
List-Decodable Mean Estimation via Iterative
Multi-Filtering

Ilias Diakonikolas
Department of Computer Sciences
University of Wisconsin, Madison

Madison, WI 53706
ilias@cs.wisc.edu

Daniel M. Kane
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093

dakane@cs.ucsd.edu

Daniel Kongsgaard
Department of Mathematics

University of California, San Diego
La Jolla, CA 92093

dkongsga@ucsd.edu

Abstract

We study the problem of list-decodable mean estimation for bounded covariance
distributions. Specifically, we are given a set T of points in Rd with the promise
that an unknown α-fraction of points in T , where 0 < α < 1/2, are drawn from
an unknown mean and bounded covariance distribution D, and no assumptions
are made on the remaining points. The goal is to output a small list of hypothesis
vectors such that at least one of them is close to the mean of D. We give the
first practically viable estimator for this problem. In more detail, our algorithm
is sample and computationally efficient, and achieves information-theoretically
near-optimal error. While the only prior algorithm for this setting inherently relied
on the ellipsoid method, our algorithm is iterative and only uses spectral techniques.
Our main technical innovation is the design of a soft outlier removal procedure for
high-dimensional heavy-tailed datasets with a majority of outliers.

1 Introduction

1.1 Background and Motivation

Estimating the mean of a high-dimensional distribution is one of the most fundamental statistical
tasks. The standard assumption is that the input data are independent samples drawn from a known
family of distributions. However, this is rarely true in practice and it is important to design estimators
that are robust in the presence of outliers. In recent years, the design of outlier robust estimators has
become a pressing challenge in several data analysis tasks, including in designing defenses against
data poisoning [BNJT10, BNL12] and in analyzing biological datasets where natural outliers are
common [RPW+02, PLJD10, LAT+08].

The field of robust statistics [HRRS86, HR09] traditionally studies the setting where the fraction of
outliers is a small constant (smaller than 1/2), and therefore the clean data is the majority of the
input dataset. Classical work in this field pinned down the minimax risk of high-dimensional robust
estimation in several settings of interest. In contrast, until relatively recently, our understanding
of even the most basic computational questions was startlingly poor. Recent work in computer
science, starting with [DKK+16, LRV16], gave the first efficient robust estimators for various high-
dimensional statistical tasks, including mean estimation. Since the dissemination of [DKK+16,

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

LRV16], there has been significant research activity on designing efficient robust estimators in a
variety of settings (see, e.g., [DKK+17, BDLS17, DKS16, DKK+18, CDKS18, KKM18, KS17,
HL18, DKS19, DKK+19a, DKK+19b]). The reader is referred to [DK19] for a recent survey of the
extensive recent literature.

The aforementioned literature studies the setting where the clean data (inliers) are the majority of the
input dataset. In this paper, we study the algorithmic problem of high-dimensional mean estimation in
the more challenging regime where the fraction α of inliers is small – strictly smaller than 1/2. This
regime is fundamental in its own right and is motivated by a number of machine learning applications,
e.g., in crowdsourcing [SVC16, SKL17, MV18]).

Mean estimation with a majority of outliers was first studied in [CSV17]. We note that, in the
α < 1/2 regime, it is information-theoretically impossible to estimate the mean with a single
hypothesis. Indeed, an adversary can produce Ω(1/α) clusters of points each drawn from a “good”
distribution with different mean. Even if the algorithm could learn the distribution of the samples
exactly, it would still not be able to identify which cluster is the correct one. Hence, the definition of
“learning” must be relaxed. In particular, the algorithm should be allowed to return a small list of
hypotheses with the guarantee that at least one of the hypotheses is close to the true mean. This is the
model of list-decodable learning [BBV08]. It should be noted that in list-decodable learning, it is
often information-theoretically necessary for the error to increase as the fraction α goes to 0.

[CSV17] gave an algorithm for list-decodable mean estimation on Rd under the assumption that
the inliers are drawn from a distribution D with bounded covariance, i.e., Σ � σ2I . The [CSV17]
algorithm has sample complexity n = Ω(d/α), runs in poly(n, d, 1/α) time, and outputs a list
of O(1/α) hypotheses one of which is within `2-distance Õ(α−1/2) from the true mean of D.
The sample complexity of the aforementioned algorithm is optimal, within constant factors, and
subsequent work [DKS18] showed that the information-theoretically optimal error is Θ(1/α1/2)
(upper and lower bound). Importantly, the [CSV17] algorithm relies on the ellipsoid method for
convex programming. Consequently, its computational complexity, though polynomially bounded, is
impractically high.

The main motivation for the current paper is to design a fast, practically viable, algorithm for
list-decodable mean estimation under minimal assumptions. In the presence of a minority of outliers
(i.e., for α > 1/2), the iterative filtering method of [DKK+16, DKK+17] is a fast and practical
algorithm which attains the information-theoretically optimal error under only a bounded covariance
assumption. More recent work has also obtained near-linear time algorithms in this setting [CDG18a,
DL19, DHL19]. In the list-decodable setting, however, progress on faster algorithms has been
slower. Prior to the current work, the ellipsoid-based method of [CSV17] was the only known
polynomial-time algorithm for mean estimation under a bounded covariance assumption. We note
that a number of more recent works developed list-decoding algorithms for mean estimation, linear
regression, and subspace recovery using the SoS convex programming hierarchy [KS17, KKK19,
RY20a, BK20, RY20b]. In a departure from these convex optimization methods, [DKS18] obtained
an iterative spectral list-decodable mean algorithm under the much stronger assumption that the good
data is drawn from an identity covariance Gaussian. At a high-level, in this work we provide a broad
generalization of the [DKS18] algorithm and techniques to all bounded covariance distributions.

