Supplementary Material

Proofs This section provides some formal justification, absent from the main text, for several theoretical results.

Proof of Lemma 1. For a,b,c,d>0, the inequality $a+b\leq a((c+d)/c)^{1-q}+b((c+d)/d)^{1-q}$ written for $a=x_j,\,b=x_j',\,c=(\mathbf{Z}\mathbf{x})_j$, and $d=(\mathbf{Z}\mathbf{x}')_j$ and rearranged yields

$$\frac{x_j + x_j'}{(\mathbf{Z}(\mathbf{x} + \mathbf{x}'))_j^{1-q}} \le \frac{x_j}{(\mathbf{Z}\mathbf{x})_j^{1-q}} + \frac{x_j'}{(\mathbf{Z}\mathbf{x}')_j^{1-q}},\tag{22}$$

which remains true if $x_i = 0$ or $x'_i = 0$ (or both). Summing over $j \in [1:N]$ gives the result. \square

Proof of Theorem 2. We start by recalling that, given a convex subset $\mathcal C$ and a twice continuously differentiable function f defined on $\mathcal C$, the function f is convex, respectively concave, if and only if its Hessian is positive semidefinite on $\operatorname{int}(\mathcal C)$, respectively negative semidefinite on $\operatorname{int}(\mathcal C)$. We take here $\mathcal C = \mathbb R^N_+$ and $f(\mathbf x) = \|\mathbf x\|_{\mathbf Z,q}^q = \sum_{k=1}^N x_k(\mathbf Z\mathbf x)_k^{q-1}$ for $\mathbf x \in \mathbb R^N_+$. Based on $\partial(\mathbf Z\mathbf x)_k/\partial x_i = Z_{k,i}$, a standard calculation gives

$$\frac{\partial f}{\partial x_i} = (\mathbf{Z}\mathbf{x})_i^{q-1} - (1-q) \sum_k Z_{k,i} x_k (\mathbf{Z}\mathbf{x})_k^{q-2},\tag{23}$$

$$\frac{\partial f}{\partial x_i \partial x_i} = -(1-q) \left[Z_{i,j} (\mathbf{Z} \mathbf{x})_i^{q-2} + Z_{j,i} (\mathbf{Z} \mathbf{x})_j^{q-2} - (2-q) \sum_k Z_{k,i} Z_{k,j} x_k (\mathbf{Z} \mathbf{x})_k^{q-3} \right]. \tag{24}$$

Thus, setting $\mathbf{D}(\mathbf{x}) = \mathrm{diag}[(\mathbf{Z}\mathbf{x})_{\ell}^{q-2}, \ell = 1, \dots, N]$ and $\mathbf{D}'(\mathbf{x}) = \mathrm{diag}[x_{\ell}(\mathbf{Z}\mathbf{x})_{\ell}^{q-3}, \ell = 1, \dots, N]$, concavity holds if and only if $\mathbf{M}(\mathbf{x}) := \mathbf{D}(\mathbf{x})\mathbf{Z} + \mathbf{Z}^{\top}\mathbf{D}(\mathbf{x}) - (2 - q)\mathbf{Z}^{\top}\mathbf{D}'(\mathbf{x})\mathbf{Z} \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathrm{int}(\mathbb{R}_{+}^{N})$, while convexity holds if and only if $\mathbf{M}(\mathbf{x}) \preceq \mathbf{0}$ for all $\mathbf{x} \in \mathrm{int}(\mathbb{R}_{+}^{N})$. We are going to show that $\mathbf{M}(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathrm{int}(\mathbb{R}_{+}^{N})$ whenever $\|\mathbf{Z} - \mathbf{I}\|_{2 \to 2} \leq q/2$ and that there is no $\mathbf{x} \in \mathrm{int}(\mathbb{R}_{+}^{N})$ for which $\mathbf{M}(\mathbf{x}) \preceq \mathbf{0}$ when \mathbf{Z} is symmetric. We shall establish the latter result first. Dropping the dependence of \mathbf{M} on $\mathbf{x} \in \mathrm{int}(\mathbb{R}_{+}^{N})$ for ease of notation, we observe that

$$M_{i,i} = 2(\mathbf{Z}\mathbf{x})_i^{q-2} - (2-q)\sum_k Z_{k,i}^2 x_k (\mathbf{Z}\mathbf{x})_k^{q-3}.$$
 (25)

