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Abstract

Random forests have been one of the successful ensemble algorithms in machine
learning. The basic idea is to construct a large number of random trees individually
and make prediction based on an average of their predictions. The great successes
have attracted much attention on the consistency of random forests, mostly focusing
on regression. This work takes one step towards convergence rates of random
forests for classification. We present the first finite-sample rate O(n−1/(8d+2)) on
the convergence of pure random forests for classification, which can be improved
to be of O(n−1/(3.87d+2)) by considering the midpoint splitting mechanism. We
introduce another variant of random forests, which follow Breiman’s original
random forests but with different mechanisms on splitting dimensions and positions.
We get a convergence rate O(n−1/(d+2)(lnn)1/(d+2)) for the variant of random
forests, which reaches the minimax rate, except for a factor (lnn)1/(d+2), of the
optimal plug-in classifier under the L-Lipschitz assumption. We achieve tighter
convergence rate O(

√
lnn/n) under proper assumptions over structural data.

1 Introduction

From the pioneer work [12], random forests have been recognized as one of the successful algorithms
for classification and regression, which construct a large number of random trees individually and
make prediction based on an average of their predictions. This idea is partly motivated from geometric
feature selection [2], random subspace [29], random split selection [23] and earlier ensemble decision
trees [32]. Random forests make good performance in empirical studies [10, 12, 24, 48], and have
been involved in diverse real applications such as ecology [18], computational biology [41], objection
recognition [47], remote sensing [7], computer vision [16], etc. Numerous variants have been
developed to improve performance and reduce computational costs [4, 6, 19, 27, 33, 34, 38, 43, 52, 56].
For an overview of random forests, we refer readers to the works of [10, 17, 26].

Empirical successes have attracted much attention on theoretical explorations of random forests.
Breiman [12] presented the generalization bounds for random forests based on the correlation and
strength of individual random trees, followed by consistency analysis of a simple model of random
forests [13]. Lin and Jeon [35] established a connection between random forests and adaptive nearest
neighbors, and Meinshausen [37] studied consistency of random forests for regression in the context
of conditional quantile predictions. The consistency results place random forests in a favored category
of ensemble algorithms [8, 9, 40, 44, 45, 51]. Denil et al. [20] narrowed the gap between theory and
practice of random forests for regression, and Goetz et al. [28] proposed active learning algorithm for
non-parametric regression using random forests. Li et al. [34] derived non-asymptotic bounds on
the expected bias of MDI importance for random forests, along with variable importance [30, 36].
Tang et al. [50] discussed when random forests fail and examined the influences of parameters over
performance. Most previous theoretical studies focus on random forests for regression.
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For classification, Biau et al. [9] took a crucial milestone on the consistency of randomized ensemble
classifiers, and Denil et al. [19] showed the first consistency of online random forests. For a fuller
understanding, however, it is necessary to take one further step on the convergence rates of random
forests for classification, which would be beneficial to design better random forests, and comprehend
the effects of different splitting mechanisms during the constructions of random forests.

In this work, we take one step towards convergence rates of random forests for classification, and the
main contributions can be summarized as follows:

• We present the first finite-sample rate on the convergence of pure random forests proposed
originally by Breiman [11], that is, a convergence rateO(n−1/(8d+2)) is derived by selecting
leaves parameter k = O(n4d/(4d+1)), where n and d denote the size of training data and
dimension, respectively. This rate can be further improved to be of O(n−1/(3.87d+2)) if we
instead split a leaf along the dimension at the midpoint of the chosen side.

• We introduce another simplified variant of random forests, which follow Breiman’s original
random forests [12] but with different mechanisms on splitting dimensions and positions.
We derive a convergence rate O(n−1/(d+2)(lnn)1/(d+2)) for the simplified random forests,
which reaches the minimax rate, except for a factor (lnn)1/(d+2), of the optimal plug-in
classifiers under the L-Lipschitz assumption. We finally achieve tighter convergence rate
O(
√

lnn/n) based on proper assumptions over structural data, which may shed insights to
random forests by correlating randomization process with data-dependent tree structure.

• In addition, we establish a relationship for the convergence rates between random forests
and individual random trees, and make a better estimate on the height of random trees than
was previously known.

The rest of this work is organized as follows: Section 2 shows the convergence rate between random
forests and individual random trees. Section 3 presents the convergence rates of pure random forests.
Section 4 provides the convergence rates of the simplified variant of Breiman’s original random
forests. Section 5 introduces related work. Section 6 concludes with future work. Some proofs for
theorems and lemmas are given in the supplementary material due to the page limitation.

2 Convergence Rates between Random Forests and Random Trees

Let X = [0, 1]d and Y = {0, 1} denote the instance and label space, respectively. Suppose that D is
an (unknown) underlying distribution over space X × Y . Let DX be the marginal distribution over
the instance space X , and denote by

η(x) = Pr[y = +1|x]

the conditional probability of positive instance with respect to distributionD. In this work, we assume
that conditional probability η(x) is L-Lipschitz for some constant L > 0, i.e., for every x,x′ ∈ X ,

|η(x)− η(x′)| ≤ L‖x− x′‖ .
This assumption has been taken in random forests for regression [8, 40] and binary classification
[15, 46]. Intuitively, it implies that two instances are likely to have similar labels for smaller distance.
Given a hypothesis h : X → Y , we define the classification error over distribution D as

RD(h) = Pr(x,y)∼D[h(x) 6= y] = E(x,y)∼D[I[h(x) 6= y]] .

Here, I[·] denotes the indicator function, which returns 1 if the argument is true and 0 otherwise. It is
well-known [22, 46] that the optimal Bayes’ error (i.e., the minimum of classification error) and the
Bayes’ classifier can be given by

R∗D = Ex[min{η(x), 1− η(x)}] and h∗D(x) = I[η(x) ≥ 1/2], respectively.

Notice that distribution D is unknown in practice, and what we observe is a training data

Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)} ,
where each example is drawn independently and identically (i.i.d.) from distribution D. Our goal
is to learn a classifier hn with smaller classification error from the training data Sn. As the training
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data size n increases, we get a sequence of classifiers h1, h2, · · · , hn, · · ·. A sequence of classifiers
{hn}∞n=1 is said to be consistent if ESn [RD(hn)]→ R∗D as n→∞.

Random forests classifier fm(x) takes a majority vote overm individual randomized trees fSn,Θ1
(x),

fSn,Θ2
(x), . . . , fSn,Θm

(x), that is,

fm(x) = I

[
m∑
i=1

fSn,Θi
(x) ≥ m

2

]
. (1)

Here, the random vectors Θ1,Θ2, . . . ,Θm are distributed identically and independently, and charac-
terize the mechanisms of random selections of splitting leaves, dimensions, and positions during the
construction of randomized trees. The random vectors Θ1,Θ2, . . . ,Θm will be specified according
to different random forests in the subsequent section.

We first present the following relationship of convergence rate between random forests classifier and
individual random tree classifier, and the detailed proof is given in Appendix A.

Lemma 1 Let fm(x) be the random forests classifier given by Eqn. (1), and fSn,Θ(x) denotes a
classifier of individual tree with respect to random vector Θ. We have

EΘ1,...,Θm [RD(fm(x))]−R∗D ≤ 2(EΘ[RD(fSn,Θ(x))]−R∗) .

From this lemma, the convergence rate of random forests classifier fm(x) is no more than twice
that of individual random tree classifier fSn,Θ(x); therefore, the consistency of random forests can
be derived from the consistency of individual random tree. A relevant result that the consistency
of a random classifier is preserved by averaging [9, Proposition 1], while Lemma 1 is easier to
obtain the convergence rates. In addition, the convergence rate of random forests is obtained from
the expectation of convergence rates of individual trees, which can be viewed as the average of
convergence rate of all of individual random trees.

It is necessary to introduce some notations used in this work. Write [d] = {1, 2, . . . , d} for some
integer d > 0. We denote by B(p) a Bernoulli distribution with parameter p ∈ [0, 1], and let U(a, b)
denote a uniform distribution over the interval [a, b]. We further represent ξ ∼ B(p) and ξ ∼ U(a, b)
that a random variable ξ is chosen according to Bernoulli distribution B(p) and uniform distribution
U(a, b), respectively. Denote by e = 2.718... the Euler’s constant. For positive f(n) and g(n), we
write f(n) = O(g(n)) if g(n)/f(n)→ c for some constant c ∈ (0,+∞) as n→∞.

3 Convergence Rates of the Pure Random Forests for Classification

We begin with the pure random forests, which were originally proposed by Breiman [11]. Genuer [25]
studied the variance reductions of pure random forests for regression, and Arlot and Genuer [3]
further presented its bias-variance analysis. For classification, Biau et al. [9] made an important
milestone on the consistency of pure random forests. In this work, we take one further step on the
convergence rate of pure random forests for classification.

Formally, a pure random tree can be constructed as follows. Each node is associated with a rectangular
cell, and all leaves (external nodes) constitute a partition of [0, 1]d at each iteration of tree construction.
The root of random partition is [0, 1]d itself. The following procedure is repeated k − 1 iterations for
some pre-defined k ≥ 2 in advance, and hence the output random tree has k leaves.