1.2 Our Contributions

We start by defining the problem we study.

Definition 1.1 (List-Decodable Mean Estimation.). Given a set T of n points in Rd and a parame-
ter α ∈ (0, 1/2) such that an α-fraction of the points in T are i.i.d. samples from a distribution D
with unknown mean µ and unknown covariance Σ � σ2I , we want to output a list of s = poly(1/α)
candidate vectors {µ̂i}i∈[s] such that with high probability we have that mini∈[s] ‖µ̂i − µ‖2 is small.

Some comments are in order: First, we emphasize that no assumptions are made on the remaining
(1− α)-fraction of the points in T . These points can be arbitrary and may be chosen by an adversary
that is computationally unbounded and is allowed to inspect the set of inliers. The information-
theoretically best possible size of the hypotheses list is s = Θ(1/α). Moreover, if we are given a
list of s = poly(1/α) hypotheses one of which is accurate, we can efficiently post-process them
to obtain an O(1/α)-sized list with nearly the same error guarantee, see, e.g., Proposition B.1 of

2

[DKS18] and Corollary 2.16 of [Ste18]. For completeness, in Appendix C, we provide a simple and
self-contained method.

In this work, we give an iterative spectral algorithm for list-decodable mean estimation under only a
bounded covariance assumption that matches the sample complexity and accuracy of the previous
ellipsoid-based algorithm [CSV17] while being significantly faster and potentially practical.

Theorem 1.2 (Main Algorithmic Result). Let T be a set of n = Ω(d/α) points in Rd with the
promise that an unknown α-fraction of points in T , 0 < α < 1/2, are drawn from a distribution D
with unknown bounded covariance Σ � σ2I . There is an algorithm that, on input T and α, runs in
Õ(n2d/α2) time and outputs a list of O(1/α2) hypothesis vectors such that with high probability at
least one of these vectors is within `2-distance O(σ log(1/α)/

√
α) from the mean of D.

Discussion Before we proceed, we provide a few remarks about the performance of our new
algorithm establishing Theorem 1.2. First, we note that the sample complexity of our algorithm is
O(d/α), which is optimal within constant factors, and its error guarantee is O(σ log(1/α)/

√
α),

which is optimal up to the O(log(1/α)) factor. We now comment on the running time. Our algorithm
is iterative with every iteration running in near-linear time Õ(nd). The dominant operation in a
given iteration is the computation of an approximately largest eigenvector/eigenvalue of an empirical
covariance matrix, which can be implemented in Õ(nd) time by power iteration. The overall running
time follows from a worst-case upper bound of O(n) on the total number of iterations. We expect
that the number of iterations will be much smaller for reasonable instances, as has been observed
experimentally for analogous iterative algorithms for the large α case [DKK+17, DKK+19a]. Finally,
as we show in Appendix C, there is a simple and efficient post-processing algorithm that outputs a
list of size O(1/α) without affecting the runtime or error guarantee by more than a constant factor.

Application to Learning Mixture Models As observed in [CSV17], list-decoding generalizes the
problem of learning mixtures. Specifically, a list-decodable mean algorithm for bounded covariance
distributions can be used in a black-box manner (by treating a single cluster as the set of inliers) to
obtain an accurate clustering for mixtures of bounded covariance distributions. If each distribution
in the mixture has unknown covariance bounded by σ2I , and the means of the components are
separated by Ω̃(σ/

√
α), we can perform accurate clustering, even in the presence of a small fraction

of adversarial outliers. This implication was shown in [CSV17]. Our new algorithm for list-decodable
mean estimation gives a simpler and faster method for this problem.

Technical Overview Here we describe our techniques in tandem with a comparison to prior work.

The “filtering” framework [DKK+16, DKK+17] works by iteratively detecting and removing outliers
until the empirical variance in every direction is not much larger than expected. If every direction has
small empirical variance, this certifies that the the empirical mean is close to target mean. Otherwise,
a filtering algorithm projects the points in a direction of large variance and removes (or reduces the
weight of) those points whose projections lie unexpectedly far from the empirical median in this
direction. In the small α setting, the one-dimensional “outlier removal” procedure is necessarily more
complicated. For example, the input distribution can simulate a mixture of 1/α many Gaussians
whose means are far from each other, and the algorithm will have no way of knowing which is the
real one. To address this issue, one requires a more elaborate method, which we call a multifilter.
A multifilter can return several (potentially overlapping) subsets of the original dataset with the
guarantee that at least one of these subsets is substantially “cleaner”. This idea was introduced
in [DKS18], who gave a multifilter for identity covariance Gaussians with error Õ(α−1/2). The
multifilter of [DKS18] makes essential use of the fact that the covariance of the inliers is known and
that the Gaussian distribution has very strong concentration. In this work, we build on [DKS18] to
develop a multifilter for bounded covariance distributions.