Choosing $i \in [1:N]$ such that $(\mathbf{Z}\mathbf{x})_i^{q-3} = \max_{k \in [1:N]} (\mathbf{Z}\mathbf{x})_k^{q-3}$ and keeping in mind that $Z_{k,i}^2 \leq Z_{k,i}$ since $Z_{k,i} \in [0,1]$, we obtain

$$M_{i,i} \ge 2(\mathbf{Z}\mathbf{x})_i^{q-2} - (2-q) \left(\sum_k Z_{k,i} x_k\right) (\mathbf{Z}\mathbf{x})_i^{q-3}$$
 (26)

$$= 2(\mathbf{Z}\mathbf{x})_{i}^{q-2} - (2-q)(\mathbf{Z}^{\top}\mathbf{x})_{i}(\mathbf{Z}\mathbf{x})_{i}^{q-3} = q(\mathbf{Z}\mathbf{x})_{i}^{q-2} > 0.$$
 (27)

The matrix \mathbf{M} , having a positive diagonal element, cannot be negative semidefinite, as announced. To establish that it is positive semidefinite when \mathbf{Z} is close to \mathbf{I} , we shall prove that $\langle \mathbf{M}\mathbf{v}, \mathbf{v} \rangle \geq 0$ for all $\mathbf{v} \in \mathbb{R}^N$. Also dropping the dependence of \mathbf{D} and \mathbf{D}' on $\mathbf{x} \in \operatorname{int}(\mathbb{R}^N_+)$, we write

$$\langle \mathbf{M} \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{D} \mathbf{Z} \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{Z}^{\top} \mathbf{D} \mathbf{v}, \mathbf{v} \rangle - (2 - q) \langle \mathbf{Z}^{\top} \mathbf{D}' \mathbf{Z} \mathbf{v}, \mathbf{v} \rangle$$
 (28)

$$= 2\langle \mathbf{D}\mathbf{v}, \mathbf{Z}\mathbf{v} \rangle - (2 - q)\langle \mathbf{D}'\mathbf{Z}\mathbf{v}, \mathbf{Z}\mathbf{v} \rangle \ge 2\langle \mathbf{D}\mathbf{v}, \mathbf{Z}\mathbf{v} \rangle - (2 - q)\langle \mathbf{D}\mathbf{Z}\mathbf{v}, \mathbf{Z}\mathbf{v} \rangle, \tag{29}$$

where the last step used the fact that $\mathbf{D}' \preceq \mathbf{D}$ (by virtue of $x_{\ell} \leq (\mathbf{Z}\mathbf{x})_{\ell}$ for all $\ell \in [1:N]$, see (5)). Decomposing \mathbf{Z} as $\mathbf{Z} = \mathbf{I} + \widetilde{\mathbf{Z}}$ (with $\widetilde{\mathbf{Z}} \geq 0$), a straightforward calculation and then the Cauchy–Schwarz inequality gives

$$\langle \mathbf{M}\mathbf{v}, \mathbf{v} \rangle \ge q \langle \mathbf{D}\mathbf{v}, \mathbf{v} \rangle - 2(1-q) \langle \mathbf{D}\mathbf{v}, \widetilde{\mathbf{Z}}\mathbf{v} \rangle - (2-q) \langle \mathbf{D}\widetilde{\mathbf{Z}}\mathbf{v}, \widetilde{\mathbf{Z}}\mathbf{v} \rangle$$
 (30)

$$\geq q\langle \mathbf{D}\mathbf{v}, \mathbf{v}\rangle - 2(1-q)\langle \mathbf{D}\mathbf{v}, \mathbf{v}\rangle^{1/2}\langle \mathbf{D}\widetilde{\mathbf{Z}}\mathbf{v}, \widetilde{\mathbf{Z}}\mathbf{v}\rangle^{1/2} - (2-q)\langle \mathbf{D}\widetilde{\mathbf{Z}}\mathbf{v}, \widetilde{\mathbf{Z}}\mathbf{v}\rangle.$$
(31)