• A split leaf is selected at random, uniformly over all leaves at the current iteration.
• Once the leaf is selected, a split dimension is selected at random, uniformly over [d].
• The leaf is split along the split dimension at random, uniformly over the chosen side.

A pure random tree classifier fSn,Θ(x) takes a majority vote over labels yi whose corresponding
instances xi belong to the same cell of random partition as instance x. The main difference, between
pure random tree and Breiman’s original random tree [12], is that recursive cell splits are irrelevant to
label information, and the growth of individual random tree is independent of training sample.

Given m individual pure random trees fSn,Θ1(x), fSn,Θ2(x), . . . , fSn,Θm(x), the random forests
classifier takes a majority vote over those random trees, that is, fm(x) = I[

∑m
i=1 fSn,Θi

(x) ≥ m/2].
We now present the convergence rates of pure random forests for classification.
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Theorem 1 Let fm(x) be the random forests classifier by applying pure random tree to training
data Sn of k leaves (k ≥ 2). For L-Lipschitz conditional probability η(x), we have

R∗D ≤ ESn,Θ1,...,Θm
[RD(fm)] ≤ R∗D +

4
√

2eLd3/2

k1/8d
+ 2

√
k

n
+

6k

n
.

Based on this theorem, we obtain a convergence rate O(n−1/(8d+2)) of pure random forests for
classification, by selecting leaves parameter k = O(n4d/(4d+1)). To the best of our knowledge, this
presents the first finite-sample converge rate of pure random forests for classification. Also, it is easy
to observe that

ESn,Θ1,...,Θm
[RD(fm)]→ R∗D as k → +∞ and k/n→ 0,

which recovers the consistency result of random forests for classification [9, Theorem 2].

Before the proof of Theorem 1, we go into the details of randomness Θ on the construction of pure
random forests. Given a pure random tree, we associate k leaves with k disjoint rectangular cells
C1, C2, . . . , Ck, constituting a partition of instance space X = [0, 1]d. Given an instance x ∈ X , let
C(x) denote the rectangular cell of the random tree, that contains the instance x.

Given an instance x ∈ X , we introduce k − 1 Bernoulli random variables X1, X2, · · · , Xk−1 to
characterize the random events that the node containing instance x was selected for splitting in the
construction of random tree. Specially, the event Xi = 1 implies that the node containing x is
selected for splitting in the i-th iteration of random tree construction; otherwise, Xi = 0. It follows
that Xi ∼ B(1/i), because there are i leaves for selection with identical probability in the i-th
iteration of random tree construction.

Let h(C(x)) denote the height of the rectangular cell C(x), i.e., the splitting times of C(x) during
the construction of random tree. It is easy to obtain

h(C(x)) =

k−1∑
i=1

Xi .

We further present upper and lower bounds on h(C(x)) in expectation and in probability as follows:

Lemma 2 Let X1, X2, . . . , Xk−1 be k− 1 random variables such that Xi ∼ B(1/i) for i ∈ [k− 1].
For an instance x ∈ X , we have

ln(k) ≤ EX1,X2,...,Xk−1
[h(C(x))] ≤ 1 + ln(k − 1) ,

and we also have, for any ε ∈ (0, 1),

PrX1,X2,...,Xk−1
[h(C(x)) ≤ (1− ε) ln k] ≤ k−ε2/2 ,

PrX1,X2,...,Xk−1
[h(C(x)) ≥ (1 + ε)(1 + ln(k − 1))] ≤ k−ε2/2 .

We have h(C(x)) = O(log k) with large probability, especially for large k. Lemma 2 improves the
previous work [9] on the bounds of h(C(x)), where the saturation level is considered in random
binary search tree [21, 42], and their bounds can be rewritten (with our notation) as follows:

Pr[h(C(x)) < (c∗ − ε) ln k] ≤ O(log(k)k(c∗−ε) ln(2e/(c∗−ε))−1) .

Here, c∗ = 0.3733 . . . is the unique solution of c ln(2e/c) = 1 (c < 1) and ε < c∗. As can be
seen, Lemma 2 makes better estimations of h(C(x)) with larger probability. The detailed proof of
Lemma 2 is presented in Appendix B.

Given a cell C(x), we define its diameter as ν(C(x)) = maxx,x′∈C(x){‖x− x′‖}. Then, we can
bound ν(C(x)) in probability as follows:

Lemma 3 For integer k ≥ 2, real ε > −1 and instance x ∈ X , we have

Pr

[
ν[C(x)] ≥ (1 + ε)

√
d

k1/8d

]
≤ ed

(1 + ε)k1/8d
,

where the probability takes over the random selections of splitting leaves, dimensions and positions.
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This lemma shows that, for every instance x ∈ X , the diameter of rectangle cell of C(x) can be
upper bounded by (1 + ε)

√
d/k1/8d with probability at least 1 − ed/(1 + ε)k1/8d. We also have

ν(C(x))→ 0 in probability as k → +∞. For simplicity, we do not formalize the random selections
of splitting leaves, dimensions and positions in Lemma 3, while the detailed formalization and proof
are presented in Appendix C.

Recall that there are k disjoint rectangular cells C1, C2, . . . , Ck during the construction of pure
random tree with k − 1 iterations. We present the following lemma to bound the classification error
over each rectangular cell, and the detailed proof is given in Appendix D.

Lemma 4 Let C1, C2, . . . , Ck be the k disjoint rectangular cells associating with the leaves of
randomized tree, and fΘ,Sn

(x) denotes the classifier generated by random tree. For L-Lipschitz
conditional probability η(x) and for every i ∈ [k], we have

Pr
Sn,(x,y)

[fΘ,Sn(x) 6= y|x ∈ Ci] Pr[x ∈ Ci] ≤ 2Lν(Ci) Pr[x ∈ Ci]

+ Ex[min{η(x), 1− η(x)}|x ∈ Ci] Pr[x ∈ Ci] +
√

Pr[x ∈ Ci]/n+ 3/n .

Based on the previous lemmas, we now present the detailed proof of Theorem 1 as follow:

Proof of Theorem 1. We first derive the convergence rate of individual random tree classifier
fSn,Θ(x), and then complete the proof by combining with Lemma 1. We have

RD(fSn,Θ) = Pr
(x,y)∼D

[fΘ,Sn(x) 6= y] = Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn(x) 6= y]

]
.

For random tree classifier fΘ,Sn
(x), we associate a set as follows:

Λ =
{
x ∈ X : ν(C(x)) ≥ (1 + ε)

√
d/k1/8d

}
, (2)

where ν(C(x)) denotes the diameter of rectangle cell C(x). It follows that

RD(fSn,Θ) = Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn

(x) 6= y] (I[x ∈ Λ] + I[x /∈ Λ])

]
≤ Ex∼DX [I[x ∈ Λ]] + Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn(x) 6= y]I[x /∈ Λ]

]
. (3)

Notice that C1, C2, . . . , Ck is a partition of the instance space X from the construction of random
tree. Based on the law of total probability, we have

Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn

(x) 6= y]I[x /∈ Λ]

]
=

k∑
i=1

Pr[fΘ,Sn
(x) 6= y|x ∈ Ci] Pr[x ∈ Ci]I[Ci 6⊆ Λ] ,

where we use the fact C(x) = Ci for every x ∈ Ci. By combining with Eqns. (2) and (3), we have

ESn,Θ [RD(fSn,Θ)] ≤ Ex∼DX

[
Pr
Sn,Θ

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/8d

]]
(4)

+EΘ

[
k∑
i=1

ESn [Pr[fΘ,Sn(x) 6= y|x ∈ Ci]] Pr[x ∈ Ci]I[Ci 6⊆ Λ]

]
. (5)

From Lemma 3, Eqn. (4) can be further upper bounded by

Ex∼DX

[
Pr
Sn,Θ

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/8d

]]
≤ ed

(1 + ε)k1/8d
. (6)

Based on Lemma 4 and Eqn. (2), we can bound Eqn. (5) as follows
k∑
i=1

ESn
[Pr[fΘ,Sn

(x) 6= y|x ∈ Ci]] Pr[x ∈ Ci]I[Ci 6⊆ Λ]

≤ R∗D +
2(1 + ε)L

√
d

k1/8d
+

k∑
i=1

√
Pr[Ci]

n
+

3k

n
, (7)
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where we use the law of total expectation and R∗D = Ex∼DX [min{η(x), 1 − η(x)}]. By Jensen’s
inequality, we have (EX)2 ≤ E[X2], and this gives(

1

k

k∑
i=1

√
Pr[Ci]

)2

≤ 1

k

k∑
i=1

Pr[Ci] =
1

k
.

It follows that, by combining with Eqns. (4)-(7),

ESn,Θ [RD(fSn,Θ)] ≤ R∗D +
ed

(1 + ε)k1/8d
+

2(1 + ε)L
√
d

k1/8d
+

√
k

n
+

3k

n
.

