
Appendices
A Notes on the MDP formulation

This section provides more discussions about the MDP formulation as introduced in Section 2. A faithful
implementation of this formulation is included in our experimental code, which was used to generate all the
results reported in Section 6 and Section F.

The MDP formulation assumes both S and A are countable sets. This is mainly for aligning to the standard
markov chain theory, and also for enabling convenient notations like transition matrix M and summation∑
s,a. Results in this paper are readily generalizable to uncountable action spaces (which still induce countable

transitions after marginalizing over the actions), and may also be generalized to uncountable state spaces based
on the theory of general-state-space markov chains [11].

The MDP formulation also assumes state-based deterministic reward function R. While this formulation was
used in many previous works [15], some literature [23] explicitly assign stochastic rewards to transitions, in the
form of R(r|s, a, s′) = P[rt+1 = r|st = s, at = a, st+1 = s′]. Our reward-function formulation has no loss
of generality here, as one can think of a “state” in our formulation as a (s, r) pair in stochastic-reward models,
with the transition-dependent stochasticity of the reward implicitly captured by the transition function P .

The MDP formulation has replaced the (often included) discounting constant γc with the (often excluded) initial
state distribution ρ0. Similar perspective to “downgrade” the discounting constant was discussed in [23] (Chapter
10.4). As will become evident later in the paper, the discounting constant is neither necessary for the purpose of
defining the problem, nor is it necessary for treating the problem. On the other hand, an explicit specification
of ρ0 is necessary to define the episode-wise performance Jepi as used in all episodic tasks, and will be also
needed to define the terminal states in the formulation of episodic learning process proposed in this paper.

A finite-horizon task can have degenerated steady states if it is formulated as an infinite-horizon MDP with
an imaginary absorbing state s�. In the absorbing MDP formulation, any finite episode will end up with
moving from its terminal state to the absorbing state s�, from there the rollout is trapped in the absorbing state
forever without generating effective reward [23, 27]. As a result, the stationary (and limiting) distribution of the
absorbing MDP of any finite-horizon task concentrates fully and only to the absorbing state, making it of limited
use for designing and analyzing RL algorithms.

The definition of the steady-state performance measure Javg(π)
.
= lim

T→∞
1
T

∑T
t=1 R(st) = Es∼ρπ [R(s)], as

introduced in Section 2, is based on the following ergodic theorem of markov chain.

Proposition 3. In ergodic markov chain M with stationary distribution ρM , let f(s) be any function such
that Es∼ρM [ |f(s)| ] <∞, then the time-average of f converges almost surely to the state-average of f , i.e.,
lim
T→∞

P[ 1
T

∑T
t=1 f(st) = Es∼ρM [f(s)] ] = 1. ([18], Theorem 74)

The value function Q is often specifically called the action-value function. We called the Q-function just value
function because of its symmetric role with policy function π. In their classic form, the value function was
often specifically defined as Qγcπ (s, a)

.
= Es1∼P (s,a),{s≥2}∼Mπ [

∑∞
t=1 R(st) · γt−1

c ] , in which the constant
0 ≤ γc < 1 is called the discounting factor. The specialized definition of Qγcπ entails the specialized version
of Bellman equation Qγcπ (s, a) = Es′∼P (s,a),a′∼π(s′)[R(s′) + γc ·Qγcπ (s′, a′)], and induces the specialized
version of state-value function V γc

π (s)
.
= Ea∼π(s)[Q

γc
π (s, a)].

The product of γ in the general-form value functions (1) was originally proposed as a virtual probabilistic
termination in the agent’s mind [22], but was latter found useful to account for the real episode-boundaries when
the MDP is used to model multi-episode rollouts [30, 32]. Our paper uses product-form value functions for the
same purpose as in [30] and [32]. However, the value functions in our treatment use state-based discounting,
which is probably closer to the method of Figure 1(c) in [32], and was considered an sub-optimal design in
that paper. In fact, [32] attributes much of its main technical contribution to the adoption and analysis of
transition-based discounting, and concludes that “transition-based discounting is necessary to enable the unified
specification of episodic and continuing tasks” (see [32] Section 2.1, Section 6, and Section B). Nevertheless,
despite this major technical disparity, we think the approach as described in Section 3 of our paper actually
aligns with [30] and [32] in terms of the bigger idea that connecting finite episodes into a single infinite-horizon
MDP greatly helps with unifying the episodic and continual formalisms.

B Gradient estimation in RL algorithms

As mentioned in Section 2, many RL algorithms can be interpreted under a common and basic idea that seeks
to find a parameterized policy function π(θ), a surrogate objective J̃ , and an estimator function F , such that
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good policies with respect to the end-to-end performance measure (typically Javg in continual tasks and Jepi in
episodic tasks) can be found by optimizing the surrogate objective J̃ via stochastic gradient methods, where
∇θJ̃(θt) is estimated by averaging F over some data set Dt, that is

∇θJ̃(θt) ≈
1

|Dt|
∑

(s,a)∈Dt

F (s, a, θt). (8)

RL algorithms (policy-based or value-based, on-policy or off-policy) differ in how its policy function π is
parameterized, as well as in how J̃ , F , and D, are constructed. This section briefly reviews the specific forms of
J̃ and F , as well as the prescribed distribution behind Dt, that are used in some popular RL algorithms at the
moment. To simplify notations we write ρθ , Qθ , Vθ , J(θ) for ρπ(θ), Qπ(θ), Vπ(θ), J(π(θ)), respectively, from
now on. As all algorithms discussed in this section use constant discounting, we write γ (instead of γc) for the
discounting constant (only) in this section.