Let us for the moment make the assumption that

$$\langle \mathbf{D}\widetilde{\mathbf{Z}}\mathbf{v}, \widetilde{\mathbf{Z}}\mathbf{v} \rangle \le \frac{q^2}{4} \langle \mathbf{D}\mathbf{v}, \mathbf{v} \rangle \quad \text{for all } \mathbf{v} \in \mathbb{R}^N.$$
 (32)

This assumption allows us to derive that, for all $\mathbf{v} \in \mathbb{R}^N$,

$$\langle \mathbf{M}\mathbf{v}, \mathbf{v} \rangle \ge q \left(1 - (1 - q) - \frac{(2 - q)q}{4} \right) \langle \mathbf{D}\mathbf{v}, \mathbf{v} \rangle \ge q \left(q - \frac{q}{2} \right) \langle \mathbf{D}\mathbf{v}, \mathbf{v} \rangle \ge 0,$$
 (33)

i.e., that $\mathbf{M} \succeq \mathbf{0}$, as announced. It now remains to verify (32). Stated as $\widetilde{\mathbf{Z}}^{\top} \mathbf{D} \widetilde{\mathbf{Z}} \preceq (q^2/4) \mathbf{D}$, it also reads, after multiplying on both sides by $\mathbf{D}^{-1/2}$,

$$\mathbf{C}^{\top}\mathbf{C} \leq \frac{q^2}{4}\mathbf{I}, \qquad \mathbf{C} := \mathbf{D}^{1/2}\widetilde{\mathbf{Z}}\mathbf{D}^{-1/2}.$$
 (34)

This is equivalent to $\lambda_i(\mathbf{C}^{\top}\mathbf{C}) = \sigma_i(\mathbf{C})^2 \leq q^2/4$ for all $i \in [1:N]$, i.e., to $\sigma_{\max}(\mathbf{C}) \leq q/2$. In view of $\sigma_{\max}(\mathbf{C}) = \sigma_{\max}(\mathbf{D}^{1/2}\widetilde{\mathbf{Z}}\mathbf{D}^{-1/2}) = \sigma_{\max}(\widetilde{\mathbf{Z}}) = \|\widetilde{\mathbf{Z}}\|_{2\to 2} = \|\mathbf{Z} - \mathbf{I}\|_{2\to 2}$, this indeed reduces to the announced condition $\|\mathbf{Z} - \mathbf{I}\|_{2\to 2} \leq q/2$.

Proof of Proposition 3. Since the minimum of a concave function on a convex set is achieved at an extreme point of the set, there is a minimizer \mathbf{x}^{\sharp} of (MinDiv) which is a vertex of the polygonal set $\Delta^N \cap \mathbf{A}^{-1}(\{\mathbf{y}\}) = \underline{\mathbf{x}} + \{\mathbf{u} \in \ker \mathbf{A} : \underline{\mathbf{x}} + \mathbf{u} \geq 0\}$. This set has dimension $d \geq N - m$. Since a vertex is obtained by turning d of the N inequalities $\underline{x}_j + u_j \geq 0$ into equalities, we see that x_j^{\sharp} is positive $N - d \leq m$ times, i.e., that \mathbf{x}^{\sharp} is m-sparse. The inequality $\|\mathbf{x}^{\sharp}\|_{\mathbf{Z},q}^q \leq m$ follows from (8).

Proof of Proposition 4. We simply write, using Hölder's inequality and the defining property of $\mathbf{x}^{(n+1)}$.

$$\sum_{k=1}^{K} (\widetilde{x}_{k}^{(n+1)} + \varepsilon)^{q} = \sum_{k=1}^{K} \frac{(\widetilde{x}_{k}^{(n+1)} + \varepsilon)^{q}}{(\widetilde{x}_{k}^{(n)} + \varepsilon)^{q(1-q)}} (\widetilde{x}_{k}^{(n)} + \varepsilon)^{q(1-q)}$$

$$\leq \left[\sum_{k=1}^{K} \frac{\widetilde{x}_{k}^{(n+1)} + \varepsilon}{(\widetilde{x}_{k}^{(n)} + \varepsilon)^{1-q}} \right]^{q} \left[\sum_{k=1}^{K} (\widetilde{x}_{k}^{(n)} + \varepsilon)^{q} \right]^{1-q}$$