We start by describing the Gaussian multifilter [DKS18]. Suppose we have found a large variance
direction. After we project the data in such a direction, there are two cases to consider. The first is
when almost all of the samples lie in some relatively short interval I . In this case, the target mean
must lie in that interval (as otherwise an approximately α/2 fraction of the good samples must lie
outside of this interval), and then samples that lie too far from this interval I are almost certainly
outliers. The other case is more complicated. If α < 1/2, there might be multiple clusters of points
which contain an α fraction of the samples and could reasonably contain the inliers. If some pair of
these clusters lie far from each other, we might not be able to reduce the variance in this direction

3

simply by removing obvious outliers. In this case, [DKS18] find a pair of overlapping intervals I1
and I2 such that with high probability either almost all the inliers lie in I1 or almost all the inliers lie
in I2. The algorithm then recurses on both I1 and I2. To ensure that the complexity of the algorithm
does not blow-up with the recursion, [DKS18] require that the sum of the squares of the numbers of
remaining samples in each subinterval is at most the square of the original number of samples.

At a high-level, our algorithm follows the same framework. However, there were several key places
where [DKS18] used the strong concentration bounds of the Gaussian assumption that we cannot use
in our context. For example, in the case where most of the samples are contained within an interval
I , Gaussian concentration bounds imply that almost all of the good samples lie within distance
O(
√

log(1/α)) of the interval I , and therefore that almost all samples outside of this range will
be outliers. This is of course not true for heavy-tailed data. To address this issue, we employ a
soft-outlier procedure that reduces the weight of each point based on its squared distance from I . The
analysis in this case is much more subtle than in the Gaussian setting.

The other more serious issue comes from the multi-filter case. With Gaussian tails, so long as the
subintervals I1 and I2 overlap for a distance of O(

√
log(1/α)), this suffices to guarantee that the

correct choice of interval only throws away a poly(α)-fraction of the good points. As long as at least
an α-fraction of the total points are being removed, it is easy to see that this is sufficient. From there
it is relatively easy to show that, unless almost all of the points are contained in some small interval,
some appropriate subintervals I1 and I2 can be found. For bounded covariance distributions, our
generalization of this case is more complicated. In order to ensure that the fraction of good samples
lost is small, even if the true mean is exactly in the middle of the overlap between I1 and I2, we might
need to make this overlap quite large. In particular, in contrast to the Gaussian case, we cannot afford
to ensure that some small poly(α) fraction of the inliers are lost. In fact, we will need to adapt the
fraction of inliers we are willing to lose to the number of total points lost and ensure that the fraction
of inliers removed is substantially better than the fraction of outliers removed (namely, by a log(1/α)
factor). This step is necessary for our new analysis of the behavior of the algorithm under repeated
applications of the multifilter. With this careful tuning, we can show that there will be an appropriate
pair of intervals, unless the distribution of points along the critical direction satisfy inverse-quadratic
tail bounds. This is not enough to show that there is a short interval I containing almost all of the
points, but it will turn out to be enough to show the existence of an I containing almost all of the
points for which the variance of the points within I is not too large. This turns out to be sufficient for
our analysis of the other case.

Concurrent and Independent Work Contemporaneous work [CMY20], using different tech-
niques, gave an algorithm for the same problem with asymptotic running time Õ(nd/αc), for some
(unspecified) constant c. At a high-level, the algorithm of [CMY20] builds on the convex optimization
frameworks of [DKK+16, CDG18b], leveraging faster algorithms for solving structured SDPs.

2 Preliminaries

Notation We write lg = log2. For an interval I = [a, b] = [t − R, t + R], we will write
2I = [t− 2R, t+ 2R]. For a vector v, ‖v‖2 denotes its Euclidean norm. For a symmetric matrix M ,
‖M‖2 denotes its spectral norm. We will use � to denote the Loewner ordering between matrices,
i.e., for symmetric matrices A,B, we will write A � B to denote that B −A is positive semidefinite.

For a set T ⊂ Rd we will often attach a weight function w : T → [0, 1] and write w(R) =∑
x∈R w(x) for any subset R ⊆ T . We will furthermore denote weighted mean, weighted covariance

matrix, and weighted variance (in a given direction v) with respect to the weight function w by
µw(R) = Ew[R] = 1

w(R)

∑
x∈R w(x)x, Covw[R] = 1

w(R)

∑
x∈R w(x)(x−µw(R))(x−µw(R))T ,

and Varw[v ·R] = 1
w(R)

∑
x∈R w(x)(v · x− v · µw(R))2 for a subset R ⊆ T . When the underlying

weight function w assigns the same weight on each point, we will drop the index w from these
quantities. For example, we will use µ(R) and Cov[R] for the empirical mean and covariance under
the uniform distribution on the set R. Furthermore, we will write w-Pr for the weighted probability
with respect to the weight function w and Pr for the usual (counting) probability on sets.

4

3 Algorithm and Analysis

In Section 3.1, we give a deterministic condition under which our algorithm succeeds and bound the
number of samples needed to guarantee that this condition holds with high probability. In Section 3.2,
we present our basic multifilter. In Section 3.3, we show how to use the basic multifilter to obtain our
list-decoding learning algorithm. We conclude with some open problems in Section 4.

