Supplementary Material

Proofs This section provides some formal justification, absent from the main text, for several
theoretical results.

Proof of Lemmal[l] For a,b,c,d > 0, the inequality a + b < a((c + d)/c)' =7 + b((c + d)/d)' 1
written for a = z;, b = 2, ¢ = (Zx);, and d = (Zx'); and rearranged yields

Ti+ x’, . !
J J < xJk + J17 7 (22)
(Z(X+X’))j ! (Zx)j ! (Zx'); !
which remains true if z; = 0 or 2; = 0 (or both). Summing over j € [1 : N] gives the result. ~ [J

Proof of Theorem 2] We start by recalling that, given a convex subset C and a twice continuously
differentiable function f defined on C, the function f is convex, respectively concave, if and only if
its Hessian is positive semidefinite on int(C), respectively negative semidefinite on int(C). We take
here C = RY and f(x) = [|x||, , = S (Zx) T for x € RY. Based on 8(Zx)y,/9x; = Zi i,
a standard calculation gives

gg =(Zx)] '~ (1-q) Zk Zy,iwr (X)) 2, (23)
a - - _
oz gx = (1= 9[Zi;(Zx)]7° + 2,:(2%)] 7 = 2= ) ), ZraZijon(Zx)]7°]. (24)
%

Thus, setting D(x) = diag[(Zx)Zﬁ,é =1,...,N]and D'(x) = diag[z¢(Zx)] 93 ¢=1,...,N],
concavity holds if and only if M(x) := D(x)Z + Z"D(x) — (2 — ¢ ZTD'S\>]< )Z = 0 for all
x € int(RY), while convexity holds if and only if M(x) < 0 for all x € int(RY'). We are going
to show that M(x) = O for all x € int(R%Y) whenever |Z — I||s_,» < q/2 and that there is no
x € int(RY) for which M(x) < 0 when Z is symmetric. We shall establish the latter result first.
Dropping the dependence of M on x € int(Rf ) for ease of notation, we observe that

Mii=2Zx)] 7~ (2~ q) ) Zi jon(Zx)]°. (25)

Choosing i € [1: N] such that (Zx)? = MaXge[i:N] (Zx)?~? and keeping in mind that ZE i < Ty
since Zj; € [0, 1], we obtain

My > 2(Zx)2 (2 - q)(Zk kak> (Zx)¢~ (26)

=2(Zx)!% — (2 - q)(Z2"x)i(Zx)]* = q(Zx)?? > 0. 27)

The matrix M, having a positive diagonal element, cannot be negative semidefinite, as announced.
To establish that it is positive semidefinite when Z is close to I, we shall prove that (Mv, v) > 0 for
all v € RY. Also dropping the dependence of D and D’ on x € int(RY'), we write

(Mv,v) = (DZv,v) + (Z'Dv,v) — (2 — ¢)(Z'D'Zv,V) (28)
=2(Dv,Zv) — (2 — q)(D'Zv,Zv) > 2(Dv,Zv) — (2 — q)(DZv, Zv), (29)
where the last step used the fact that D’ < D (by virtue of 2y < (Zx), forall £ € [1 : NJ,

see (B)). Decomposing Z as Z = I + Z (with Z > 0), a straightforward calculation and then the
Cauchy—-Schwarz inequality gives

(Mv,v) > ¢(Dv,v) — 2(1 — q)(Dv,Zv) — (2 — q)(DZv, Zv) (30)
> ¢(Dv,v) — 2(1 — ¢)(Dv,v)/>(DZv, Zv)'/? — (2 — q)(DZv, Zv). (31)

Let us for the moment make the assumption that

" . 2
(DZv,Zv) < %(Dv,v} forall v € RY. (32)
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This assumption allows us to derive that, for all v € RV,
2 —
(Mv,v) > q(l —(1-¢q) - (4(])(]) (Dv,v) > q(q - ;]) (Dv,v) >0, (33)

i.e., that M = 0, as announced. It now remains to verify (32). Stated as Z DZ = (¢*/4)D, it also
reads, after multiplying on both sides by D~1/2,

2 ~
c’c< qZI, C:= D'/?ZD /2, (34)

This is equivalent to \;(CTC) = ¢,(C)? < ¢?/4 foralli € [1 : NJ, ie., to omax(C) < ¢/2.
In view of 0iax(C) = Omax(DY2ZD"12) = 01,.4(Z) = ||Z||2—2 = ||Z — I||2_,2, this indeed
reduces to the announced condition ||Z — I|js—o < ¢/2. O