In the policy-based approach[33, 24, 8, 19, 15, 17], the policy π is a function directly differentiable to policy
parameter θ (that is, ∇θπ is computable). In its most classic and popular form, the surrogate objective J̃ is
chosen to be a discounted episodic return Jγepi(θ)

.
= Es0∼ρ0 [V γθ (s0)], whose estimator F is derived as [24]

∇Jepi(θ) ≈ ∇Jγepi(θ) =

∞∑
t=0

γt · E
st∼ρ

(t)
θ

E
at∼π(st;θ)

[
∇ log π(st, at; θ) ·Qγθ (st, at)

]
(9)

=
1

1− γ · E
s∼µγ

θ

E
a∼π(s;θ)

[
∇ log π(st, at; θ) ·Qγθ (s, a)

]
(10)

≈ 1

|D|
∑

(si,ai)∈D

∇ log π(st, at; θ) · Q̂γθ (si, ai). (11)

In (10), µγθ
.
=
∑∞
t=0 ρ

(t)
θ · γ

t(1− γ) is sometimes called the (normalized) discounted visitation distribution, and
Q̂γθ (si, ai) is some approximation of the value Qγθ (si, ai). In above, Fpg(s, a, θ) = ∇ log π(s, a; θ) · Q̂γθ (s, a).

The vanilla REINFORCE algorithm [33, 23] uses one-step data (st, at) from a single rollout to construct the data
set D for each policy update. Modern variants of it employ batch-mode updates [15, 4], using data accumulated
from multiple episodes to construct the data set D. The A3C algorithm [13] uses the same surrogate objective
Jγepi and the same estimator Fpg , but constructs D using data from a small time window (e.g. five consecutive
steps[13]) of multiple parallel and independent rollouts. The PPO algorithm [17] collects data set D in similar
way, but conduct multiple policy updates on a single data set D, thus improving sample efficiency. To keep the
policy updates well directed, PPO uses a slightly different surrogate objective that majorizes Jγepi around the
base parameter θold, an idea first employed in the TRPO algorithm [15]. In all these RL algorithms, the data set
D follows the on-policy distribution of the target policy π(θold), and are thus called on-policy algorithms.

In the value-based approach [31, 12, 29, 6, 9, 5, 7], the agent policy π is parameterized indirectly through
a differentiable function Q. For example, π may be a greedy policy that has zero selection-probability for
all sub-optimal actions with respect to Q(θ), i.e., with π(s, a; θ) = 0 for a 6∈ arg maxāQ(s, ā; θ). In this
case ∇θπ is generally not computable, but ∇θQ is. In the most classic form of this approach, the surrogate
objective J̃ is chosen to be the so-called Projected Bellman Error JPBE(θ)

.
=
∑
s∈S

∑
a∈A δ

2(s, a; θ), where
δ(s, a; θ)

.
= Q(s, a; θ)−Es′∼P (s,a),a′∼π(s′;θold)[R(s′) +γQ(s′, a′; θold)], whose estimator is derived as [12]

∇JPBE(θ) ≈ E
s,a∼U(S×A)

[∇Q(s, a; θ) · δ(s, a; θ)] (12)

≈ 1

|D|
∑

(si,ai)∈D

∇Q(si, ai; θ) · δ̂(si, ai; θ), (13)

where U(S ×A) can be any positive distribution over the states and actions, δ̂(si, ai; θ) is some approximation
of δ(si, ai; θ), and FPBE(s, a, θ) = ∇Q(s, a; θ) · δ̂(s, a; θ).

Similar to the case in policy-based approach, early value-based algorithms such as Q-Learning [31] used one-step
data (st, at) from a single rollout to construct the data set D for each policy update based on (13), while modern
variants of it typically conduct batch-mode updates, again either using multiple-episode data from a single
rollout [12] or using data of small time window from parallel rollouts [13]. The basic surrogate objective
JPBE and its estimator FPBE used in (13) can also be improved in many ways, such as using two (weakly- or
un-correlated) base parameters θold in the δ function [29, 5], and adding entropy-regularization terms [16, 7].
Variants of (13) that are applicable to continuous action spaces were also proposed [9, 6].

In order to comprehensively approximate the positive distribution U(S×A) in (12), these value-based algorithms
typically employ some behavior policy β that is more exploratory than the target policy π, so that the data
set D in (13) follows the on-policy distribution ρβ . To improve sample efficiency and reduce auto-correlation,
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the sample set D used by modern value-based algorithms is usually a mixture of data from multiple behavior
policies βt’s that the agent has been using over time t [12], in which case D follows a mixture of the on-policy
distributions ρβt . As the data set D does not follow the on-policy distribution of the target policy π (or of any
single policy) in this case, algorithms based on such data set D is called off-policy algorithms.