Due to space limitations, some proofs are deferred to Appendix A. In Appendix B, we analyze the
running time of our algorithm. Finally, in Appendix C, we show how to efficiently post-process the
output of our main algorithm.

3.1 Setup and Main Theorem

We define the following deterministic condition on the set of clean samples.

Definition 3.1 (Representative set). Let D be a distribution on Rd with mean µ and covariance
Σ � I . A set S ⊂ Rd is representative (with respect to D) if ‖Cov[S]‖2 ≤ 1 and ‖µ(S)− µ‖2 ≤ 1.

Our algorithm requires the following notion of goodness for the corrupted set T .

Definition 3.2 (Good set). Let D be a distribution on Rd with mean µ and covariance Σ � I , and
let 0 < α < 1/2. A set T ⊂ Rd is said to be α-good (with respect to D) if there exists S ⊆ T which
is representative (with respect to D) and satisfies |S| ≥ α|T |.

In Sections 3.2 and 3.3, we prove the following theorem:

Theorem 3.3 (Main Theorem). Suppose that T is α-good with respect to a distribution D on Rd.
Then the algorithm LIST-DECODE-MEAN runs in time Õ(|T |2d/α2) and outputs a list of O(1/α2)
hypothesis vectors at least one of which has `2-distance O(log(1/α)/

√
α) from the mean of D.

Sample Complexity. The deterministic conditions of Definitions 3.1 and 3.2 hold with high prob-
ability if the set T has size n = |T | = Ω(d/α). Note that T contains a subset G of αn ≥ d i.i.d.
samples from the distribution D. The following lemma shows that with high probability G contains a
subset S such that |S| ≥ |G|/2 that satisfies the properties of a representative set, up to rescaling.

Lemma 3.4 (see, e.g., Proposition 1.1 in [CSV17]). Let D be a distribution on Rd with covariance
matrix Σ � σ2I , σ > 0, and G be a multiset of n ≥ d i.i.d. samples from D. Then, with high
probability, there exists a subset S ⊆ G of size |S| ≥ |G|/2 such that ‖Cov[S]‖2 ≤ c σ2 and
‖µ(S)− µ‖2 ≤ c σ, where c > 1 is a universal constant independent of D.

We henceforth condition on the conclusions of Lemma 3.4 holding. Note that by dividing each of
our samples by c σ we obtain a representative set S with respect to the distribution (1/(cσ))D. Also
note that the corrupted set T will be α/2-good. By Theorem 3.3, we thus obtain a list of hypothesis
one of which has `2-error O(log(1/α)/

√
α). By rescaling back, we get an estimate of the true mean

µ of D within `2 error O(σ log(1/α)/
√
α), as desired. This proves Theorem 1.2.

Throughout this section, we will denote by T the initial corrupted set of points and by S ⊂ T a
representative set with |S| ≥ α|T |.

3.2 Basic Multifilter

The basic multifilter is a key subroutine of our algorithm. Intuitively, it takes as input a large variance
direction and, under certain assumptions, splits the dataset into at most two (overlapping) datasets
at least one of which is cleaner. Since we are employing a soft outlier removal procedure, the real
version of the routine starts from a weight function on the dataset T and produces one or two weight
functions on T with desirable properties.

In the body of this subsection, we show that the BASICMULTIFILTER algorithm has certain desirable
properties that we will later use to establish correctness of our main algorithm.

The following notation will facilitate our analysis. We will denote ∆w(S) = w(S) − wnew(S) to
describe the change of weights during a step of the BASICMULTIFILTER algorithm.

5

Algorithm BASICMULTIFILTER
Input: unit vector v ∈ Rd, T ⊂ Rd and weight function w on T , 0 < α < 1/2

1. Let C > 0 be a sufficiently large universal constant.
2. Let a ∈ R be maximal such that w({x ∈ T : v · x < a}) ≤ αw(T)/8 and b be minimal

such that w({x ∈ T : v · x > b}) ≤ αw(T)/8. Let I = [a, b].
3. If Varw[v · T ∩ 2I] ≤ C · log(2/α)2, then

(a) If Varw[v · T] ≤ 2C · log(2/α)2, return “YES”.
(b) Let f(x) = mint∈[a,b]|v · x− t|2, and redefine the weight of each x ∈ T by

wnew(x) =
(

1− f(x)

maxx∈T f(x)

)
w(x).

(c) Return {(T,wnew, α)}.
4. If I does not satisfy the condition of Step 3., then

(a) Find t ∈ R and R > 0 such that the sets T1 = {x ∈ T : v · x ≥ t − R} and
T2 = {x ∈ T : v · x < t+R} satisfy

w(T1)2 + w(T2)2 ≤ w(T)2 , (1)

and

min
(

1− w(T1)

w(T)
, 1− w(T2)

w(T)

)
≥ 48 lg(2/α)

R2
. (2)

Define two weight functions w(1) and w(2) on T by multiplying the indicator functions
of T1 and T2 with the weight function w.

(b) Return {(T,w(1), α), (T,w(2), α)}.

Our first lemma bounds the relative change in the weight of S and T if the BASICMULTIFILTER
algorithm outputs a single weight function wnew in Step 3.(c).
Lemma 3.5. If T is α-good and w(S) ≥ 3|S|/4, then after Step 3.(b) of BASICMULTIFILTER we
have ∆w(S)

w(S) ≤
∆w(T)
w(T) ·

1
24 lg(2/α) .