We have, by setting ε =
√
e
√
d/2L and algebra calculations,

ESn,Θ [RD(fSn,Θ)] ≤ R∗D +
2
√

2eLd3/2

k1/8d
+

√
k

n
+

3k

n
,

which completes the proof by combining with Lemma 1.

We further study the effects of different splitting mechanisms during the construction of random
forests. For example, how about the convergence rates for different selections of splitting leaves,
dimensions and positions? Here, we consider pure random forests with midpoint splits, where
midpoint splits have been well-studied for random forests in regression [3, 8, 31]. Formally, a pure
random tree with midpoint splits can be constructed as follows. The root of random partition is [0, 1]d

itself. The following procedure is repeated k − 1 iterations for some pre-defined k ≥ 2 in advance.

• A split leaf is selected at random, uniformly over all leaves at the current iteration.

• Once the leaf is selected, a split dimension is selected at random, uniformly over [d].

• The leaf is split along the split dimension at the midpoint of the chosen side.

Given individual random tree classifiers fSn,Θ1
(x), fSn,Θ2

(x), . . . , fSn,Θm
(x), the random forests

classifier takes a majority vote over m random trees. We present a convergence rate of pure random
forests with midpoint splits for classification as follows:

Theorem 2 Let fm(x) be the random forests classifier by applying pure random tree with midpoint
splits to training data Sn of k leaves (k ≥ 2). For L-Lipschitz conditional probability η(x), we have

R∗D ≤ ESn,Θ1,...,Θm
[RD(fm)] ≤ R∗D +

8L3/5d7/10

k1/3.87d
+ 2

√
k

n
+

6k

n
.

Based on this theorem, we get a convergence rate O(n−1/(3.87d+2)) of pure random forests with
midpoint splits for classification, by selecting leaves parameter k = O(n3.87d/(3.87d+2)). As can be
seen, we achieve better convergence rate by instead considering the midpoint splitting mechanism
during the construction of pure random forests, and an intuitive explanation is that midpoint splits
yield smaller rectangle cells. The detailed proof of Theorem 2 is presented in Appendix E.

4 Convergence Rates of the Simplified Random Forests for Classification

In this section, we present the convergence analysis towards Breiman’s original random forests [12]
for classification. We follow the procedures of Breiman’s random forests, but with different mecha-
nisms on the selections of splitting dimensions and positions due to technical analysis challenges.
Algorithm 1 gives a detailed description of the simplified variant of random forests.

We introduce a structural list P to store leaves (or rectangle cells) for further splitting in Algorithm 1,
which aims to keep the leaves split in successive layer. Such mechanism is essentially the same
as that of random forests for regression [45]. At each iteration, the first leaf (or rectangle cell) is
selected and removed from P , and it will not be split if all training examples have the same label
in the leaf (including less than one example in the leaf). For a split leaf, we select a dimension at
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Algorithm 1 A simplified variant of Breiman’s original random tree [12]
Input: Training sample Sn and leaves parameter k.
Output: A random tree
Initialize: Set P = {[0, 1]d} and nleaf = 1.

1: while nleaf < k and P is not empty do
2: Let C be the first rectangle cell in P , and remove it from P .
3: if All training examples in C have the same label (including less than one example) then
4: Do nothing and the cell C will not be split any more.
5: else
6: Select a dimension Y at random, uniformly over dimensions along which the side length is

maximal in the cell C.
7: Split cell C along Y at the midpoint of the chosen side, called CL, CR two resulting cells.
8: Update P by appending CL and CR, and nleaf ← nleaf + 1.
9: end if

10: end while

random, uniformly over dimensions along which the side length is maximal in the leaf, and then
split the leaf along the dimension at the midpoint of the chosen side. We finally update list P by
appending two resulting leaves.

A leaf (rectangle cell) will not be split in Algorithm 1 if all training examples have the same label in
this leaf. Such stopping-splitting criterion is different from pure random forests [11] and Mondrian
forests [33, 40], where the growth of individual random tree is independent of training sample. In
addition, it is also different from random forests regression [45], where a leaf will not be split only
when the leaf has exactly one training example.

Given m individual random tree classifiers fSn,Θ1
(x), fSn,Θ2

(x), . . . , fSn,Θm
(x) according to

Algorithm 1, the random forests classifier takes a majority vote over m random trees, that is,
fm(x) = I [

∑m
i=1 fSn,Θi

(x) ≥ m/2]. We present a convergence rate of the simplified variant of
random forests for classification as follows:

Theorem 3 For k ≥ 2 and n ≥ 4, let fm(x) be the random forests classifier by applying Algorithm 1
to training data Sn of k leaves. For L-Lipschitz conditional probability η(x), we have

R∗D ≤ ESn,Θ1,...,Θm [RD(fm)] ≤ R∗D + 4

√
k lnn

n
+ 2

4

√
4k3 lnn

n3
+

12k

n
+ 4

√
k

n
+

4L
√
d

k1/d
.

We obtain a convergence rateO(n−1/(d+2)(lnn)1/(d+2)) for random forests based on Algorithm 1, by
selecting leaves parameter k = O((n/ lnn)2d/(d+2)). This presents significantly better convergence
rate than that of pure random forests due to different splitting mechanisms and stopping-splitting
criteria. The detailed proof of Theorem 3 is given in Appendix F.

Under the L-Lipschitz assumption, it is well-known [5, 54] that the minimax rate is of O(n−1/(d+2))
for the optimal plug-in classifiers f(x) = I[η̂(x) ≥ 1/2], where η̂(x) is a conditional probability
estimated by learning algorithms. As can be seen, our simplified variant of random forests reaches the
minimax convergence rate, except for a factor (lnn)1/(1+d), as that of the optimal plug-in classifiers,
despite random forests are not plug-in classifiers, since random forests take a majority vote over the
predictions of individual random trees, rather than the estimation of conditional probability.

Breiman’s original random forests [12] took some splitting criteria, such as information gain and
entropy, to select the best-split dimension and position, which correlates the randomization process
with data-dependent tree structure. Intuitively, such correlation could yield tighter convergence rates
of random forests for classification, whereas this makes it quite challenging to present convergence
analysis from a technical view. To date, it is still an open problem on the consistency of Breiman’s
original random forests [12] for classification, let alone the analysis of convergence rate.

We now make some assumptions over structural data, which could yield tighter convergence rate for
the simplified variant of random forests. Suppose that there is a constant k0 ≥ 2, such that the output
random trees from Algorithm 1 have at most k0 leaves with all training examples in each leaf having
the same label. Based on such assumption, we present a convergence rate of the simplified variant of
random forests for classification.
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Theorem 4 Suppose that there is a constant k0 ≥ 2, such that the output random trees from
Algorithm 1 have at most k0 leaves with all training examples having the same label in each leaf. Let
fm(x) be the random forests classifier by applying Algorithm 1 to training data Sn. We have

ESn,Θ1,...,Θm
[RD(fm)] ≤ 4

√
k0 lnn

n
+ 2

4

√
4k3

0 lnn

n3
+ 2

√
k0

n lnn
+

6k0

n
.

Based on this theorem, we achieve tighter convergence rate O(
√

lnn/n) of the simplified variant
of random forests for classification, which is independent of dimension d. This theorem may show
some lights on Breiman’s original random forests [12] with tighter convergence rates, by correlating
randomization process and data-dependent tree structure.

The assumption in Theorem 4 is relevant to algorithm, while it still holds for some irrelevant cases,
for example, Algorithm 1 satisfies such assumption when the data is separable and the separable
hyperplane is parallel to axis. The detailed proof of Theorem 4 is presented in Appendix G.

5 Related Work

For random forests, a large number of variants have been developed according to different problems
and settings in the literature during the past decades. Geurts et al. [27] introduced the extremely
randomized trees and Amaratunga et al. [1] provided the enriched random forests for DNA microarray
data of huge features. Menze et al. [38] presented the oblique random forests for multivariate trees
by explicitly learning the optimal split directions with linear discriminative models. Clémençon et
al. [14] introduced the ranking forests based on aggregation and feature randomization principles for
bipartite ranking. Athey et al. [4] developed a flexible and computationally efficient algorithm for the
generalized random forests. A general framework is presented in [53] on various splitting criteria for
random forests based on loss functions. Zhou and Feng [55, 56] proposed gcForest with performance
highly competitive to deep neural networks. Online random forests have also been developed with
strong theoretical guarantees [19, 33, 40, 49].

For regression, much attention has been paid on the L2
2-consistency of random forests with relevant

variants [3, 8, 20, 25, 37, 45]. In particular, Scornet et al. [45] proved the first L2
2-consistency of

Breiman’s original random forests based on some assumptions such as additive regression functions
and uniform distribution over instance space X . The crucial analysis technique is the classical
decomposition of variance and bias for random forests regression, whereas it is difficult to make
such decomposition for random forests in classification. Moreover, the stopping-splitting criteria are
different for random forests classification and regression, as shown in Algorithm 1 and work [45],
respectively. We do not directly compare the convergence rates of random forests for regression and
classification due to different settings and performance measures.