As we can see, all the RL algorithms discussed above, policy-based or value-based, on-policy or off-policy, they
all rely on the capability to obtain high-quality data from rollouts (sequential or parallel) that follows a desired
distribution. Our work mainly concern about the theoretical underpins and proper sampling strategies to generate
the data as required, and is thus complementary to most of the works reviewed above.

C Complete Proofs

C.1 Lemma 1.1

Proof. Due to the homogeneity condition of episodic learning, a reachable state must be reachable in one episode
and from any terminal state. So let ξ be such an admissible episode trajectory under π that go through the state
s, and suppose ξ terminates at an arbitrary terminal state s∗, there must be an admissible episode trajectory ξ′

that starts from s∗ and go through the state s′. Due to the finiteness condition of episodic learning, both ξ and ξ′

take finite steps, so the concatenated trajectory ξξ′ contains a finite path s→ s′ as subsequence.

C.2 Lemma 1.2

Proof. For the purpose of the proof, suppose we roll out Mπ starting from an arbitrary s, so Ts is the time index
of the first reccurrence of s in such a rollout. To make the proof rigorous, we first slightly re-formulate the
probability space of E[Ts]: Imagine again we rolloutMπ starting from s but we terminate the rollout immediately
after the rollout returns to s for the first time. The sample space of such truncated rollout, denoted by Ωs,
consists of all the finite trajectories ξ = (s, . . . , s) in which s shows up only at the first and the last time step.
Let Ts(ξ) denote the recurrence time of s (i.e. the last time step) in a specific ξ ∈ Ωs, the probability to obtain
such a ξ from the truncated rollout is Pξ[ξ] =

∏
t≥1 Mπ(st−1, st), and

∑
ξ∈Ωs

Pξ[ξ] = 1 due to the finiteness
condition of episodic learning process. The expected recurrence time in the truncated rollout is the same as the
one in the full rollout as in the former case we only truncate after the recurrence, so Eζ∼Mπ [Ts] = Eξ∈Ωs [Ts].
In the rest of this proof, when we write E[Ts] we mean Eξ∈Ωs [Ts].

Let ns be the number of episodes completed before time Ts (i.e. by time step Ts − 1), we have E[Ts] =∑
k≥0 P[ns = k] · E[Ts|ns = k].

ns = k means that the first recurrence of s occurs in the (ns + 1)-th episode. Due to the homogeneity condition,
there is a uniform episode-wise hitting probability Pξ[s ∈ ξ] which applies to all the ns + 1 episodes. Denoting
αs = Pξ[s ∈ ξ], we have P[ns = k] = (1− αs)kαs.

On the other hand, as the recurrence time Ts falls in the ns + 1-th episode, it must be upper bounded by the
sum of lengths of all the ns + 1 episodes. Thus, due to the finiteness condition, we have E[Ts|ns = k] ≤
(k + 1) · Eξ |ξ| < +∞.

Putting things together, we have E[Ts] ≤
∑
k≥0(1−αs)kαs · (k+1)Eξ |ξ| = αs Eξ |ξ| ·

∑
k≥0(1−αs)k(k+

1) = αs Eξ |ξ| · 1
α2
s

= Eξ |ξ|/αs. Note that αs > 0 because s is reachable in Mπ .

C.3 Lemma 2.1

Proof. Lemma 1.1 shows thatMπ is irreducible over Sπ , so we only need to identify one aperiodic state s ∈ Sπ ,
which will prove that Mπ is ergodic, then by Proposition 2 the stationary distribution ρπ is also the limiting
distribution over Sπ (and clearly lim

t→∞
ρ(t)
π = 0 = ρπ for unreachable s 6∈ Sπ).

Consider episodes in Mπ that end at some terminal state s1 ∈ S⊥ after n steps. Such an episode can start
from any terminal state, including s1 itself. Let ξ1,1 be the trajectory of such an episode, which is thus a n-step
recurrence of state s1. On the other hand, due to the assumed condition in the lemma, for some such n we can
find episodes with co-prime length m with gcd(n,m) = 1. Let ξ1,2 be such an episode trajectory of length m,
which starts again at s1 but ends at some terminal state s2 ∈ S⊥.

Now if s1 = s2, then ξ1,2 is another recurrence trajectory of s1 which has co-prime length with ξ1,1, thus s1 is
aperiodic. Otherwise if s1 and s2 are different terminal states, then we replace the initial state of ξ1,1 from s1 to
s2, obtaining a third episode trajectory ξ2,1, which starts from s2 and ends at s1 after |ξ2,1| = |ξ1,1| = n steps.
Consider the concatenated trajectory ξ1,2ξ2,1, which is the trajectory of two consecutive episodes that first goes
from s1 to s2 in m steps, then goes from s2 back to s1 in n steps, thus form a (m+ n)-step recurrence of s1.
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As gcd(m+ n, n) = gcd(m,n) = 1 for any n 6= m, we know ξ1,1 and ξ1,2ξ2,1 are two recurrences of s1 with
co-prime lengths, thus s1 is still aperiodic.

C.4 Theorem 2

Proof. Consider an arbitrary admissible episode ξ in the Markov chain Mπ induced by π in the original
learning modelM. Let the episode length |ξ| = n be an arbitrary integer n > 0. ξ is still a possible episode
under π in the perturbed model M+. In particular, from the definition of P+ (in Definition 2) we have
P
ξ∼M+

π
[ξ] = (1− ε) · Pξ∼Mπ [ξ].

