
Supplementary Material

Proofs This section provides some formal justification, absent from the main text, for several
theoretical results.

Proof of Lemma 1. For a, b, c, d > 0, the inequality a + b ≤ a((c + d)/c)1−q + b((c + d)/d)1−q

written for a = xj , b = x′j , c = (Zx)j , and d = (Zx′)j and rearranged yields

xj + x′j

(Z(x + x′))1−qj

≤ xj

(Zx)1−qj

+
x′j

(Zx′)1−qj

, (22)

which remains true if xi = 0 or x′j = 0 (or both). Summing over j ∈ [1 : N ] gives the result.

Proof of Theorem 2. We start by recalling that, given a convex subset C and a twice continuously
differentiable function f defined on C, the function f is convex, respectively concave, if and only if
its Hessian is positive semidefinite on int(C), respectively negative semidefinite on int(C). We take
here C = RN

+ and f(x) = ‖x‖qZ,q =
∑N

k=1 xk(Zx)q−1k for x ∈ RN
+ . Based on ∂(Zx)k/∂xi = Zk,i,

a standard calculation gives

∂f

∂xi
= (Zx)q−1i − (1− q)

∑
k
Zk,ixk(Zx)q−2k , (23)

∂f

∂xj∂xi
= −(1− q)

[
Zi,j(Zx)q−2i + Zj,i(Zx)q−2j − (2− q)

∑
k
Zk,iZk,jxk(Zx)q−3k

]
. (24)

Thus, setting D(x) = diag[(Zx)q−2` , ` = 1, . . . , N ] and D′(x) = diag[x`(Zx)q−3` , ` = 1, . . . , N ],
concavity holds if and only if M(x) := D(x)Z + Z>D(x) − (2 − q)Z>D′(x)Z � 0 for all
x ∈ int(RN

+ ), while convexity holds if and only if M(x) � 0 for all x ∈ int(RN
+ ). We are going

to show that M(x) � 0 for all x ∈ int(RN
+ ) whenever ‖Z − I‖2→2 ≤ q/2 and that there is no

x ∈ int(RN
+ ) for which M(x) � 0 when Z is symmetric. We shall establish the latter result first.

Dropping the dependence of M on x ∈ int(RN
+ ) for ease of notation, we observe that

Mi,i = 2(Zx)q−2i − (2− q)
∑

k
Z2
k,ixk(Zx)q−3k . (25)

Choosing i ∈ [1 :N ] such that (Zx)q−3i =maxk∈[1:N ](Zx)q−3k and keeping in mind thatZ2
k,i ≤ Zk,i

since Zk,i ∈ [0, 1], we obtain

Mi,i ≥ 2(Zx)q−2i − (2− q)
(∑

k
Zk,ixk

)
(Zx)q−3i (26)

= 2(Zx)q−2i − (2− q)(Z>x)i(Zx)q−3i = q(Zx)q−2i > 0. (27)

The matrix M, having a positive diagonal element, cannot be negative semidefinite, as announced.
To establish that it is positive semidefinite when Z is close to I, we shall prove that 〈Mv,v〉 ≥ 0 for
all v ∈ RN . Also dropping the dependence of D and D′ on x ∈ int(RN

+ ), we write

〈Mv,v〉 = 〈DZv,v〉+ 〈Z>Dv,v〉 − (2− q)〈Z>D′Zv,v〉 (28)

= 2〈Dv,Zv〉 − (2− q)〈D′Zv,Zv〉 ≥ 2〈Dv,Zv〉 − (2− q)〈DZv,Zv〉, (29)

where the last step used the fact that D′ � D (by virtue of x` ≤ (Zx)` for all ` ∈ [1 : N ],
see (5)). Decomposing Z as Z = I + Z̃ (with Z̃ ≥ 0), a straightforward calculation and then the
Cauchy–Schwarz inequality gives

〈Mv,v〉 ≥ q〈Dv,v〉 − 2(1− q)〈Dv, Z̃v〉 − (2− q)〈DZ̃v, Z̃v〉 (30)

≥ q〈Dv,v〉 − 2(1− q)〈Dv,v〉1/2〈DZ̃v, Z̃v〉1/2 − (2− q)〈DZ̃v, Z̃v〉. (31)

Let us for the moment make the assumption that

〈DZ̃v, Z̃v〉 ≤ q2

4
〈Dv,v〉 for all v ∈ RN . (32)
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This assumption allows us to derive that, for all v ∈ RN ,

〈Mv,v〉 ≥ q
(

1− (1− q)− (2− q)q
4

)
〈Dv,v〉 ≥ q

(
q − q

2

)
〈Dv,v〉 ≥ 0, (33)

i.e., that M � 0, as announced. It now remains to verify (32). Stated as Z̃>DZ̃ � (q2/4)D, it also
reads, after multiplying on both sides by D−1/2,

C>C � q2

4
I, C := D1/2Z̃D−1/2. (34)

This is equivalent to λi(C>C) = σi(C)2 ≤ q2/4 for all i ∈ [1 : N ], i.e., to σmax(C) ≤ q/2.
In view of σmax(C) = σmax(D1/2Z̃D−1/2) = σmax(Z̃) = ‖Z̃‖2→2 = ‖Z − I‖2→2, this indeed
reduces to the announced condition ‖Z− I‖2→2 ≤ q/2.