Proof (sketch). We give a proof sketch without the constant of 24. For the full proof, see Appendix A.

Firstly, we note that v · µw(S) ∈ [a−O(1), b+O(1)]. This is because if, say µw(S) was much less
than a, then since all but a small fraction of the points in S have v · (x− µw(S)) = O(1), this would
imply that most of the points of S are less than a. But since all but a 1/4-fraction of the points of S
remain under weight w and since they account for at least an α fraction of the weight of T , this would
imply that more than an α/8-fraction of the weight of T was less than a, which is a contradiction.

Given this, we have that f(x) = O(1 + (v · (x − µw(S)))2) and therefore the average value of f
over S is O(1). On the other hand,

Varw[v · T] ≤ Varw[v · T ∩ 2I] +O(Ew[f(T)]) .

This implies that since Varw[v · T] is large, Ew[f(T)] is Ω(log2(1/α)).

Finally, since we are downweighting point x by an amount proportional to f(x), it is easy to see that
∆w(T)/w(T) is proportional to Ew[f(T)], while ∆w(S)/w(S) is proportional to Ew[f(S)], and
the lemma follows. �

Our second lemma says that conditions (1) and (2) in Step 4.(a) of the algorithm are satisfiable.
Lemma 3.6. If BASICMULTIFILTER reaches Step 4.(a), there exist t ∈ R and R > 0 such that the
conditions (1) and (2) are satisfied.

Proof. For t ∈ R andR > 0, we will use the notation g(t+R) = 1−w(T2)
w(T) and gc(t−R) = 1−w(T1)

w(T)

to describe the tails of the weight distribution. Thus, (1) and (2) become

(1− gc(t−R))2 + (1− g(t+R))2 ≤ 1 (3)

and
min(gc(t−R), g(t+R)) ≥ 48 lg(2/α)/R2 . (4)

6

Now assume for contradiction that we cannot find any t ∈ R and R > 0 satisfying both (3) and (4),
i.e., either (3) fails or (4) fails. Let med = medianw(v · T).

Let x = x0 > med and let γ = γ0 = g(x0), and note that γ0 ≤ 1/2. We want to show that

x ≤ med +O
(√

lg(2/α)/γ
)
. (5)

First find t0 and R0 such that x0 = t0 +R0 and γ0 = 48 lg(2/α)/R2
0, i.e., R0 =

√
48 lg(2/α)/γ0.

Then either t0−R0 ≤ med or t0−R0 > med. If t0−R0 ≤ med, then x = t0 +R0 ≤ med + 2R0

and we indeed get (5). On the other hand, if t0 −R0 > med we see that gc(t0 −R0) ≥ 1/2 ≥ γ0,
so (4) is satisfied. Thus, (3) must fail (by assumption), i.e., g(t0 − R0)2 + (1 − γ0)2 > 1, since
g(t0 −R0) = 1− gc(t0 −R0). So

g(t0 −R0)2 > 1− (1− γ0)2 = 2γ0 − γ2
0 = γ0 + (γ0 − γ2

0) > γ0,

and thus
g(x− 2R0) = g(x0 − 2R0) = g(t0 −R0) >

√
γ0 = γ1/2.

Now let x1 = x0 − 2R0 > med and let γ1 = g(x1) ≤ 1/2. Note that γ1 >
√
γ0. By finding t1 and

R1 as before and following the same argument, we get that

g(x− 2R0 − 2R1) = g(x1 − 2R1) = g(t1 −R1) >
√
γ1 > γ1/22

.

Continuing like this, we inductively get that

g(xn) = g
(
x− 2

n−1∑
i=0

Ri

)
>
√
γn−1 > γ1/2n

,

as long as xn−1 = x−2
∑n−2
i=0 Ri > med. Hence γn = g(xn) > γ1/2n

, and thus xlg lg(1/γ) < med
since g(xlg lg(1/γ)) > 1/2. Therefore

med > xlg lg(1/γ) = x− 2
lg lg(1/γ)−1∑

i=0

Ri = x− 2
√

48 lg(2/α)
lg lg(1/γ)−1∑

i=0

1
√
γi

≥ x−O
(√

lg(1/α)
lg lg(1/γ)∑
i=1

1

γ1/2i

)
≥ x−O

(√lg(2/α)
√
γ

)
,

i.e., x ≤ med + O
(√

lg(2/α)/γ
)
. Now writing γ = g(med + t), for t > 0, the above gives that

t ≤ O
(√

lg(2/α)/γ
)

, and thus

w-Pr
y∈T

[v · y > med + t] = O(g(med + t)) = O(γ) ≤ O
(

lg(2/α)/t2
)
.

A very similar proof yields the analogous result for gc(m − t), so w-Pry∈T [|v · y −med| > t] ≤
O
(

lg(2/α)/t2
)
. Letting a and b be as in Step 2. of BASICMULTIFILTER, we note that

g(b− 1) = w
(
{x ∈ T : v · x ≥ b− 1}

)
/w(T) ≥ α/8

by the definition of b, so

b− 1 ≤ med +O
(√

lg(2/α)/
√
α/4

)
≤ med +O(1/α) ,

and thus b ≤ med + O(1/α). An analogous argument yields a similar result for gc(a), so 2I ⊂
[med−O(1/α),med +O(1/α)].