On the other hand, in the perturbed model, the trajectory ξ = (s0, s1, . . . , sn) is accompanied with a “detoured”
trajectory ξ′ = (s0, snull, s1, . . . , sn), which is the same with ξ except for the detour steps s0 → snull → s1.
The detour is always possible under any policy π as both P+(snull|s0, a) = ε and P+(s1|snull, a) =
P (s1|s0, a) are action-agnostic and non-zero. So, Mπ admits both ξ and ξ′, which have episode lengths
n and n+ 1, respectively. As gcd(n+ 1, n) = 1 for any positive integer n, we got two episodes with co-prime
lengths now, then from Lemma 2.1 we know M+

π is ergodic and thus has limiting distribution.

C.5 Theorem 3

Proof. As terminal states have γ = 0, the calculation of the
∏
γτ term in Q+

π (s, a) (in Eq. (1)) truncates
at the end of an episode. As the auxiliary state snull is reachable only from a terminal state in the very first
step of an episode, for any other s 6∈ S⊥ the whole transition model remains the same within an episode,
thus Q+

π (s, a) = Qπ(s, a) for s 6∈ S⊥. For s ∈ S⊥, their action values is also unchanged because, with
γ(snull) = 1 and R(snull) = 0, the detour to snull does not lead to any discounting nor any addition reward.
The only effect is the prolonged episode lengths.

On the other hand, we use a coupling argument to prove ρ+
π ∝ ρπ over S. Consider the coupled sampling

procedure shown in Algorithm 1. For ease of notation we use “null” to denote the auxiliary state snull in the
rest of the proof. Consider the status of the variables in the procedure at an arbitrary time t > 0. st is simply a
regular sample of the original model Mπ , so st ∼ ρ(t)

π .

ζ+ is obtained by inserting with probability ε a null state after each terminal state in the original rollout trajectory
ζ = {st}. Comparing with Definition 2, we see that ζ+ follows the perturbed model (M+

π , ρ0) under π. More
accurately, let s+

t denote the state in ζ+ at time t, we have s+
t ∼ ρ

+(t)
π .

zt always equals an old state that ζ has encountered at an earlier time, with ∆t being the time difference, so zt
(as a random variable well defined by Algorithm 1) must follow the same marginal distribution with st−∆t , thus
we have zt ∼ ρ(t−∆t)

π .

Algorithm 1: a coupled sampling procedure
Input: Mπ , ρ0, an i.i.d. sampler random() ∼ U [0, 1]
Output: an infinite tajectory (z0, z1 . . . )

1 sample s0 ∼ ρ0

2 initialize trajectory ζ+ ← (s0)
3 set ∆0 ← 0
4 set z0 ← s0

5 for t = 1, 2, . . . do
6 sample st ∼Mπ(st−1)

7 if s+
t−1 ∈ S⊥ and random() < ε then

8 append (snull, st) to ζ+

9 else
10 append st to ζ+

11 set ∆t ← #snull in subsequence ζ+
0:t−1

12 set zt ← st−∆t

ζ ζ+ ∆t {zt}
s0 s0 0 s0

s1 null 0 s1

s2 s1 1 s1

s3 s2 1 s2

s4 null 1 s3

s5 s3 2 s3

s4

s5

An example running of Algorithm 1. The
table shows a snapshot when t = 5. In the
ζ+ column, “null” denotes snull, and
terminal states (s0, s1, s2, s4) are
highlighted with gray background.

In above we obtained the marginals of each of the three random trajectories maintained in Algorithm 1, next we
consider the coupling effects between them. Observe that when s+

t is not null, it is (also) an old state in ζ with
time index shifted by the number of null states inserted before t (i.e. by t− 1) in previous samplings, which is
the state the procedure uses to assign value for zt. In other words, zt = s+

t conditioned on s+
t 6= null. Therefore,

for any state s ∈ S,

P[zt = s] = P[s+
t = s|s+

t 6= null] =
P[s+

t = s] · P[s+
t = null|s+

t = s]

P[s+
t 6= null]

=
P[s+

t = s] · 1
P[s+

t 6= null]
. (14)
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(14) holds for any t > 0, thus must also hold at limit when t→∞. As s+
t follows the perturbed Markov chain

M+
π , it is known to have limiting distribution as proved in Theorem 2, thus the limits of both P[s+ = s] and

P[s+
t 6= null] at the rhs of (14) exist, which means the limit lim

t→∞
P[zt = s] of the lhs must also exists. Let

cπ = lim
t→∞

P[s+
t 6= null], we have

lim
t→∞

P[zt = s] = lim
t→∞

P[s+
t = s]/cπ = ρ+

π (s)/cπ. (15)

Note that cπ > 0 because ε < 1 by definition.

Now we only need to prove lim
t→∞

P[zt = s] = ρπ . For that purpose, first observe that ∆ gets increased in

Algorithm 1 only if ζ+ entered snull in the last step – only in that case ∆ has a new “null” counted in. In other
words, ∆t+1 = ∆t + 1 if s+

t = null, otherwise ∆t+1 = ∆t.