For classification, Biau et al. [9] made a crucial milestone on the consistency of several randomized
ensemble classifiers such as pure random forests. The key technical tool is the general consistency
theorem for partition classifiers [22, Theorem 6.1], that is, partition classifiers are consistent if the
followings hold in probability (written with our notations),

ν(C(x))→ 0 and |C(x) ∩ Sn| → +∞ as n→ +∞ ,

where ν(C(x)) denotes the diameter of the leaf or rectangular cell C(x). Along this line, many
random forests classifiers have been proven to be consistent such as random forests model [8], online
random forests [19], online Mondrian forests [40], etc. Our work presents the convergence rates of
random forests for classification based on different analysis techniques, and it is interesting to study
the convergence rates of other variants of random forests along our analysis.

Mourtada et al. [40] presented the consistency of online Mondrian forests classifiers according to
[22, Theorem 6.1], and derived the minimax rate O(n−1/(d+2)) for plug-in classifiers based on
the estimation of conditional probability, that is, they took an average of conditional probabilities
calculated by individual Mondrian trees. This is different from random forests classifier, which takes
a majority over the predictions made by individual random trees. Also, the growth of individual
Mondrian tree is independent of training sample, which is different from Algorithm 1.
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6 Conclusion

This work takes one step towards the convergence rate analysis of random forests for classification.
We present the first finite-sample convergence rate O(n−1/(8d+2)) for pure random forests, as well
as a convergence rate O(n−1/(d+2)(lnn)1/(d+2)) for the simplified variant of Breiman’s original
random forests [12], which reaches the minimax rate, except for a factor (lnn)1/(d+2), of the optimal
plug-in classifier under the L-Lipschitz assumption. It is still a long way to fully understand random
forests and relevant mechanisms such as bootstrap sampling, data-dependence tree structure, tree
pruning, etc., and we leave those to future work. In addition, it is also interesting to extend our
work to multi-class learning, where the challenges lie in the theoretical analysis of predictions
f(x, y)−maxi 6=y f(x, i) and Lipschitz assumptions over multiple class-conditional distributions.

Broader Impact

This work presents theoretical analysis on the convergence rates of random forests in the machine
learning community. This is a pure theoretical work without particular application foreseen.
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Towards Convergence Rate Analysis of Random Forests for Classification
(Supplementary Material)

We begin with some lemmas as follows:

Lemma 5 Let X1, X2, . . . , Xm be m independent random variables with Xi ∈ [0, 1]. Denote by
X =

∑m
i=1Xi and p =

∑m
i=1E[Xi]. We have

Pr
X1,...,Xm

[X < (1− δ)p] ≤ exp(−pδ2/2) .

This lemma is a variant of Chernoff bounds from [39].

Lemma 6 For any integer k ≥ 2, we have

ln k ≤
k−1∑
i=1

1

i
≤ 1 + ln(k − 1) .

Proof: For any integer i > 0, we have

1

t
≤ 1

i
for t ∈ [i, i+ 1] and

1

i
≤ 1

t
for t ∈ [i− 1, i].

It follows that

ln k =

∫ k

1

1

t
dt ≤

k−1∑
i=1

1

i
≤ 1 +

∫ k−1

1

1

t
dt = 1 + ln(k − 1) ,

which completes the proof.

Lemma 7 For integers k ≥ 2 and d ≥ 2, we have

k−1∑
i=1

ln

(
1− 3

4id

)
≥ −9 + 3 ln(k − 1)

4d
, (8)

k−1∑
i=1

ln

(
1− 1

2id

)
≥ −3 + ln(k − 1)

2d
. (9)

Proof: We have

k−1∑
i=1

ln

(
1− 3

4id

)

≥ ln

(
1− 3

4d

)
+

∫ k−1

1

ln

(
1− 3

4dt

)
dt

= ln

(
1− 3

4d

)
+

[
t ln

(
1− 3

4dt

)]k−1

1

−
∫ k−1

1

3

4dt− 3
dt

= (k − 1) ln

(
1− 3

4d(k − 1)

)
− 3

4d
ln

(
k − 1− 3

4d

)
+

3

4d
ln

(
1− 3

4d

)
.

It is easy to observe ln(k − 1− 3/4d) ≤ ln(k − 1), and

(k − 1) ln

(
1− 3

4d(k − 1)

)
+

3

4d
ln

(
1− 3

4d

)
≥ − 3

2d
− 9

8d2
≥ −33

16d
≥ −9

4d
,

by using ln(1− x) > −2x for x ∈ [0, 1/2] and d ≥ 2. Eqn. (8) holds by simple calculations.
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For Eqn. (9), we similarly have
k−1∑
i=1

ln

(
1− 1

2id

)

≥ ln

(
1− 1

2d

)
+

∫ k−1

1

ln

(
1− 1

2dt

)
dt

= ln

(
1− 1

2d

)
+

[
t ln

(
1− 1

2dt

)]k−1

1

−
∫ k−1

1

1

2dt− 1
dt

= (k − 1) ln

(
1− 1

2d(k − 1)

)
− 1

2d
ln

(
k − 1− 1

2d

)
+

1

2d
ln

(
1− 1

2d

)
.

It follows that, by using ln(1− x) > −2x for x ∈ [0, 1/2] and for d ≥ 2,

(k − 1) ln

(
1− 1

2d(k − 1)

)
+

1

2d
ln

(
1− 1

2d

)
≥ −1

d
− 1

2d2
≥ − 5

4d
≥ − 3

2d
.

This completes the proof of Eqn. (9) by simple calculations.

A Proof of Lemma 1

According to the definitions of RD(h) and R∗D, we have
EΘ[RD(fSn,Θ)]−R∗D
= Ex∼DX

[
(1− 2η(x))I[η(x) < 1/2] Pr

Θ
[fSn,Θ(x) = 1]

+ (2η(x)− 1)I[η(x) > 1/2] Pr
Θ

[fSn,Θ(x) = 0]
]
.

We similarly have
EΘ1,...,Θm

[RD(fm)]−R∗D

= Ex∼DX

[
(1− 2η(x))I[η(x) < 1/2] Pr

Θ1,...,Θm

[fm(x) = 1]

+ (2η(x)− 1)I[η(x) > 1/2] Pr
Θ1,...,Θm

[fm(x) = 0]

]
.

Given any instance x ∈ X with η(x) < 1/2, we have, by Markov’s inequality,

Pr
Θ1,...,Θm

[fm(x) = 1] = Pr
Θ1,...,Θm

[
m∑
i=1

fSn,Θi
(x) ≥ m

2

]

≤ 2

m

m∑
i=1

EΘi
[fSn,Θi

(x)]

= 2 Pr
Θ

[fSn,Θ(x) = 1] ,

from the fact EΘi
[fSn,Θi

(x)] = PrΘi
[fSn,Θi

(x) = 1] for fSn,Θi
(x) ∈ {0, 1}.

For any instance x ∈ X with η(x) > 1/2, we also have

Pr
Θ1,...,Θm

[fm(x) = 0] = Pr
Θ1,...,Θm

[
m∑
i=1

fSn,Θi(x) <
m

2

]

= Pr
Θ1,...,Θm

[
m∑
i=1

I[fSn,Θi
(x) = 0] ≥ m

2

]

≤ 2

m

m∑
i=1

EΘi
[I[fSn,Θi

(x) = 0]]

= 2 Pr
Θ

[fSn,Θ(x) = 0] .

This completes the proof by combining with the trivial case η(x) = 1/2.
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B Proof of Lemma 2

For k ≥ 2, let X1, X2, · · · , Xk−1 denote k − 1 independent Bernoulli random variables with
Xi ∼ B(1/i) for i ∈ [k − 1]. For any instance x ∈ X , we have

h(C(x)) =

k−1∑
i=1

Xi and EX1,X2,··· ,Xk
[h(C(x))] =

k−1∑
i=1

1

i
.

Based on Lemma 6, we have

ln k ≤ E[h(Ci)] ≤ 1 + ln(k − 1) .

It follows that, for any λ < 0 and by Markov’s inequality,

Pr

[
k−1∑
i=1

Xi − E[Xi] ≤ −ε

]
≤ exp

(
λε− λ

k−1∑
i=1

1

i

)
E

[
exp

(
k−1∑
i=1

λXi

)]
. (10)

We have, from the independence of random variables X1, X2, . . . , Xk−1 with Xi ∼ B(1/i),

E

[
exp

(
k−1∑
i=1

λXi

)]
=

k−1∏
i=1

E [exp (λXi)] = exp

(
k−1∑
i=1

ln

(
1− 1

i
+

1

i
eλ
))

. (11)

Denote by

gi(λ) = ln

(
1− 1

i
+

1

i
eλ
)
,

and we have

g′i(λ) =
eλ

i− 1 + eλ
,

g′′i (λ) =
eλ

i− 1 + eλ
− e2λ

(i− 1 + eλ)2
≤ eλ

i− 1 + eλ
<

1

i
for λ < 0.