Finally we note that w({y ∈ T : v · y /∈ 2I}) ≤ αw(T)/4 ≤ w(T)/2, so

w
(
{y ∈ T : v · y ∈ 2I}

)
= w(T)− w

(
{y ∈ T : v · y /∈ 2I}

)
≥ w(T)− w(T)/2 = w(T)/2 ,

and thus

w-Pr
y∈{z∈T :v·z∈2I}

[|v · y −med| > t] =
w
(
{y ∈ T : |v · y −med| > t and v · y ∈ 2I}

)
w
(
{y ∈ T : v · y ∈ 2I}

)
≤
w
(
{y ∈ T : |v · y −med| > t}

)
w(T)/2

= 2w-Pr
y∈T

[|v · y −med| > t] .

7

Hence, we have that

Varw[v · T ∩ 2I] ≤ 2

∫ O(1/α)

0

2t · w-Pr
y∈T

[|v · y −med| > t]dt ≤ O(lg(2/α))

∫ O(1/α)

1

(1/t)dt

= O(log(2/α)2).

Thus, if conditions (1) and (2) were not satisfiable, the condition of Step 3. in BASICMULTIFILTER
would have been satisfied. This is a contradiction and completes the proof of Lemma 3.6. �

Our next lemma bounds the relative change in the weight of S and T if the BASICMULTIFILTER
algorithm outputs two weight functions in Step 4.(b). See Appendix A for the proof.
Lemma 3.7. If T is α-good and w(S) ≥ 3|S|/4, then after Step 4.(b) of BASICMULTIFILTER we

have that one of w(1) and w(2) will satisfy ∆(i)w(S)
w(S) ≤ ∆(i)w(T)

w(T) ·
1

24 lg(2/α) , where ∆(i)w = w−w(i)

for i = 1, 2.

Combining Lemmas 3.5 and 3.7, we obtain the following corollary.
Corollary 3.8. If T is α-good and w(S) ≥ 3|S|/4, then in each iteration of BASICMULTIFILTER
returning new weight functions, for at least one of the new weight functions returned, we have that

∆w(S)

w(S)
≤ ∆w(T)

w(T)

1

24 lg(2/α)
. (6)

The following definition facilitates the analysis in the next subsection.
Definition 3.9 (Nice iteration). We will call an iteration of BASICMULTIFILTER from the old weight
function w to the new weight function w′ such that (6) is satisfied a nice iteration.

3.3 Main Algorithm

Our main algorithm is presented in pseudocode below.

Algorithm MAINSUBROUTINE
Input: T ⊂ Rd and weight function w on T , 0 < α < 1/2

1. Let ΣT,w = Covw[T] be the weighted covariance matrix.
2. Let λ be the top eigenvalue and v an associated unit eigenvector of ΣT,w. Compute

approximations λ∗ and v∗ to these satisfying (v∗)TΣT,wv
∗ = λ∗ and λ ≥ λ∗ ≥ λ/2.

3. Run BASICMULTIFILTER(v∗, T, w, α).

(a) If it returns “YES”, then return µw(T).
(b) If it returns a list {(T,w′, α)}, then return the list containing the elements of
{(T,w′, α)} with w′(T) ≥ α|T |/2.

Algorithm LIST-DECODE-MEAN
Input: T ⊂ Rd, 0 < α < 1/2

1. Let L = {(T,w(0), α)}, where w(0)(x) = 1 for all x ∈ T , and let M = ∅.
2. While L 6= ∅:

(a) Get the first element (T,w, α) from L and remove it from the list.
(b) Run MAINSUBROUTINE(T,w, α).

(a) If this routine returns a vector, then add it to M .
(b) If it returns a list of (T,w′, α), append that to L.

3. Output M as a list of guesses for the target mean µ of D.

Our first lemma establishes that, under certain conditions, if MAINSUBROUTINE returns a hypothesis
vector, this vector will be close to the target mean.
Lemma 3.10. If T is α-good, w(S) ≥ 3|S|/4, and MAINSUBROUTINE returns a vector µw(T),

then we have that ‖µ− µw(T)‖2 ≤ O
(

log(1/α)/
√
α
)

.

8

Proof (sketch). We provide a sketch here, see Appendix A for the full proof.

If β = w(S)/w(T), then for any unit vector v, we have that

Varw[v · T] ≥ β(v · (µw(S)− µw(T)))2 .

Because the algorithm returned a vector at this step, we have that Varw[v · T] = O(log2(1/α)), and
by our assumptions β � α. Together these imply that |v · (µw(S)− µw(T))| = O(log(1/α)/

√
α).

Since this holds for all directions, ‖µw(S)− µw(T)‖2 = O(log(1/α)/
√
α). Finally, since we kept

a constant fraction of the mass of S, and since the covariance of S is O(I), a similar argument tells
us that ‖µw(S)− µ‖2 = O(1). Combining these with the triangle inequality gives the lemma. �

So far, we have shown that if the algorithm LIST-DECODE-MEAN reaches a stage in which the
BASICMULTIFILTER routine returns the vector µw(T), where the current weight function w satisfies
w(S) ≥ 3|S|/4, then µw(T) is an accurate estimate of the target mean µ. It remains to show that
LIST-DECODE-MEAN will provably reach such a stage.
Lemma 3.11. Assume T is α-good. Then, following a sequence of nice iterations of BASICMULTI-
FILTER in LIST-DECODE-MEAN starting from the uniform weight function w(0), we obtain a weight
function w with w(S) ≥ 3|S|/4 for which the BASICMULTIFILTER subroutine returns “YES”.

