE
results are not exactly reproducible, as the CUDA implementation used is non-deterministic.

Transformers We provide bash scripts to reproduce Table 5 and the shallow results.

3https://mlco2.github.io/impact#compute
4https://github.com/krrish94/nerf-pytorch
5https://github.com/rixwew/pytorch-fm

21

https://mlco2.github.io/impact#compute
https://github.com/krrish94/nerf-pytorch
https://github.com/rixwew/pytorch-fm


Figure A.3: Sample renders for every scene of the NeRF-Synthetic dataset, for NeRF and NeRF-Dual
trained with DFA.

22



Figure A.4: Sample renders for every scene of the LLFF-Real dataset, for NeRF and NeRF-Dual
trained with DFA.

23