Based on the Taylor expansions, we have

gi(λ) ≤ gi(0) + λg′i(0) +
λ2

2i
=
λ

i
+
λ2

2i
.

Combining with Eqns. (10) and (11), this yields

Pr

[
k−1∑
i=1

Xi −
k−1∑
i=1

1

i
≤ −ε

]
≤ exp

(
λε+

λ2

2

k−1∑
i=1

1

i

)
.

By setting λ = −ε/
∑k−1
i=1 1/i, we have

Pr

[
k−1∑
i=1

Xi −
k−1∑
i=1

1

i
≤ −ε

]
≤ exp

(
− ε2

2
∑k−1
i=1 1/i

)
.

It follows that, by setting ε = ε
∑k−1
i=1 1/i and from Lemma 6,

Pr
X1,X2,...,Xk

[h(C(x)) < (1− ε) ln k] ≤ k−ε
2/2 .

In a similar manner, we have, for any λ > 0,

Pr

[
k−1∑
i=1

(Xi − E[Xi]) ≥ ε

]

≤ exp

(
−λε− λ

k−1∑
i=1

1

i

)
E

[
exp

(
k−1∑
i=1

λXi

)]

≤ exp

(
−λε+

λ2

2

k−1∑
i=1

1

i

)
.
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By setting λ = ε/
∑k−1
i=1 1/i, we have

Pr

[
k−1∑
i=1

Xi −
k−1∑
i=1

1

i
≥ ε

]
≤ exp

(
− ε2

2
∑k−1
i=1 1/i

)
.

It follows that, by setting ε = ε
∑k−1
i=1 1/i and combining with Lemma 6,

Pr
X1,X2,...,Xk−1

[h(C(x)) ≥ (1 + ε)(1 + ln(k − 1))] ≤ k−ε
2/2 ,

which completes the proof.

C Proof of Lemma 3

Given any instance x ∈ X , recall that C(x) denotes the rectangular cell containing instance x, and
X1, X2, · · · , Xk−1 characterize the random events that the node containing instance x was selected
for splitting in the construction of random tree, where Xi ∼ B(1/i).

For j ∈ [d], let `j(C(x)) denote the length of the j-th dimension of rectangular cell C(x), and it is
necessary to introduce the following random variables to analyze `j(C(x)).

• Let Y1,j , Y2,j , · · · , Yk−1,j denote k− 1 Bernoulli random variables such that Yi,j ∼ B(1/d)
for i ∈ [k− 1]. Here, Yi,j = 1 denotes the random event that the j-th coordinate of the node,
that contains the instance x, is selected for random partition under the condition Xi = 1.
We use Yi,j to illustrate the selection of coordinates with identical probability.
• Let U1,j , U2,j , · · · , Uk−1,j denote k − 1 random variables with uniform distribution over

[0, 1], i.e., Ui,j ∼ U [0, 1] for i ∈ [k − 1]. Here, we use random variable Ui,j to characterize
the uniform and random splitting of the j-th coordinate of the node containing x under the
condition XiYi,j = 1 during the i-th construction of random tree.

It is easy to upper and lower bound `j(C(x)) as follows:
k−1∏
i=1

min(1− Ui,j , Ui,j)XiYi,j ≤ `j(C(x)) ≤
k−1∏
i=1

max(1− Ui,j , Ui,j)XiYi,j . (12)

Lemma 8 For k ≥ 2 and j ∈ [d], we have

E

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))XiYi,j

]
=

k−1∏
i=1

(
1− 1

4id

)
≤ exp

(
− ln k

4d

)
, (13)

E

[
k−1∏
i=1

(min(Ui,j , 1− Ui,j))XiYi,j

]
=

k−1∏
i=1

(
1− 3

4id

)
≥ exp

(
−9 + 3 ln(k − 1)

4d

)
,(14)

and we also have, for any instance x ∈ X ,

exp

(
−9 + 3 ln(k − 1)

4d

)
≤ E[`j(C(x))] ≤ exp

(
− ln k

4d

)
.

Here, all expectations take over independent random variables X1, . . . , Xk−1, Y1,j , . . . , Yk−1,j and
U1,j , . . . , Uk−1,j with Xi ∼ B(1/i), Yi,j ∼ B(1/d) and Ui,j ∼ U(0, 1) for i ∈ [k − 1].

Proof: For Eqn. (13), we first write Zi,j = (max(Ui,j , 1− Ui,j))XiYi,j , and it follows that

EXi,Yi,j ,Ui,j
[Zi,j ] = 1− 1

id
+

1

id
EUi,j

[max(Ui,j , 1− Ui,j)] = 1− 1

4id
,

by using the fact

EUi,j [max(Ui,j , 1− Ui,j)] =

∫ 1

0

max(Ui,j , 1− Ui,j)dUi,j

=

∫ 1/2

0

(1− Ui,j)dUi,j +

∫ 1

1/2

Ui,jdUi,j =
3

4
.
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It holds that, from Lemma 6 and by using the fact 1− x ≤ e−x,

E

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))XiYi,j

]
=

k−1∏
i=1

(
1− 1

4id

)
≤ exp

(
− 1

4d

k−1∑
i=1

1

i

)
≤ exp

(
− ln k

4d

)
.

In a similar manner, we have

EXi,Yi,j ,Ui,j

[
(min(Ui,j , 1− Ui,j))XiYi,j

]
= 1− 1

id
+

1

id
EUi,j

[min(Ui,j , 1− Ui,j)] = 1− 3

4id
,

by using the fact

EUi,j
[min(Ui,j , 1− Ui,j)] =

∫ 1

0

min(Ui,j , 1− Ui,j)dUi,j

=

∫ 1/2

0

Ui,jdUi,j +

∫ 1

1/2

(1− Ui,j)dUi,j =
1

4
.

It follows that

E

[
k−1∏
i=1

(min(Ui,j , 1− Ui,j))XiYi,j

]
=

k−1∏
i=1

(
1− 3

4id

)
= exp

(
k−1∑
i=1

ln

(
1− 3

4id

))
,

which completes the proof of Eqn. (14) by combining with Lemma 7.

Lemma 9 For integer k ≥ 2, j ∈ [d] and real ε > −1, we have

Pr

[
k−1∏
i=1

(
max(Ui,j , 1− Ui,j)

)XiYi,j ≥ (1 + ε) exp

(
− ln k

8d

)]
≤ e

(1 + ε)k1/8d
,

where the probability takes over random variables X1, . . . , Xk−1, Y1,j , . . . , Yk−1,j and U1,j ,
. . . , Uk−1,j with Xi ∼ B(1/i), Yi,j ∼ B(1/d) and Ui,j ∼ U(0, 1) for i ∈ [k − 1].

Proof: Based on the Markov’s inequality and Lemma 8, we have, for any λ > 0,

Pr

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))XiYi,j ≥ (1 + ε) exp

(
− ln k

8d

)]

= Pr

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))λXiYi,j ≥ (1 + ε)λ
(

exp

(
− ln k

8d

))λ]

≤ (1 + ε)−λ exp

(
λ ln k

8d

)
× E

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))λXiYi,j

]
.

Let Zi,j = (max(Ui,j , 1− Ui,j))λXiYi,j , and we have

EXi∼B(1/i),Yi,j∼B(1/d),Ui,j∼U(0,1)[Zi,j ]

= 1− 1

id
+

1

id
EUi,j∼U(0,1)[(max(Ui,j , 1− Ui,j))λ]

≤ 1− 1

id
+

2− 1/2λ

id(λ+ 1)
,

where the last equation holds from

EUi,j∼U(0,1)[(max(Ui,j , 1− Ui,j))λ] =

∫ 1/2

0

(1− Ui,j)λdUi,j +

∫ 1

1/2

Uλi,jdUi,j =
2− 1/2λ

λ+ 1
.

It follows that, by using 1 + x ≤ ex,

E

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))λXiYi,j

]
≤ exp

(
−
k−1∑
i=1

1

id
+

k−1∑
i=1

2− 1/2λ

(λ+ 1)id

)
.
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Based on Lemma 6, we have

E

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))λXiYi,j

]
≤ exp

(
− ln k

d
+

(2− 1/2λ)(1 + ln(k − 1))

(λ+ 1)d

)
.

In a summary, we have

Pr

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))XiYi,j ≥ (1 + ε) exp

(
ln k

8d

)]

≤ exp

(
−λ ln(1 + ε)− ln k

d
+
λ ln k

8d
+

(2− 1/2λ)(1 + ln(k − 1))

(λ+ 1)d

)
.

By setting λ = 1, we have

Pr

[
k−1∏
i=1

(max(Ui,j , 1− Ui,j))XiYi,j ≥ (1 + ε) exp

(
ln k

8d

)]

≤ exp

(
− ln(1 + ε)− 7 ln k

8d
+

3(1 + ln(k − 1))

4d

)
≤ e3/4d

(1 + ε)1/8d
,

which completes the proof for dimension d ≥ 1.