Due to space limitations, the proof of Lemma 3.11 is given in Appendix A. The analysis of the
runtime can be found in Appendix B, where it is also shown that the output list is of size O(1/α2).
Finally, in Appendix C, we sketch how to efficiently post-process the output to an O(1/α)-sized list.

4 Conclusions

In this paper, we study the problem of list-decodable mean estimation for bounded covariance
distributions. As our main contribution, we give the first provable practical algorithm for this problem
with near-optimal error guarantees. At a technical level, our work strengthens and generalizes the
multi-filtering approach of [DKS18], which focused on spherical Gaussians, to apply under a bounded
covariance assumption. This work is part of the broader agenda of developing fast and practical
algorithms for list-decodable learning under minimal assumptions on the inliers.

The obvious open problem is to design faster provable algorithms for list-decodable mean estimation
with Õ(nd) as the ultimate goal. The runtime analysis of our algorithm gives a bound of Õ(n2d/α2).
We believe this can be easily improved to Õ(n2d/α1+c), for any constant c > 0. A bottleneck in our
runtime analysis comes from the number of recursive subsets that our algorithm needs to run on. This
is controlled by Equation (1), which postulates that

∑
wi(T)2 ≤ |T |2. This condition ensures that

we have no more than O(α−2) many subsets at any given time. This can be improved by replacing
(1) by w(T1)1+c + w(T2)1+c ≤ w(T)1+c, for any c > 0. We believe this should suffice to let the
remainder of our analysis go through and reduce the α-dependence of our runtime to O(α−1−c).

The concurrent work [CMY20] gives an SDP-based algorithm whose runtime is Õ(nd)/poly(α), i.e.,
near-optimal as a function of the dimension d, but suboptimal (by a polynomial factor) as a function
of 1/α. We note that the dependence on 1/α is equally significant in some of the key applications
of list-decodable learning (e.g., in learning mixture models). Can we obtain a truly near-linear time
algorithm?

Broader Impact

Our work fits within a broader agenda of algorithmic high-dimensional robust statistics and aims to
advance the algorithmic foundations of robust learning in the presence of a large fraction of arbitrary
outliers. An important motivation for this line of work is to design provable defenses of machine
learning systems against data poisoning attacks. This goal has become a pressing challenge in many
real-world scenarios, where the data of a machine learning system can be untrusted (including, e.g.,
crowdsourcing).

Since the primary focus of our work is theoretical, we do not expect our results to have immediate
societal impact. Nonetheless, we believe that our algorithm is practical and that our findings provide
interesting insights that could be useful in the design of practically relevant estimators in highly noisy
environments.

9

Acknowledgments and Disclosure of Funding

We thank Alistair Stewart for his contributions in the early stages of this work.

Ilias Diakonikolas is supported by NSF Award CCF-1652862 (CAREER) and a Sloan Research
Fellowship. Daniel M. Kane is supported by NSF Award CCF-1553288 (CAREER) and a Sloan
Research Fellowship.

References
[BBV08] M. F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering via

similarity functions. In STOC, pages 671–680, 2008.

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, and A. Singh. Computationally efficient robust sparse
estimation in high dimensions. In Proceedings of the 30th Conference on Learning
Theory, COLT 2017, pages 169–212, 2017.

[BK20] A. Bakshi and P. Kothari. List-decodable subspace recovery via sum-of-squares. arXiv
preprint arXiv:2002.05139, 2020.

[BNJT10] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine learning.
Machine Learning, 81(2):121–148, 2010.

[BNL12] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines.
In Proceedings of the 29th International Conference on Machine Learning, ICML 2012,
2012.

[CDG18a] Y. Cheng, I. Diakonikolas, and R. Ge. High-dimensional robust mean estimation in
nearly-linear time. CoRR, abs/1811.09380, 2018. Conference version in SODA 2019,
p. 2755-2771.

[CDG18b] Y. Cheng, I. Diakonikolas, and R. Ge. High-dimensional robust mean estimation in
nearly-linear time. CoRR, abs/1811.09380, 2018. Conference version in SODA 2019,
p. 2755-2771.

[CDKS18] Y. Cheng, I. Diakonikolas, D. M. Kane, and A. Stewart. Robust learning of fixed-
structure Bayesian networks. In Conference on Neural Information Processing Systems
(NeurIPS 2018), pages 10304–10316, 2018.

[CMY20] Y. Cherapanamjeri, S. Mohanty, and M. Yau. List decodable mean estimation in nearly
linear time. CoRR, abs/2005.09796, 2020.

[CSV17] M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In Proceedings
of STOC 2017, pages 47–60, 2017.

[DHL19] Y. Dong, S. B. Hopkins, and J. Li. Quantum entropy scoring for fast robust mean esti-
mation and improved outlier detection. In Advances in Neural Information Processing
Systems 33, NeurIPS 2019, pages 6065–6075, 2019.