Now consider the value of zt+1. When s+
t = null, we have zt+1 = st+1−∆t+1 = st+1−∆t−1 = st−∆t . When

s+
t 6= null, we have zt+1 = st+1−∆t+1 = st+1−∆t . Let c(t)π = P[s+

t 6= null] for any t, then for any s ∈ S we
have

P[zt+1 = s] = (1− c(t)π ) · P[st−∆t = s] + c(t)π · P[st+1−∆t = s]. (16)
Due to (15), the two terms P[zt+1 = s] and P[st−∆t = s] = P[zt = s] in (16) have the same limit. Taking both
sides of (16) to limit and re-arranging, yields

cπ · lim
t→∞

P[st+1−∆t = s] = lim
t→∞

P[zt+1 = s]− (1− cπ) lim
t→∞

P[zt = s] = cπ · lim
t→∞

P[st−∆t = s]. (17)

The two ends of (17) gives lim
t→∞

P[st+1−∆t = s] = lim
t→∞

P[st−∆t = s], which holds for all states s ∈ S, thus
by definition of the marginal state distribution we have

lim
t→∞

ρ(t−∆t)
π = lim

t→∞
ρ(t+1−∆t)
π = lim

t→∞
ρ(t−∆t)
π ·Mπ. (18)

The two ends of (18) gives a fixed point of the operator Mπ , for which ρπ is known to be the only solution, so
lim
t→∞

ρ
(t−∆t)
π = ρπ . Further combining with (15), we finally obtain

ρπ(s) = lim
t→∞

P[st−∆t = s] = lim
t→∞

P[zt = s] = ρ+
π (s)/cπ, (19)

for every s ∈ S.

C.6 Theorem 4

Proof idea: Averaging both sides of the Bellman equation (2) over the stationary distribution ρπ and re-arranging
a bit, will give

E
s∼ρπ

[
R(s)

]
= E
s∼ρπ

E
a∼π(s)

[(
1− γ(s)

)
·Qπ(s, a)

]
. (20)

Then substituting γ(s) = 1(s 6∈ S⊥) into (20) will cancel out all the terms corresponding to non-terminal states,
leaving only Vπ(s⊥) at the RHS. See the complete proof in Appendix C.6.

Proof. Averaging the both sides of the Bellman equation (2) over the stationary distribution ρpi and re-arranging,
yields

0 = E
s∼ρπ
a∼π(s)

[
E

s′∼P (s,a)

a′∼π(s′)

[R(s′) + γ(s′)Qπ(s′, a′)]−Qπ(s, a)
]

= E
s∼ρπ
a∼π(s)

E
s′∼P (s,a)

a′∼π(s′)

[
R(s′)

]
+ E

s∼ρπ
a∼π(s)

E
s′∼P (s,a)

a′∼π(s′)

[
γ(s′)Qπ(s′, a′)

]
− E

s∼ρπ
a∼π(s)

[
Qπ(s, a)

]
= E
s∼ρπ

[R(s)] + E
s∼ρπ
a∼π(s)

[γ(s)Qπ(s, a)]− E
s∼ρπ
a∼π(s)

[Qπ(s, a)]

= E
s∼ρπ

[R(s)]− E
s∼ρπ
a∼π(s)

[
(
1− γ(s)

)
Qπ(s, a)]

(21)

Substituting γ(s) = 1(s 6∈ S⊥) into (21) will remove all terms corresponding to non-terminal states, giving

E
s∼ρπ

[R(s)] =
∑
s∈S⊥

ρπ(s) · E
a∼π(s)

[Qπ(s, a)]

=
( ∑
s∈S⊥

ρπ(s)
)
· Vπ(s⊥) =

( ∑
s∈S⊥

ρπ(s)
)
· Jepi

(22)

Then the following proposition turns
∑
s∈S⊥

ρπ(s) into 1/Eζ∼Mπ [T (ζ)] as desired.
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Proposition 4. Eζ∼Mπ [T (ζ)] = 1/
∑
s∈S⊥

ρπ(s)

Proof. Consider the MDPM′ obtained by grouping all terminal states inM into a single “macro-state” s⊥.
Note that in general, grouping terminal states into one will change how the model delivers the rewarding feedback
to the agent, as R(s) may vary between terminal states. However, for the purpose of this proof, the transition
dynamics ofM andM′ under given policy π (that is, the markov chains Mπ and M ′π) will remain the same as
all terminal states are homogeneous in transition probabilities. In particular, the expected episode length of Mπ

will be the same with that of M ′π , from which we obtain

E
ζ∼Mπ

[T (ζ)] = E
ζ∼M′π

[T (ζ)] = E
ζ∼M′π

[Ts⊥(ζ)]

= 1/ρ′(s⊥) = 1/(1−
∑

s∈S\S⊥

ρ′(s))

= 1/(1−
∑

s∈S\S⊥

ρ(s)) = 1/
∑
s∈S⊥

ρπ(s).

(23)

In above E[T ] = E[Ts⊥ ] because s⊥ is the only terminal states in M ′π , and ρ′(s) exists because M′ is
episodic.

Substituting Proposition 4 back to (22) completes the proof.