Proof of Lemma 3. Based on the union bounds, we have

Pr

[
ν[C(x)] ≥ (1 + ε)

√
d

k1/8d

]

= Pr

[
ν[C(x)] ≥ (1 + ε)

√
d exp

(
− ln k

8d

)]
≤ Pr

[
∃j ∈ [d] : `j(C(x)) ≥ (1 + ε) exp

(
− ln k

8d

)]
≤ dPr

[
`1(C(x)) ≥ (1 + ε) exp

(
− ln k

8d

)]
≤ dPr

[
k−1∏
i=1

(
max(Ui,1, 1− Ui,1)

)XiYi,1 ≥ (1 + ε) exp

(
− ln k

8d

)]

≤ ed

(1 + ε)k1/8d
,

where the last inequality holds from Lemma 9. This completes the proof.

D Proof of Lemma 4

It is necessary to introduce two lemmas as follows:

Lemma 10 For any rectangular cell Ci ⊆ X , we have

Pr[x ∈ Ci] Pr [|Ci ∩ Sn| < nPr[x ∈ Ci]/2] ≤ 3/n .

Proof: From Lemma 5, we have

Pr [|Ci ∩ Sn| < nPr[x ∈ Ci]/2] ≤ exp(−nPr[x ∈ Ci]/8) ,

and it holds that
Pr[x ∈ Ci] Pr [|Ci ∩ Sn| < nPr[x ∈ Ci]/2] ≤ 8

ne
≤ 3

n
by using maxx xe

−ax ≤ 1/ae. This completes the proof.
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Lemma 11 Let X1, X2, . . . , Xm be m independent random variables with Xi ∼ B(ηi) for i ∈ [m],
and set κ =

∑m
i=1 ηi/m. For κ ∈ [0, 1/2), we have

(1− 2κ) Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi ≥
m

2

]
≤ 1√

2m
. (15)

For κ ∈ [1/2, 1], we also have

(2κ− 1) Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi <
m

2

]
≤ 1√

2m
. (16)

Proof: For any λ > 0, we have, from the Markov’s inequality,

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi ≥
m

2

]

≤ exp(−mλ/2) E
X1∼B(η1),...,Xm∼B(ηm)

[
exp

(
λ

m∑
i=1

Xi

)]

= exp(−mλ/2)

m∏
i=1

E
Xi∼B(ηi)

[exp(λXi)] .

From Xi ∼ B(ηi), we have

E [exp(λXi)] = 1− ηie0 + ηie
λ ≤ exp(ηi(e

λ − 1)) .

Write κ =
∑m
i=1 ηi/m, and it holds that

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi ≥
m

2

]
≤ exp(−mλ/2 +mκ(eλ − 1)) .

By setting λ = − ln(2κ), we have

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi ≥
m

2

]
≤ exp(m/2 +m ln(2κ)/2−mκ) . (17)

We introduce another function

g1(κ) = (1− 2κ) exp(m/2 +m ln(2κ)/2−mκ) , (18)

and the derivative is given by

g′1(κ) = exp(m/2 +m ln(2κ)/2−mκ)(2κm− 2m− 2 +m/2κ) .

Solving g′1(κ) = 0 gives the optimal solution

κ∗ =
1

2
− 1

1 +
√

2m+ 1
.

It is easy to find that, for continuous function g(κ) with κ ∈ [0, 1/2)

g1(κ) ≤ max
κ∈[0,1/2)

g1(κ) = max{g1(0), g1(1/2), g1(κ∗)} = g1(κ∗) , (19)

and we further have

g1(κ∗) =
1

1 +
√

1 + 2m
exp

(
m

1 +
√

1 + 2m
+
m

2
ln

(
1− 2

1 +
√

1 + 2m

))
≤ 1

1 +
√

1 + 2m
≤ 1√

2m
,

where the first inequality holds from ln(1− x) ≤ −x. Hence, Eqn. (15) holds from Eqns. (17)-(19).
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For Eqn. (16), we similarly have, by using Markov’s inequality,

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi <
m

2

]
≤ exp(−mλ/2 +mκ(eλ − 1))

for λ ≤ 0. By setting λ = − ln(2κ) for κ ∈ [1/2, 1], we have

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑
i=1

Xi <
m

2

]
≤ exp(m/2 +m ln(2κ)/2−mκ) . (20)

We also introduce another function

g2(κ) = (2κ− 1) exp(m/2 +m ln(2κ)/2−mκ) , (21)

and solving g′2(κ) = 0 gives the optimal solution

κ∗ =
1

2
+

1

1 +
√

2m+ 1
.

It is easy to find that, for continuous function g(κ) with κ ∈ [1/2, 1],

g2(κ) ≤ max
κ∈[0,1/2)

g(κ) = max{g2(1/2), g2(1), g(κ∗)} = g2(κ∗) ≤ 1/
√

2m .

This proves Eqn. (16) by combining with Eqns. (20) and (21).

Proof of Lemma 4. This lemma holds obviously when Pr[x ∈ Ci] = 0, and it suffices to consider
Pr[x ∈ Ci] > 0. We introduce the random events

Γ1 = {|Ci ∩ Sn| ≥ nPr[x ∈ Ci]/2} ,
Γ2 = {|Ci ∩ Sn| < nPr[x ∈ Ci]/2} .

Based on the law of total probability, we have

Pr
Sn,(x,y)

[fΘ,Sn(x) 6= y|x ∈ Ci]

= Pr
Sn,(x,y)

[fΘ,Sn
(x) 6= y|x ∈ Ci,Γ1] Pr[Γ1] + Pr

Sn,(x,y)
[fΘ,Sn

(x) 6= y|x ∈ Ci,Γ2] Pr[Γ2] .

It follows that, from Lemma 10,

Pr
Sn,(x,y)

[fΘ,Sn(x) 6= y|x ∈ Ci] Pr[x ∈ Ci]

≤ Pr
Sn,(x,y)

[fΘ,Sn
(x) 6= y|x ∈ Ci,Γ1] Pr[x ∈ Ci] Pr[Γ1] + 3/n . (22)

To bound the term PrSn,(x,y) [fΘ,Sn(x) 6= y|x ∈ Ci,Γ1], we further introduce the set Sin of training
examples as follows:

Sin = {(xj , yj) : (xj , yj) ∈ Sn and xj ∈ Ci} ,
i.e., the training examples falling into the cell Ci. Under the condition Γ1, we have

m := |Sin| = |Sn ∩ Ci| ≥ nPr[Ci]/2 . (23)

Without loss of generality, we denote by Sin = {(x1, y1), (x2, y2), . . . , (xm, ym)}. For instance
x ∈ Ci, its label can be predicted by random forests classifier as

fΘ,Sn
(x) = I

 m∑
j=1

yj ≥ m/2

 .

Conditioned on x,x1, x2, . . . ,xm, we can observe that y ∼ B(η(x)) and yj ∼ B(η(xj)) for
j ∈ [m], and set κ =

∑m
j=1 η(xj)/m. It follows that

Pr
y1,...,ym,y

[fΘ,Sn(x) 6= y|x1, . . . ,xn]

= η(x) Pr
y1,...,ym

 m∑
j=1

yj <
m

2

+ (1− η(x)) Pr
y1,...,ym

 m∑
j=1

yj ≥
m

2

 . (24)
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If κ ∈ [0, 1/2), then we have, from Eqn. (24)

Pr
y1,...,ym,y

[fΘ,Sn
(x) 6= y] = η(x) + (1− 2η(x)) Pr

y1,...,ym

 m∑
j=1

yj ≥
m

2

 ,

and it follows that:

• If η(x) = 1/2, then we have 1− 2η(x) = 0 and

Pr
y1,...,ym,y

[fΘ,Sn(x) 6= y] = η(x) = min{η(x), 1− η(x)} .

• If η(x) > 1/2, then we have 1− 2η(x) < 0, and for κ ∈ [0, 1/2), we also have

Pr
y1,...,ym,y

[fΘ,Sn
(x) 6= y] < η(x) = min{η(x), 1− η(x)}+ 2η(x)− 1

≤ min{η(x), 1− η(x)}+ 2|η(x)− κ| .

• If η(x) < 1/2, then we have

Pr
y1,...,ym,y

[fΘ,Sn(x) 6= y]

≤ min{η(x), 1− η(x)}+ 2|η(x)− κ|+ (1− 2κ) Pr
y1,...,ym

 m∑
j=1

yj ≥
m

2


≤ min{η(x), 1− η(x)}+ 2|η(x)− κ|+ 1/

√
2m ,

where the last inequality holds from κ ∈ [0, 1/2) and Eqn. (15) in Lemma 11.

In a summary, we have, for κ ∈ [0, 1/2),

Pr
y1,...,ym,y

[fΘ,Sn
(x) 6= y] ≤ min{η(x), 1− η(x)}+ 2|η(x)− κ|+ 1/

√
2m .

In a similar manner, we have, for κ ∈ [1/2, 1],

Pr
y1,...,ym,y

[fΘ,Sn
(x) 6= y] = 1− η(x) + (2η(x)− 1) Pr

y1,...,ym

 m∑
j=1

yj ≥
m

2


≤ min{η(x), 1− η(x)}+ 2|η(x)− κ|+ 1/

√
2m .