Proof of Proposition3] Since the minimum of a concave function on a convex set is achieved at an
extreme point of the set, there is a minimizer x* of which is a vertex of the polygonal set
ANN A '({y}) =x+ {u € kerA : x +u > 0}. This set has dimension d > N — m. Since
a vertex is obtained by turning d of the N inequalities z; + u; > 0 into equalities, we see that

xg is positive N — d < m times, i.e., that x* is m-sparse. The inequality Hxﬁ||% g < m follows

from (B). O

Proof of Propositionl] We simply write, using Holder’s inequality and the defining property of
(n+1)
X s

~(n+1)
K K +e) _
S =3 M A g e (35)
k=1 k=1 (xk + E)q(lfq)

n+1)

<o, ] e e e

k=1 (5](;1) +e)i-a

- [ZK 7"t r[szl@;n) +5)q] 1—q

k=1 (5](:1) +e)i-a
=5 @ e O
k=1 F

Referenced Claims This section collects the justifications of a few facts that were mentioned in
passing in the text, namely: 1) an additional property of the diversity, 2) a counterexample to the
concavity of || - [|7 .. and 3) the NP-hardness of (MinDiv) with Z = I.

1) We are concerned here with the effect on diversity of the merging of two communities.

Proposition 6. Let two communities be described by concentration vectors x € AN and x’ € AN,
respectively, and let ¢ € (0, o) represent the relative abundance of the second relative to the first.
For ¢ € (0, 1), the community obtained by merging these two communities, whose concentration

vector is
1 1 t !

= — — 36
e T e (36)
has diversity bounded from above as
Dz 4(x") < 1 _p, (%) + " _p, (x')' ¢ o (37)
q — (1 + t)q d (1 —|—t)q q
and bounded from below, in case || - ||, , is concave, as
1 t i
Dz,q(x") > [MDZ,q(X)lq + MDZ,q(X/)lq} : (3%)

Remark. If the communities are disjoint and totally dissimilar, then becomes an equality — this
is the modularity result proved in [14} Prop. A10]. As for (38), in which equality obviously occurs
when x = x’, it implies the intuitive result that Dz ,(x”) > min{Dz ,(x), Dz (x’)}.

13



Proof. By subadditivity (see Lemma and degree-q homogeneity of || - ||% 4 We have

1 1
1149 q 4
1% < ¥l + g T (39)
and taking the 1/(1 — ¢)th power yields (37). Now, in case || - [|7, , is concave, we have
an 1 q L e
X1 2 Tl + T I o)
and taking the 1/(1 — q)th power yields (38). O

2) We give here an example showing that || - ||qZ 4 1s not always concave on Rf (hence Dz _, is not

always concave on RY either): we take N = 2, ¢ =1/5,Z = [1}4 1{4} , and

_ | 8 | 10 n_ 1 L, 19
X = {1'05] , X = [0.95} , and x" = §X+ ix =11]" 41
The nonconcavity follows from the easy computation

1 1 1 1
I, =~ 190768 # S l1x[5,, + 5l1x'll5,, ~ 5190734 + S1.90816 ~ L9075, (42)

3) We explain here why the optimization program (MinDiv) is NP-hard when ¢ € (0, 1). To this
end, we claim that the minimization problem

mi}(rleiﬂrg}vize %= Zjv:l ;]9 subjectto Ax =Yy (43)
without nonnegativity constraint is essentially as ‘easy’ as the minimization problem
minimize [|x|[|7 = ZN zd subjectto Ax=yandx >0 (44)
x€RN j=1"7

with nonnegativity constraints — given that g;;%]) is NP-hard, this implies that (@4)) is also NP-hard.
To establish the claim, we show that if z € R*" denotes a solution to

2N
minimize 22 subjectto [A| — Alz=yandz >0, (45)

zER2N j=1 "7

then X := Z[1.n) — Z[n+1:2n] € RY is a solution to @3). Indeed, let us consider x € RY such
that Ax = y and let us prove that [|x||9 < [x||2. Let us decompose x as x = x* — x~ where

xt,x~ € RY are nonnegative and disjointly supported. Noticing that [x*;x~] € R?" is feasible
for @3), since [A] — A][xT;x7] = AxT — Ax™ = Ax =y and [x";x7] > 0, we have

2N N N N
=4 + -9 — 9 —
Zj:l Zj S ijl(xj )q + ijl(xj )‘1 - Zj:l |x]|(1‘ - HXHZ (46)

Besides, by subadditivity of || - [|¢, we also have
<14 7 q 7 q N 24
%05 < IZpmllg + [1Z(v+123 1§ = Zj:l z]. (47)

It follows that ||x[|4 < [|x][|Z, as announced.
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