- We thank the reviewers for their careful consideration of our paper and their positive feedback. Below we address
- 2 individual comments/questions by the reviewers.
- Reviewer 1: We thank the reviewer for their positive feedback.
- 4 Technical novelty: We would like to point out that "multi-filtering" is an algorithmic framework and not a specific
- algorithm. As the reviewer notes, this framework was first introduced in a STOC'18 paper by Diakonikolas, Kane, and
- 6 Stewart. The [DKS18] paper obtained list-decodable mean estimation algorithms for identity covariance Gaussian
- 7 distributions. We emphasize that enhancing this framework to obtain our efficient algorithm (with near-optimal error
- 8 guarantees) for the broad family of bounded (and unknown) covariance distributions requires overcoming a number of
- 9 obstacles. To do so, we develop new technical tools that were not present in [DKS18] or in the heavy-tailed robust
- mean estimation algorithms for $\alpha > 1/2$. Please see lines 105-160 of our submission for an overview.
- 11 We termed our algorithm "potentially practical", given that it is iterative (with each iteration being fast, running in
- near-linear time) and based on prior experience regarding the experimental performance of filtering algorithms. We
- 13 agree with the reviewer that an experimental evaluation of our algorithm would be interesting.
- 14 Related work: We will make sure to cite and compare with the contemporaneous work by Cherapanamjeri, Mohanty,
- and Yau in the final version of our paper. We would like to point out that this work first appeared on the arXiv around
- 16 a week before the NeurIPS deadline. Briefly, we note that this concurrent work uses very different techniques and
- achieves runtime $\tilde{O}(nd)/\operatorname{poly}(\alpha)$, for some unspecified degree polynomial in $1/\alpha$ (from our reading, the degree of the
- $poly(\alpha)$ dependence seems to be at least six). This runtime is better than that of our algorithm as a function of n, but
- worse as a function of $1/\alpha$. We note that the runtime dependence on $1/\alpha$ is equally significant in some key applications
- 20 of list-decodable learning (e.g., in learning mixture models with many components).
- 21 **Reviewer 2:** We thank the reviewer for their positive feedback.
- Regarding comparison to contemporaneous related work: Please see the *Related Work* paragraph in the response to
- 23 Reviewer 1.
- 24 Regarding implementability of our algorithm: Our algorithm is simple to implement and we believe it can scale in high
- dimensions, even for small values of the parameter $\alpha < 1/2$. That said, an experimental evaluation is left for future
- work. The contribution of our paper is theoretical and boils-down to developing the first algorithm for this fundamental
- 27 learning problem that avoids the ellipsoid method and has a low-degree polynomial runtime.
- 28 **Reviewer 3:** We thank the reviewer for their positive feedback.
- 29 Due to space limitations, in Section 1.1 we provide the necessary background. In particular, we summarize the prior
- 30 work in algorithmic high-dimensional robust statistics that is most closely related to the results of our paper. We will be
- 31 happy to add more context in the final version.
- The median-of-means based techniques are typically used in a related, but different, context. The prototypical example
- 33 is when we have i.i.d. samples from a heavy-tailed (bounded covariance) distribution and the goal is to obtain a
- 34 high-confidence estimator of its mean. This notion of robustness is different than the one considered in our paper where
- 35 the majority of the input dataset consists of adversarial outliers. We will clarify this connection in our final version.