From the L-Lipschtiz assumption, we have, for x,x1, . . . ,xm ∈ Ci,

|η(x)− κ| =

∣∣∣∣∣∣η(x)−
m∑
j=1

η(xj)

m

∣∣∣∣∣∣ ≤
m∑
j=1

|η(x)− η(xj)| /m ≤ Lν(Ci) .

It follows that

Pr
y1,...,ym,y

[fΘ,Sn
(x) 6= y] ≤ min{η(x), 1− η(x)}+ 2Lν(Ci) + 1/

√
2m .

Hence, we have, from Eqn. (23)

Pr
Sn,(x,y)

[fΘ,Sn
(x) 6= y|x ∈ Ci,Γ1] Pr[Ci] Pr[Γ1]

≤ Ex[min{η(x), 1− η(x)}|x ∈ Ci] Pr[Ci] + 2Lν(Ci) Pr[Ci] +
√

Pr[Ci]/n ,

which completes the proof by combining with Eqn. (22).

E Proof of Theorem 2

We first introduce some lemmas before the proof of Theorem 2.
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Lemma 12 For integer k ≥ 2, d ≥ 2, j ∈ [d] and real ε > −1, we have

Pr

[
k−1∏
i=1

(
1

2

)XiYi,j

≥ (1 + ε) exp

(
− ln k

4d

)]
≤ 3/2

(1 + ε)3/2k1/3.6846d
,

where the probability takes over random variablesX1, . . . , Xk−1, Y1,j , . . . , Yk−1,j withXi ∼ B(1/i)
and Yi,j ∼ B(1/d) for i ∈ [k − 1].

Proof: For any λ > 0, we have, based on the Markov’s inequality,

Pr

[
k−1∏
i=1

(
1

2

)XiYi,j

≥ (1 + ε) exp

(
− ln k

4d

)]

= Pr

[
k−1∏
i=1

(
1

2

)λXiYi,j

≥ (1 + ε) exp

(
− ln k

4d

)]

≤ (1 + ε)−λ exp

(
λ ln k

4d

)
× E

[
k−1∏
i=1

(
1

2

)λXiYi,j
]
.

From Xi ∼ B(1/i) and Yi,j ∼ B(1/d) (i ∈ [k − 1]), we have, by using 1 + x ≤ ex,

E

[
k−1∏
i=1

(
1

2

)λXiYi,j
]

=

k−1∏
i=1

(
1− 1

id
+

1

id2λ

)
≤ exp

(
−
k−1∑
i=1

1

id
+

k−1∑
i=1

1

id2λ

)
,

which yields that

Pr

[
k−1∏
i=1

(
1

2

)XiYi,j

≥ (1 + ε) exp

(
− ln k

4d

)]

≤ exp

(
−λ ln(1 + ε) +

λ ln k

4d
−
k−1∑
i=1

1

id
+

k−1∑
i=1

1

id2λ

)
.

By setting λ = 3/2, we have

Pr

[
k−1∏
i=1

(max(Ui, 1− Ui))XiYi,j ≥ (1 + ε) exp

(
− ln k

4d

)]

≤ exp

(
−3

2
ln(1 + ε)− 5 ln k

8d
+

1 + ln(k − 1)

2
√

2d

)
≤ e1/(2

√
2d)

(1 + ε)3/2k1/3.6846d
,

which completes the proof by using e1/(2
√

2d) ≤ 3/2.

Based on Lemma 12, we can bound the diameter ν(C(x)) as follows:

Lemma 13 For real ε > −1 and instance x ∈ X , we have

Pr
[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
,

where the probability takes over random selection of splitting leaves and dimensions.

Proof: For j ∈ [d], recall that `j(C(x)) denotes the length of the j-th coordinate of C(x) for j ∈ [d].
Let X1, . . . , Xk−1, Y1,j , . . . , Yk−1,j be random variables with Xi ∼ B(1/i) and Yi,j ∼ B(1/d) for
i ∈ [k − 1]. According to the construction of pure random tree with midpoint split, we have

`j(C(x)) = 1/2XiYi,j .
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Based on Lemma 12, we have

Pr

[
`j(C(x)) ≥ (1 + ε) exp

(
− ln k

4d

)]
≤ 3/2

(1 + ε)3/2k1/3.6846d
. (25)

Based on union bounds, we have

Pr
[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]
= Pr

[
ν[C(x)] ≥ (1 + ε)

√
d exp

(
− ln k

4d

)]
≤ Pr

[
∃j ∈ [d] : `j(C(x)) ≥ (1 + ε) exp

(
− ln k

4d

)]
≤ dPr

[
`1(C(x)) ≥ (1 + ε) exp

(
− ln k

4d

)]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
,

where the last inequality holds from Eqn. (25).

Proof of Theorem 2 Similarly to Theorem 1, we first study the convergence rate of individual random
tree classifier fSn,Θ(x). Based on the law of total probability, we have

RD(fSn,Θ) = Pr
(x,y)∼D

[fΘ,Sn
(x) 6= y] = Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn

(x) 6= y]

]
.

For random forests classifier fΘ,Sn
(x), we associate a set as follows

Λ2 =
{
x ∈ X : ν(C(x)) ≥ (1 + ε)

√
d/k1/4d

}
, (26)

and it follows that

RD(fSn,Θ) ≤ Ex∼DX [I[x ∈ Λ2]] + Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn

(x) 6= y|x]I[x /∈ Λ2]

]
. (27)

Notice that C1, C2, . . . , Ck is a partition of the instance space X , and we have

Ex∼DX

[
Pr

y∼B(η(x))
[fΘ,Sn

(x) 6= y]I[x /∈ Λ2]

]
=

k∑
i=1

Pr[fΘ,Sn
(x) 6= y|x ∈ Ci] Pr[x ∈ Ci]I[Ci 6⊆ Λ2] ,

where we use the fact C(x) = Ci for every x ∈ Ci. It follows that, from Eqns. (26) and (27),
ESn,Θ [RD(fSn,Θ)]

≤ Ex∼DX

[
Pr
Sn,Θ

[
ν[C(x)] ≥ (1 + ε)

√
d

(1 + k)1/4d

]]
(28)

+ EΘ

[
k∑
i=1

ESn [Pr[fΘ,Sn(x) 6= y|x ∈ Ci]] Pr[x ∈ Ci]I[Ci 6⊆ Λ2]

]
. (29)

From Lemma 13, Eqn. (28) can be further upper bounded by

Ex∼DX

[
Pr
Sn,Θ

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
. (30)

Based on Lemma 4 and Eqn. (26), we can bound the term in Eqn. (29) as
k∑
i=1

ESn
[Pr[fΘ,Sn

(x) 6= y|x ∈ Ci]] Pr[x ∈ Ci]I[Ci 6⊆ Λ2]

≤ R∗D +
2(1 + ε)L

√
d

k1/4d
+

√
k

n
+

3k

n
. (31)
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It follows that, by combining with Eqns. (28)-(31),

ESn,Θ [RD(fSn,Θ)] ≤ R∗D +
3d/2

(1 + ε)3/2k1/3.6846d
+

2(1 + ε)L
√
d

k1/4d
+

√
k

n
+

3k

n
.

By setting

ε =

(
9
√
d

8L
k

1
4d−

1
3.6848d

)2/5

− 1 ,

we have, by simple algebraic calculations,

ESn,Θ [RD(fSn,Θ)] ≤ R∗D +
4L3/5d7/10

k1/3.87d
+

√
k

n
+

3k

n
,

which completes the proof by combining with Lemma 1.

F Proof of Theorem 3

We begin with a lemma as follows:

Lemma 14 Let Sn be a training data drawn i.i.d. from distributionD. For any rectangle cell C ⊆ X
and integer τ ≥ 2, we have

Pr[x ∈ C] Pr[|C ∩ Sn| ≤ τ ] ≤ τ

n

(
1 +

√
2

τ

)
.

Proof: For any δ ∈ (0, 1), if τ ≤ (1− δ)nPr[x ∈ C], then we have, based on Lemma 5,

Pr[|C ∩ Sn| ≤ τ ] ≤ Pr[|C ∩ Sn| ≤ (1− δ)nPr[x ∈ C]] ≤ exp(−nPr[x ∈ C]δ2/2) .

It follows that, by using maxx xe
−ax = 1/ae,

Pr[x ∈ C] Pr[|C ∩ Sn| ≤ τ ] ≤ Pr[x ∈ C] exp(−nPr[x ∈ C]δ2/2) ≤ 2

neδ2
.

If τ ≥ (1− δ)nPr[x ∈ C], then we have

Pr[x ∈ C] Pr[|C ∩ Sn| ≤ τ ] ≤ Pr[x ∈ C] ≤ τ

n(1− δ)
.

By setting δ = (
√

1 + 2τe− 1)/τe, we have

τ

n(1− δ)
=

2

neδ2
=
τ

n
× τe+ 1 +

√
2τe+ 1

τe
≤ τ

n

(
1 +

√
2

τ

)
for τ ≥ 2,

which completes the proof.