Proof of Proposition 3. Since the minimum of a concave function on a convex set is achieved at an
extreme point of the set, there is a minimizer x] of (MinDiv) which is a vertex of the polygonal set
∆N ∩A−1({y}) = x + {u ∈ kerA : x + u ≥ 0}. This set has dimension d ≥ N −m. Since
a vertex is obtained by turning d of the N inequalities xj + uj ≥ 0 into equalities, we see that
x]j is positive N − d ≤ m times, i.e., that x] is m-sparse. The inequality ‖x]‖qZ,q ≤ m follows
from (8).

Proof of Proposition 4. We simply write, using Hölder’s inequality and the defining property of
x(n+1), ∑K

k=1
(x̃

(n+1)
k + ε)q =

∑K

k=1

(x̃
(n+1)
k + ε)q

(x̃
(n)
k + ε)q(1−q)

(x̃
(n)
k + ε)q(1−q) (35)

≤
[∑K

k=1

x̃
(n+1)
k + ε

(x̃
(n)
k + ε)1−q

]q[∑K

k=1
(x̃

(n)
k + ε)q

]1−q
≤
[∑K

k=1

x̃
(n)
k + ε

(x̃
(n)
k + ε)1−q

]q[∑K

k=1
(x̃

(n)
k + ε)q

]1−q
=
∑K

k=1
(x̃

(n)
k + ε)q.

Referenced Claims This section collects the justifications of a few facts that were mentioned in
passing in the text, namely: 1) an additional property of the diversity, 2) a counterexample to the
concavity of ‖ · ‖qZ,q , and 3) the NP-hardness of (MinDiv) with Z = I.

1) We are concerned here with the effect on diversity of the merging of two communities.
Proposition 6. Let two communities be described by concentration vectors x ∈ ∆N and x′ ∈ ∆N ,
respectively, and let t ∈ (0,∞) represent the relative abundance of the second relative to the first.
For q ∈ (0, 1), the community obtained by merging these two communities, whose concentration
vector is

x′′ =
1

1 + t
x +

t

1 + t
x′, (36)

has diversity bounded from above as

DZ,q(x′′) ≤
[

1

(1 + t)q
DZ,q(x)1−q +

tq

(1 + t)q
DZ,q(x′)1−q

] 1
1−q

(37)

and bounded from below, in case ‖ · ‖qZ,q is concave, as

DZ,q(x′′) ≥
[

1

1 + t
DZ,q(x)1−q +

t

1 + t
DZ,q(x′)1−q

] 1
1−q

. (38)

Remark. If the communities are disjoint and totally dissimilar, then (37) becomes an equality — this
is the modularity result proved in [14, Prop. A10]. As for (38), in which equality obviously occurs
when x = x′, it implies the intuitive result that DZ,q(x′′) ≥ min{DZ,q(x), DZ,q(x′)}.
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Proof. By subadditivity (see Lemma 1) and degree-q homogeneity of ‖ · ‖qZ,q , we have

‖x′′‖qZ,q ≤
1

(1 + t)q
‖x‖qZ,q +

tq

(1 + t)q
‖x′‖qZ,q, (39)

and taking the 1/(1− q)th power yields (37). Now, in case ‖ · ‖qZ,q is concave, we have

‖x′′‖qZ,q ≥
1

1 + t
‖x‖qZ,q +

t

1 + t
‖x′‖qZ,q, (40)

and taking the 1/(1− q)th power yields (38).

2) We give here an example showing that ‖ · ‖qZ,q is not always concave on RN
+ (hence DZ,q is not

always concave on RN
+ either): we take N = 2, q = 1/5, Z =

[
1 1/4

1/4 1

]
, and

x =

[
8

1.05

]
, x′ =

[
10

0.95

]
, and x′′ =

1

2
x +

1

2
x′ =

[
9
1

]
. (41)

The nonconcavity follows from the easy computation

‖x′′‖qZ,q ≈ 1.90768 6≥ 1

2
‖x‖qZ,q +

1

2
‖x′‖qZ,q ≈

1

2
1.90734 +

1

2
1.90816 ≈ 1.90775. (42)

3) We explain here why the optimization program (MinDiv) is NP-hard when q ∈ (0, 1). To this
end, we claim that the minimization problem

minimize
x∈RN

‖x‖qq =
∑N

j=1
|xj |q subject to Ax = y (43)

without nonnegativity constraint is essentially as ‘easy’ as the minimization problem

minimize
x∈RN

‖x‖qq =
∑N

j=1
xqj subject to Ax = y and x ≥ 0 (44)

with nonnegativity constraints — given that (43) is NP-hard, this implies that (44) is also NP-hard.
To establish the claim, we show that if z̃ ∈ R2N denotes a solution to

minimize
z∈R2N

∑2N

j=1
zqj subject to [A| −A]z = y and z ≥ 0, (45)

then x̃ := z̃[1:N ] − z̃[N+1:2N ] ∈ RN is a solution to (43). Indeed, let us consider x ∈ RN such
that Ax = y and let us prove that ‖x̃‖qq ≤ ‖x‖qq. Let us decompose x as x = x+ − x− where
x+,x− ∈ RN are nonnegative and disjointly supported. Noticing that [x+;x−] ∈ R2N is feasible
for (45), since [A| −A][x+;x−] = Ax+ −Ax− = Ax = y and [x+;x−] ≥ 0, we have∑2N

j=1
z̃qj ≤

∑N

j=1
(x+j )q +

∑N

j=1
(x−j )q =

∑N

j=1
|xj |q = ‖x‖qq. (46)

Besides, by subadditivity of ‖ · ‖qq , we also have

‖x̃‖qq ≤ ‖z̃[1:N ]‖qq + ‖z̃[N+1:2N ]‖qq =
∑2N

j=1
z̃qj . (47)

It follows that ‖x̃‖qq ≤ ‖x‖qq , as announced.
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