C.7 Theorem 5

Proof idea: Adding the ∇θ operator over both sides of the Bellman equation (2), then averaging both sides
(including∇) over stationary distribution ρπ , and re-arranging a bit, will give

E
s,a∼ρθ

[(
1− γ(s)

)
∇θQθ(s, a)

]
= E
s,a∼ρθ

[
γ(s)Qθ(s, a)∇θ log π(s, a; θ)

]
. (24)

Then substituting γ(s) = 1(s 6∈ S⊥) into (24) will leave only terminal states at LHS while leaving only
non-terminal states at RHS. For terminal states,∇Qθ(s⊥, a) = ∇Jepi, which brings in the objective. Further
re-arranging will give what we want. See the complete proof in Appendix C.7.

Proof. First consider the quantity Es,a∼ρθ
[
∇θQθ(s, a)

]
in its general form (not necessarily with the specific

γ function as assumed), we have

E
s,a∼ρθ

[
∇θQθ(s, a)

]
= E
s,a∼ρθ

[
∇θ E

s′∼P (s,a)

[
R(s′) + γ(s′)

∑
a′

π(a′|s′; θ)Qθ(s′, a′)
]]

= E
s,a∼ρθ

E
s′∼P (s,a)

[
γ(s′)

∑
a′

∇θ
(
π(a′|s′; θ)Qθ(s′, a′)

)]
= E
s∼ρθ

[
γ(s)

∑
a

(
Qθ(s, a)∇θπ(a|s; θ) + π(a|s; θ)∇θQθ(s, a)

)]
= E
s,a∼ρθ

[
γ(s)

(
Qθ(s, a)∇θ log π(a|s; θ) +∇θQθ(s, a)

)]
= E
s,a∼ρθ

[
γ(s)Qθ(s, a)∇θ log π(a|s; θ)

]
+ E
s,a∼ρθ

[
γ(s)∇θQθ(s, a)

]
.

(25)

Moving the second term in the right-hand side of (25) to the left, yields

E
s,a∼ρθ

[(
1− γ(s)

)
∇θQθ(s, a)

]
= E
s,a∼ρθ

[
γ(s)Qθ(s, a)∇θ log π(a|s; θ)

]
(26)

Now consider the specific γ function with γ(s) = 1 for s 6∈ S⊥, and γ(s) = 0 for s ∈ S⊥. Substituting such
episodic γ function into (26), yields∑

s∈S⊥

ρθ(s) E
a∼π(s;θ)

[
∇θQθ(s, a)

]
=
∑
s 6∈S⊥

ρθ(s) E
a∼π(s;θ)

[
Qθ(s, a)∇θ log π(s, a; θ)

]
. (27)

The left-hand side of (27) is an average of∇θQθ(s, a) over terminal states s ∈ S⊥ and over the policy-induced
actions a ∼ π(s; θ), but note that ∇θQθ(s⊥, a) = ∇θJepi(θ) for any such s ∈ S⊥ and any a ∈ A, which
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means at the left -hand side we are averaging a constant term that can be moved out of the summations (of both
s and a). Further denoting ρθ(S⊥)

.
=
∑
s∈S⊥

ρθ(s), yields

∇θJepi =
1

ρθ(S⊥)
·
∑
s 6∈S⊥

ρθ(s) E
a∼π(s;θ)

[
Qθ(s, a)∇θ log π(s, a; θ)

]
=
ρθ(S \ S⊥)

ρθ(S⊥)
·
∑
s 6∈S⊥

ρθ(s)

ρθ(S \ S⊥)
E

a∼π(s;θ)

[
Qθ(s, a)∇θ log π(s, a; θ)

]
=

1− ρθ(S⊥)

ρθ(S⊥)
· E
s,a∼ρθ

[
Qθ(s, a)∇θ log π(s, a; θ)

∣∣∣ s 6∈ S⊥]
(28)

Finally, due to Proposition 4, 1−ρθ(S⊥)
ρθ(S⊥)

= Eθ[T ]− 1.

The proofs of Theorem 4 and 5 demonstrates a pattern for steady state analysis in episodic tasks: first examine
properties of any RL task under its steady state, then substitute in a specific γ function to derive corollaries
dedicated to episodic tasks as special cases. The same approach could potentially be used in more theoretical
and algorithmic problems of episodic RL.

D On the definition of on-policy distribution in episodic tasks

In page 199 of Sutton and Barto [23], the on-policy distribution of episodic tasks has been defined as µ1
π ,

the normalized undiscounted expected visiting frequency of a state in an episode. We believe the stationary
distribution ρπ identified in this paper helps with better shaping this conception in at least three aspects:

First, defining on-policy distribution directly as the stationary distribution ρπ helps unify the notion of on-policy
distribution across continual and episodic tasks without changing its mathematical identity (as ρπ = µ1

π).

Second, it seems that the conception of on-policy distribution is intended to capture “the number of time
steps sent, on average, in state s in a single episode” (Sutton and Barto [23], page 199). However, note that
there are two possible formal semantics: Eζ [ns]/Eζ [T ] and Eζ [ns/T ] – both capture the intuition of “time
spent on s in an episode on average”, and it is not immediately clear why we should favor normalizing all
episodes uniformly by the average episode length over normalizing in a per-episode manner. In fact, the
ergodic theorem (i.e. Proposition 3) has “favored” the latter semantic, by connecting the per-episode-normalized
reward E[

∑T
t=1 R(st)/T ] to the steady-state reward Es∼ρπ [R(s)]. In comparison, Theorem 4 “favors” the

former semantic, establishing equality between the uniformly-normalized distribution µ1
π and the steady-state

distribution ρπ , which justifies formal semantic of ambiguous intuition in a more principled way.