Proof of Theorem 3. Similarly to the proof of Theorem 1, we first present the convergence rate
of individual random tree classifier fSn,Θ(x) according to Algorithm 1. Let C1, C2, . . . , Ck be a
partition of instance space X , which are associated with k leaves of random tree. Based on the law of
total probability, we have the classification error of random forests classifier fΘ,Sn

(x) with respect
to distribution D

RD(fSn,Θ) = Pr
(x,y)∼D

[fΘ,Sn
(x) 6= y]

=

k∑
i=1

Pr[fΘ,Sn
(x) 6= y|x ∈ Ci] Pr[x ∈ Ci] .

We introduce a set

Λ3 = {Ci : all training examples in Ci have the same label}.
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It follows that

RD(fSn,Θ) =

k∑
i=1

Pr[fΘ,Sn(x) 6= y|x ∈ Ci] Pr[x ∈ Ci]I[Ci ∈ Λ3] (32)

+

k∑
i=1

Pr[fΘ,Sn
(x) 6= y|x ∈ Ci] Pr[x ∈ Ci]I[Ci /∈ Λ3] . (33)

If Ci ∈ Λ3, then we have, for τ ≥ 2,

Pr[Ci] Pr
[
fΘ,Sn(x) 6= y

∣∣∣x ∈ Ci]
= Pr[Ci] Pr[fΘ,Sn

(x) 6= y, |Ci ∩ Sn| ≤ τ |x ∈ Ci]
+ Pr[Ci] Pr[fΘ,Sn

(x) 6= y, |Ci ∩ Sn| > τ |x ∈ Ci]
≤ Pr[Ci] Pr[|Ci ∩ Sn| ≤ τ ]

+ Pr[fΘ,Sn
(x) 6= y

∣∣|Ci ∩ Sn| > τ,x ∈ Ci] Pr[|Ci ∩ Sn| > τ,x ∈ Ci] .
From Ci ∈ Λ3, all training examples in Ci have the same label, and we assume positive training
examples in Ci without loss of generality. Then, we have fΘ,Sn

(x) = 1 for all x ∈ Ci. Denote by
the expected conditional probability over cell Ci

η̄(Ci) = E[η(x)|x ∈ Ci] .
If η̄(Ci) ≥ 1− ε, then we have

Pr[fΘ,Sn
(x) 6= y

∣∣|Ci ∩ Sn| > τ,x ∈ Ci] Pr[|Ci ∩ Sn| > τ,x ∈ Ci] ≤ ε ;

If η̄(Ci) < 1− ε and Ci ∈ Λ3, then we have

Pr[fΘ,Sn
(x) 6= y

∣∣|Ci ∩ Sn| > τ,x ∈ Ci] Pr[|Ci ∩ Sn| > τ,x ∈ Ci]
≤ Pr[|Ci ∩ Sn| > τ ] ≤ exp(−τε) .

It follows that, for Ci ∈ Λ3,

Pr[Ci] Pr
[
fΘ,Sn

(x) 6= y
∣∣∣x ∈ Ci] ≤ Pr[Ci] Pr[|Ci ∩ Sn| ≤ τ ] + Pr[Ci](ε+ exp(−τε)) .

By setting ε = (ln τ)/τ , we have

Pr[Ci] Pr
[
fΘ,Sn

(x) 6= y
∣∣∣x ∈ Ci] ≤ Pr[Ci] Pr[|Ci ∩ Sn| ≤ τ ] + Pr[Ci]

1 + ln τ

τ
.

It follows that, by combining with Lemma 14 and Eqns. (32)-(33)

ESn,Θ[RD(fSn,Θ)] ≤ kτ

n

(
1 +

√
2

τ

)
+

1

τ
(1 + ln τ)

+

k∑
i=1

ESn,Θ [Pr[fΘ,Sn(x) 6= y|x ∈ Ci] Pr[x ∈ Ci]I[Ci /∈ Λ3]] . (34)

For Ci /∈ Λ3, we have different labels in Ci. It follows the height h(Ci) ≥ log2 k−2 and the splitting
times for each dimension are more than (log2 k − 2)/d− 1 from the construction of random tree in
Algorithm 1. Hence, we upper bound the diameter of rectangle cell Ci as follows:

ν(Ci) ≤
√
d

(
1

2

)(log2 k−2)/d−1

=
21+2/d

√
d

k1/d
≤ 8
√
d

k1/d
.

It follows that, from Lemma 4 and Eqn. (34),

ESn,Θ[RD(fSn,Θ)]

≤ R∗D +
kτ

n

(
1 +

√
2

τ

)
+

1

τ
(1 + ln τ) +

2L
√
d

k1/d
+

3k

n
+

k∑
i=1

√
Pr[Ci]

n

≤ R∗D +
kτ

n

(
1 +

√
2

τ

)
+

1

τ
(1 + ln τ) +

2L
√
d

k1/d
+

3k

n
+

√
k

n
.

25



We have, by setting τ =
⌈√

n lnn/k
⌉

and algebra calculations,

ESn,Θ [RD(fSn,Θ)]

≤ R∗D +
kτ

n
+

√
2τk

n
+

1

τ
(1 + ln τ) +

2L
√
d

k1/d
+

3k

n
+

√
k

n

≤ R∗D +

√
k lnn

n
+

4

√
4k3 lnn

n3
+

√
k

n lnn

(
1 +

1

2
ln
n lnn

k

)
+

6k

n
+

√
k

n
+

2L
√
d

k1/d

≤ R∗D +

√
k lnn

n
+

4

√
4k3 lnn

n3
+

√
k

n lnn

(
1 +

1

2
ln
n lnn

k

)
+

6k

n
+

√
k

n
+

2L
√
d

k1/d

≤ R∗D + 2

√
k lnn

n
+

4

√
4k3 lnn

n3
+

6k

n
+ 2

√
k

n
+

2L
√
d

k1/d
(n ≥ 4, k ≥ 2),

which completes the proof by combining with Lemma 1.

G Proof of Theorem 4

The proof is essentially similar to that of Theorems 3. Given a random tree classifier fΘ,Sn
(x) with k

leaves (k ≤ k0), let C1, C2, . . . , Ck be a partition of the instance space X . Based on the law of total
probability, we have the classification error of random forests classifier fΘ,Sn(x) over distribution D

RD(fSn,Θ) = Pr
(x,y)∼D

[fΘ,Sn
(x) 6= y]

=

k∑
i=1

Pr[fΘ,Sn
(x) 6= y|x ∈ Ci] Pr[x ∈ Ci] . (35)

For any i ∈ [k] and τ ≥ 1, we have

Pr[Ci] Pr
[
fΘ,Sn

(x) 6= y
∣∣∣x ∈ Ci]

= Pr[Ci] Pr[fΘ,Sn
(x) 6= y, |Ci ∩ Sn| ≤ τ |x ∈ Ci] (36)

+ Pr[Ci] Pr[fΘ,Sn
(x) 6= y, |Ci ∩ Sn| > τ |x ∈ Ci] . (37)

From Lemma 14, we have

ESn
[Pr[Ci] Pr[fΘ,Sn

(x) 6= y, |Ci ∩ Sn| ≤ τ |x ∈ Ci]] ≤
τ

n

(
1 +

√
2

τ

)
. (38)

From the assumption in Theorem 4, we see that all training examples in each Ci have the same
label, and we assume positive training examples in Ci without loss of generality. It follows that
fΘ,Sn

(x) = 1 for all x ∈ Ci. Denote by

η̄(Ci) = E[η(x)|x ∈ Ci]
the expected conditional probability over the rectangle cell Ci. If η̄(Ci) ≥ 1− ε, then we have

Pr[fΘ,Sn
(x) 6= y, |Ci ∩ Sn| > τ

∣∣x ∈ Ci] ≤ ε ;

If η̄(Ci) < 1− ε and Ci ∈ Λ3, then we have

Pr[fΘ,Sn
(x) 6= y, |Ci ∩ Sn| > τ

∣∣x ∈ Ci] ≤ (1− ε)τ ≤ exp(−τε) .
It follows that, by setting ε = (ln τ)/τ ,

Pr[fΘ,Sn(x) 6= y, |Ci ∩ Sn| > τ
∣∣x ∈ Ci] ≤ ε+ exp(−τε) ≤ (1 + ln τ)/τ . (39)

Combining with Eqns. (35)-(39), we have

ESn,Θ[RD(fSn,Θ)] ≤ kτ

n

(
1 +

√
2

τ

)
+

1

τ
(1 + ln τ)

≤ k0τ

n

(
1 +

√
2

τ

)
+

1

τ
(1 + ln τ) .
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By setting τ =
⌈√

n lnn/k0

⌉
and simple algebraic calculations, we have

ESn,Θ[RD(fSn,Θ)] ≤ 2

√
k0 lnn

n
+

4

√
4k3

0 lnn

n3
+

3k0

n
+

√
k0

n lnn
,

which completes the proof by combining with Lemma 1.
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