[DK19] I. Diakonikolas and D. M. Kane. Recent advances in algorithmic high-dimensional
robust statistics. CoRR, abs/1911.05911, 2019.

[DKK+16] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robust
estimators in high dimensions without the computational intractability. In Proceedings
of FOCS’16, pages 655–664, 2016.

[DKK+17] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Being
robust (in high dimensions) can be practical. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, pages 999–1008, 2017.

[DKK+18] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robustly
learning a gaussian: Getting optimal error, efficiently. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages
2683–2702, 2018.

10

[DKK+19a] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and Alistair Stewart. Sever:
A robust meta-algorithm for stochastic optimization. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, pages 1596–1606, 2019.

[DKK+19b] I. Diakonikolas, S. Karmalkar, D. Kane, E. Price, and A. Stewart. Outlier-robust high-
dimensional sparse estimation via iterative filtering. In Advances in Neural Information
Processing Systems 33, NeurIPS 2019, pages 10688–10699, 2019.

[DKS16] I. Diakonikolas, D. M. Kane, and A. Stewart. Statistical query lower bounds for
robust estimation of high-dimensional gaussians and gaussian mixtures. CoRR,
abs/1611.03473, 2016. In Proceedings of FOCS’17.

[DKS18] I. Diakonikolas, D. M. Kane, and A. Stewart. List-decodable robust mean estimation
and learning mixtures of spherical Gaussians. In ACM Symposium on Theory of
Computing (STOC 2018), pages 1047–1060, 2018.

[DKS19] I. Diakonikolas, W. Kong, and A. Stewart. Efficient algorithms and lower bounds for
robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, pages 2745–2754, 2019.

[DL19] J. Depersin and G. Lecue. Robust subgaussian estimation of a mean vector in nearly
linear time. CoRR, abs/1906.03058, 2019.

[HL18] S. B. Hopkins and J. Li. Mixture models, robustness, and sum of squares proofs. In
STOC, pages 1021–1034, 2018.

[HR09] P.J. Huber and E. M. Ronchetti. Robust statistics. Wiley New York, 2009.

[HRRS86] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust statistics.
The approach based on influence functions. Wiley New York, 1986.

[KKK19] S. Karmalkar, A. R. Klivans, and P. Kothari. List-decodable linear regression. In
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, pages 7423–7432, 2019.

[KKM18] A. R. Klivans, P. K. Kothari, and R. Meka. Efficient algorithms for outlier-robust
regression. In Conference On Learning Theory, COLT 2018, pages 1420–1430, 2018.

[KS17] P. K. Kothari and J. Steinhardt. Better agnostic clustering via relaxed tensor norms.
CoRR, abs/1711.07465, 2017.

[LAT+08] J.Z. Li, D.M. Absher, H. Tang, A.M. Southwick, A.M. Casto, S. Ramachandran,
H.M. Cann, G.S. Barsh, M. Feldman, L.L. Cavalli-Sforza, and R.M. Myers. World-
wide human relationships inferred from genome-wide patterns of variation. Science,
319:1100–1104, 2008.

[Li18] J. Li. Principled Approaches to Robust Machine Learning and Beyond. PhD thesis,
Massachusetts Institute of Technology, 2018.

[LRV16] K. A. Lai, A. B. Rao, and S. Vempala. Agnostic estimation of mean and covariance. In
Proceedings of FOCS’16, 2016.

[MV18] M. Meister and G. Valiant. A data prism: Semi-verified learning in the small-alpha
regime. In Conference On Learning Theory, COLT 2018, pages 1530–1546, 2018.

[PLJD10] P. Paschou, J. Lewis, A. Javed, and P. Drineas. Ancestry informative markers for fine-
scale individual assignment to worldwide populations. Journal of Medical Genetics,
47:835–847, 2010.

[RPW+02] N. Rosenberg, J. Pritchard, J. Weber, H. Cann, K. Kidd, L.A. Zhivotovsky, and M.W.
Feldman. Genetic structure of human populations. Science, 298:2381–2385, 2002.

[RY20a] P. Raghavendra and M. Yau. List decodable learning via sum of squares. In Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 161–
180. SIAM, 2020.

11

[RY20b] P. Raghavendra and M. Yau. List decodable subspace recovery. arXiv preprint
arXiv:2002.03004, 2020.

[SKL17] J. Steinhardt, P. W. Koh, and P. Liang. Certified defenses for data poisoning attacks. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pages 3517–3529, 2017.

[Ste18] J. Steinhardt. Robust Learning: Information Theory and Algorithms. PhD thesis,
Stanford University, 2018.

[SVC16] J. Steinhardt, G. Valiant, and M. Charikar. Avoiding imposters and delinquents: Ad-
versarial crowdsourcing and peer prediction. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, pages 4439–4447, 2016.

12

	Introduction
	Background and Motivation
	Our Contributions

	Preliminaries
	Algorithm and Analysis
	Setup and Main Theorem
	Basic Multifilter
	Main Algorithm

	Conclusions
	Proofs Omitted from Section 3
	Proof of Lemma 3.5
	Proof of Lemma 3.7
	Proof of Lemma 3.10
	Proof of Lemma 3.11

	Runtime Analysis
	Efficient List Size Reduction