Lastly, in Sutton and Barto [23] (page 199, Eq. 9.2), the “existence” of the on-policy distribution is defended
by writing µ1

π into the (normalized) solution of a non-homogeneous system of linear equations. But not every
non-homogeneous linear system has a unique solution. Also, the linear-system argument becomes more subtle
when generalizing from finite state spaces (which is assumed in [23]) to infinite state spaces. Our treatment to
the stationary distribution ρπ thus consolidates the concept of on-policy distribution by providing an alternative
theoretical basis (based on the markov chain theory) for this term.

E On what traditional policy-gradient estimators actually compute

As common practice, traditional policy gradient algorithms use the discounted value function but compute the
gradient based on undiscounted data distribution, which neither follows the classic (discounted) policy gradient
theorem nor does it follow the undiscounted steady-state policy gradient theorem. This gap between theory and
practice is well known in the community, and [27] has examined what such “mixed” policy gradient estimation
would obtain in the continual settings. But similar analysis in the episodic case was not done exactly because
of the lack of steady state for the latter. As Thomas [27] noted, “[the stationary-rewared objective] J̄ is not
interesting for episodic MDPs since, for all policies, [the stationary distribution] d̄θ(s) is non-zero for only the
post-terminal absorbing state. So, henceforth, our discussion is limited to the non-episodic setting”.

However, the existence of unique stationary distribution now enables such analysis even for episodic tasks.
Specifically, substituting γ(s) = γc < 1 into (24), which is copied below for convenience

E
s,a∼ρθ

[(
1− γ(s)

)
∇θQγcθ (s, a)

]
= E
s,a∼ρθ

[
γ(s)Qγcθ (s, a)∇θ log π(a|s; θ)

]
,

yields,

E
s,a∼ρθ

[
Qγcθ (s, a)∇θ log π(a|s; θ)

]
=

1− γc
γc

E
s,a∼ρθ

[
∇θQγcθ (s, a)

]
(29)
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The left-hand side is exactly what the classic policy gradient algorithms compute in practice, and the right-hand
side is proportional to the gradient of the steady-state performance if the policy change does not affect the
stationary distribution. This observation is in analogy to what Thomas [27] concluded in the continual setting.

F Experiment details

This section complements Section 6 to report more detailed experimentation settings and results. In all
experiments, the behavior policy is a Gaussian distribution with diagonal covariance, whose mean is represented
by a neural network with two fully-connected hidden layers of 64 units[17]. All model parameters are randomly
initialized. The RoboSchoolBullet benchmark [1] consists of challenging locomotion control tasks that have
been used as test fields for state-of-the-art RL algorithms [7].

F.1 Details of the gradient checking experiments

In the gradient checking experiment reported in Section 6.1, we run a standard stochastic gradient ascent
procedure with the gradient estimated by FSSPG. In each policy-update iteration, we run K independent
rollouts, each lasts for ten episodes. As our focus is to examine the quality of gradient estimation, we set the
batch size K to be one million, so as to have accurate estimate of the ground-truth gradient. We then compute
the AEL term Êθ[T ] − 1 by averaging over the 10 · K episodes, which is very close to the true AEL value
(minus 1) thanks to the very large sample size. The next step is to collect the (st, at) pair at the single step of
t = 3 ·AEL in each of the K rollouts, creating an i.i.d. sample D of size K. The Q̂θ(s, a) term for (s, a) ∈ D
is estimated using the corresponding episode return (from s).

Two gradient estimators are implemented: one follows exactly FSSPG with the AEL term, the other omits
the AEL term from FSSPG. We applied constant learning rate α = 5 × 10−4 to the estimator omitting the
AEL term, which simulated what traditional policy gradient estimators have been doing. The resulted policy
update from this baseline method is thus ∆θ = α · F̄SSPG/(E[T ]− 1). We call such a “standard practice” of
policy-gradient update, the constant learning rate method. It is clear that the “constant learning rate” method is
essentially applying a drifting learning rate α/(E[T ]− 1) to the truly unbiased gradient estimator F̄SSPG.

On the other hand, we applied the same constant learning rate α also to the estimator with the AEL term,
computing policy update as ∆θ = α · F̄SSPG. This is equivalent to applying an AEL-adaptive learning rate
α · (E[T ] − 1) to the traditional policy gradient estimator (that omits the AEL term), and is thus called the
adaptive learning rate method.

We measure the quality of an estimated policy gradient ∇̂θJ by examining the quality of the projected perfor-
mance change ∆̂J as entailed by the estimated gradient. Specifically, let ∆θ = ∇̂θJ · α be the corresponding
policy update of the estimated gradient, the projected performance change from such a policy update is calculated
as ∆̂J = ||∇̂θJ ||2 · ||∆θ||2 = ||∇̂θJ ||22 · α. It is known that for the ∆̂J thus computed, we have ∆̂J = ∆J if
∇̂θJ = ∇θJ , and that the more biased the estimated policy gradient ∇̂θJ is (to the true gradient ∇θJ), the
more biased the projected performance change ∆̂J will be (to the true performance change ∆J). Based on
this principle, we computed, for each policy-update iteration, the projected performance changes from both
the “constant learning rate” method and the “adaptive learning rate” method, and compared them with the true
performance change ∆J = Jnew − Jold whose %90-confidence interval is calculated from the statistics of
episode-wise returns in the 10 ·K independent rollouts, for both the old and new policies.