$$\leq \left[\sum_{k=1}^{K} \frac{\widetilde{x}_{k}^{(n)} + \varepsilon}{(\widetilde{x}_{k}^{(n)} + \varepsilon)^{1-q}} \right]^{q} \left[\sum_{k=1}^{K} (\widetilde{x}_{k}^{(n)} + \varepsilon)^{q} \right]^{1-q}$$

$$= \sum_{k=1}^{K} (\widetilde{x}_{k}^{(n)} + \varepsilon)^{q}.$$

Referenced Claims This section collects the justifications of a few facts that were mentioned in passing in the text, namely: 1) an additional property of the diversity, 2) a counterexample to the concavity of $\|\cdot\|_{\mathbf{Z},q}^q$, and 3) the NP-hardness of (MinDiv) with $\mathbf{Z} = \mathbf{I}$.

1) We are concerned here with the effect on diversity of the merging of two communities.

Proposition 6. Let two communities be described by concentration vectors $\mathbf{x} \in \Delta^N$ and $\mathbf{x}' \in \Delta^N$, respectively, and let $t \in (0, \infty)$ represent the relative abundance of the second relative to the first. For $q \in (0, 1)$, the community obtained by merging these two communities, whose concentration vector is

$$\mathbf{x}'' = \frac{1}{1+t}\mathbf{x} + \frac{t}{1+t}\mathbf{x}',\tag{36}$$

has diversity bounded from above as

$$D_{\mathbf{Z},q}(\mathbf{x}'') \le \left[\frac{1}{(1+t)^q} D_{\mathbf{Z},q}(\mathbf{x})^{1-q} + \frac{t^q}{(1+t)^q} D_{\mathbf{Z},q}(\mathbf{x}')^{1-q} \right]^{\frac{1}{1-q}}$$
(37)

and bounded from below, in case $\|\cdot\|_{\mathbf{Z},q}^q$ is concave, as

$$D_{\mathbf{Z},q}(\mathbf{x}'') \ge \left[\frac{1}{1+t} D_{\mathbf{Z},q}(\mathbf{x})^{1-q} + \frac{t}{1+t} D_{\mathbf{Z},q}(\mathbf{x}')^{1-q} \right]^{\frac{1}{1-q}}.$$
 (38)

Remark. If the communities are disjoint and totally dissimilar, then (37) becomes an equality — this is the modularity result proved in [14, Prop. A10]. As for (38), in which equality obviously occurs when $\mathbf{x} = \mathbf{x}'$, it implies the intuitive result that $D_{\mathbf{Z},q}(\mathbf{x}'') \geq \min\{D_{\mathbf{Z},q}(\mathbf{x}), D_{\mathbf{Z},q}(\mathbf{x}')\}$.

Proof. By subadditivity (see Lemma 1) and degree-q homogeneity of $\|\cdot\|_{\mathbf{Z},q}^q$, we have

$$\|\mathbf{x}''\|_{\mathbf{Z},q}^{q} \le \frac{1}{(1+t)^{q}} \|\mathbf{x}\|_{\mathbf{Z},q}^{q} + \frac{t^{q}}{(1+t)^{q}} \|\mathbf{x}'\|_{\mathbf{Z},q}^{q},\tag{39}$$

and taking the 1/(1-q)th power yields (37). Now, in case $\|\cdot\|_{\mathbf{Z},q}^q$ is concave, we have

$$\|\mathbf{x}''\|_{\mathbf{Z},q}^q \ge \frac{1}{1+t} \|\mathbf{x}\|_{\mathbf{Z},q}^q + \frac{t}{1+t} \|\mathbf{x}'\|_{\mathbf{Z},q}^q,$$
 (40)

and taking the 1/(1-q)th power yields (38).