We conducted the above experimentation procedure to the HopperBulletEnv-v0 environment in RoboSchool-
Bullet, and Figure 1 revealed how quickly the drifting AEL term can hurt the quality of gradient estimation in
this environment. The shaded area illustrates the 90% confidence intervals of the true performance changes
after each policy update. The red dotted curve is the projected performance change from the “constant learning
rate” method which treats the AEL term as “a proportionality constant that can be absorbed in the learning rate”.
We see that this traditional policy gradient method quickly leads to bias after only tens of iterations, as Figure
1(a) shows. The bias becomes quite significant after 100 updates, as Figure 1(b) shows. On the other hand, the
orange curves are the projected performance change by the “adaptive learning rate” method, which follows the
unbiased estimator as given by Theorem 5, and leads to much less bias as Figure 1(a) and Figure 1(b) show.

F.2 Details of the perturbation experiments

Figure 2a shows how the mean value of the marginal distribution for each state dimension evolves over time in
the (multi-episode) learning process of the raw Hopper environment under random policy, without perturbation.
Each mean-value point in the figure is calculated by averaging over 100,000 rollouts, which serves as an index, or
an indicator to the marginal distribution for the corresponding state dimension. Time is normalized to multiples
of Average Episode Length (or AEL), and we see that the marginal distributions of all state dimensions have
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(a) Policy iteration 0− 30 (b) Policy iteration 100− 130

Figure 1: Projected vs actual performance changes in HopperBulletEnv-v0 as quality checking for
policy gradient estimators with the AEL term (corresponding to “adaptive learning rate”) and without
the AEL term (corresponding to “constant learning rate”).

converged at t = 2 ·AEL.We found that similar convergence rates apply to policies at different stage of the RL
training in Hopper. The result shows that perturbation may not be necessary for the Hopper environment.

On the other hand, Figure 2c and 2e show that the marginal distributions may converge much slower in some
other environments. In the Humanoid environment, the marginal distribution of the state dimensions takes more
than 20 ·AEL steps to converge, while in the HalfCheetah environment, the marginal distribution appears to
not converge at all. Both environments indeed have strong periodicity in episode length. Especially, the episode
length of Halfcheetah is actually fixed at exactly 1000 under the random policy (and under any other policy as
well). These observations indicate that perturbation is indeed needed in general, if we want to approximate the
stationary distributions with marginal distributions of a single (or a few) step.

Moreover, Figure 2d and 2f illustrate that the rollouts in Humanoid and HalfCheetah quickly converge to their
respective steady states after applying the recursive perturbation trick with ε = 1− 1/E[T ]. Comparing with
Figure 2c and 2e, respectively, we clearly see the effectiveness of the recursive perturbation on these two popular
RL environments. In both cases the convergence occurs before the step of 3E[T ].

Figure 2b shows that the “3-AEL convergence” observation generalizes to even adversarially synthesized
environments. These environments have fixed episode lengths n and the state st regularly goes over from
0 to n − 1 in an episode. Without perturbation, the marginal distribution ρ(t) of such environment would
concentrate entirely on the single state (t mod n). We then applied the recursive perturbation to state-sweeping
environment with n = 20, 100, 500, 2000. In all cases ε = 1− 1/n, and we run a large number of independent
(and perturbed) rollouts for marginal distribution estimation (to observe the ground-truth distribution, we have to
run 30 million rollouts whenN = 2000). In each of the rollouts we collected the states at t = 3n and t = 3n−1
as two sample points, and we observed the empirical state distribution of all the samples thus obtained, for each
environment (i.e. for each n). As we can see from the figure, even for the completely periodic environment
with fixed episode length n = 2000, the marginal distribution still converges well to the stationary distribution
(which is the uniform distribution over {0 . . . n− 1}) in only 3n steps, after applying the recursive perturbation.

Note that the perturbation with self-loop probability ε = 1− 1/n causes the rollout to stay in the null state for
n− 1 steps per episode on average, which in turn causes half of the samples obtained at a fixed rollout time to
be the null state (if the marginal distribution at that time has already converged). We sampled two consecutive
time steps around 3n to compensate this loss of data, so that the two-step sampling provides roughly the same
amount of “useful samples” as the original batch size (in one-step sampling without perturbation). Again, as
Figure 2b illustrates, the empirical distribution from such two-step sampling approximates the desired uniform
distribution pretty well around t∗ = 3n. In other words, the practical cost for the half amount of samples wasted
in the null state is to just sample one more step in the rollout.

20



(a) HopperBulletEnv-v0 (raw) (b) State-Sweeping (perturbed)

(c) HumanoidBulletEnv-v0 (raw) (d) HumanoidBulletEnv-v0 (perturbed)

(e) HalfCheetahBulletEnv-v0 (raw) (f) HalfCheetahBulletEnv-v0 (perturbed)

Figure 2: The “3-AEL convergence” phenomenon
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