2) We give here an example showing that $\|\cdot\|_{\mathbf{Z},q}^q$ is not always concave on \mathbb{R}_+^N (hence $D_{\mathbf{Z},q}$ is not always concave on \mathbb{R}_+^N either): we take $N=2, q=1/5, \mathbf{Z}=\begin{bmatrix}1&1/4\\1/4&1\end{bmatrix}$, and

$$\mathbf{x} = \begin{bmatrix} 8 \\ 1.05 \end{bmatrix}, \quad \mathbf{x}' = \begin{bmatrix} 10 \\ 0.95 \end{bmatrix}, \quad \text{and } \mathbf{x}'' = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{x}' = \begin{bmatrix} 9 \\ 1 \end{bmatrix}. \tag{41}$$

The nonconcavity follows from the easy computation

$$\|\mathbf{x}''\|_{\mathbf{Z},q}^q \approx 1.90768 \ngeq \frac{1}{2} \|\mathbf{x}\|_{\mathbf{Z},q}^q + \frac{1}{2} \|\mathbf{x}'\|_{\mathbf{Z},q}^q \approx \frac{1}{2} 1.90734 + \frac{1}{2} 1.90816 \approx 1.90775.$$
 (42)

3) We explain here why the optimization program (MinDiv) is NP-hard when $q \in (0,1)$. To this end, we claim that the minimization problem

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\text{minimize}} \|\mathbf{x}\|_q^q = \sum_{j=1}^N |x_j|^q \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{y}$$
 (43)

without nonnegativity constraint is essentially as 'easy' as the minimization problem

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\text{minimize}} \|\mathbf{x}\|_q^q = \sum_{j=1}^N x_j^q \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{y} \text{ and } \mathbf{x} \ge 0$$
 (44)

with nonnegativity constraints — given that (43) is NP-hard, this implies that (44) is also NP-hard. To establish the claim, we show that if $\tilde{\mathbf{z}} \in \mathbb{R}^{2N}$ denotes a solution to

$$\underset{\mathbf{z} \in \mathbb{R}^{2N}}{\text{minimize}} \quad \sum_{j=1}^{2N} z_j^q \qquad \text{subject to} \quad [\mathbf{A}|-\mathbf{A}]\mathbf{z} = \mathbf{y} \text{ and } \mathbf{z} \ge 0, \tag{45}$$

then $\widetilde{\mathbf{x}} := \widetilde{\mathbf{z}}_{[1:N]} - \widetilde{\mathbf{z}}_{[N+1:2N]} \in \mathbb{R}^N$ is a solution to (43). Indeed, let us consider $\mathbf{x} \in \mathbb{R}^N$ such that $\mathbf{A}\mathbf{x} = \mathbf{y}$ and let us prove that $\|\widetilde{\mathbf{x}}\|_q^q \le \|\mathbf{x}\|_q^q$. Let us decompose \mathbf{x} as $\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$ where $\mathbf{x}^+, \mathbf{x}^- \in \mathbb{R}^N$ are nonnegative and disjointly supported. Noticing that $[\mathbf{x}^+; \mathbf{x}^-] \in \mathbb{R}^{2N}$ is feasible for (45), since $[\mathbf{A}|-\mathbf{A}][\mathbf{x}^+; \mathbf{x}^-] = \mathbf{A}\mathbf{x}^+ - \mathbf{A}\mathbf{x}^- = \mathbf{A}\mathbf{x} = \mathbf{y}$ and $[\mathbf{x}^+; \mathbf{x}^-] \ge 0$, we have

$$\sum_{j=1}^{2N} \widetilde{z}_j^q \le \sum_{j=1}^N (x_j^+)^q + \sum_{j=1}^N (x_j^-)^q = \sum_{j=1}^N |x_j|^q = \|\mathbf{x}\|_q^q.$$
 (46)

Besides, by subadditivity of $\|\cdot\|_q^q$, we also have

$$\|\widetilde{\mathbf{x}}\|_{q}^{q} \leq \|\widetilde{\mathbf{z}}_{[1:N]}\|_{q}^{q} + \|\widetilde{\mathbf{z}}_{[N+1:2N]}\|_{q}^{q} = \sum_{j=1}^{2N} \widetilde{z}_{j}^{q}. \tag{47}$$

It follows that $\|\widetilde{\mathbf{x}}\|_q^q \leq \|\mathbf{x}\|_q^q$, as announced.