Supplementary Material

Proofs This section provides some formal justification, absent from the main text, for several theoretical results.

Proof of Lemma 1 For $a, b, c, d>0$, the inequality $a+b \leq a((c+d) / c)^{1-q}+b((c+d) / d)^{1-q}$ written for $a=x_{j}, b=x_{j}^{\prime}, c=(\mathbf{Z x})_{j}$, and $d=\left(\mathbf{Z x}^{\prime}\right)_{j}$ and rearranged yields

$$
\begin{equation*}
\frac{x_{j}+x_{j}^{\prime}}{\left(\mathbf{Z}\left(\mathbf{x}+\mathbf{x}^{\prime}\right)\right)_{j}^{1-q}} \leq \frac{x_{j}}{(\mathbf{Z} \mathbf{x})_{j}^{1-q}}+\frac{x_{j}^{\prime}}{\left(\mathbf{Z} \mathbf{x}^{\prime}\right)_{j}^{1-q}}, \tag{22}
\end{equation*}
$$

which remains true if $x_{i}=0$ or $x_{j}^{\prime}=0$ (or both). Summing over $j \in[1: N]$ gives the result.
Proof of Theorem 2 We start by recalling that, given a convex subset \mathcal{C} and a twice continuously differentiable function f defined on \mathcal{C}, the function f is convex, respectively concave, if and only if its Hessian is positive semidefinite on $\operatorname{int}(\mathcal{C})$, respectively negative semidefinite on $\operatorname{int}(\mathcal{C})$. We take here $\mathcal{C}=\mathbb{R}_{+}^{N}$ and $f(\mathbf{x})=\|\mathbf{x}\|_{\mathbf{Z}, q}^{q}=\sum_{k=1}^{N} x_{k}(\mathbf{Z} \mathbf{x})_{k}^{q-1}$ for $\mathbf{x} \in \mathbb{R}_{+}^{N}$. Based on $\partial(\mathbf{Z} \mathbf{x})_{k} / \partial x_{i}=Z_{k, i}$, a standard calculation gives

$$
\begin{align*}
\frac{\partial f}{\partial x_{i}} & =(\mathbf{Z} \mathbf{x})_{i}^{q-1}-(1-q) \sum_{k} Z_{k, i} x_{k}(\mathbf{Z} \mathbf{x})_{k}^{q-2} \tag{23}\\
\frac{\partial f}{\partial x_{j} \partial x_{i}} & =-(1-q)\left[Z_{i, j}(\mathbf{Z} \mathbf{x})_{i}^{q-2}+Z_{j, i}(\mathbf{Z} \mathbf{x})_{j}^{q-2}-(2-q) \sum_{k} Z_{k, i} Z_{k, j} x_{k}(\mathbf{Z} \mathbf{x})_{k}^{q-3}\right] . \tag{24}
\end{align*}
$$

Thus, setting $\mathbf{D}(\mathbf{x})=\operatorname{diag}\left[(\mathbf{Z} \mathbf{x})_{\ell}^{q-2}, \ell=1, \ldots, N\right]$ and $\mathbf{D}^{\prime}(\mathbf{x})=\operatorname{diag}\left[x_{\ell}(\mathbf{Z} \mathbf{x})_{\ell}^{q-3}, \ell=1, \ldots, N\right]$, concavity holds if and only if $\mathbf{M}(\mathbf{x}):=\mathbf{D}(\mathbf{x}) \mathbf{Z}+\mathbf{Z}^{\top} \mathbf{D}(\mathbf{x})-(2-q) \mathbf{Z}^{\top} \mathbf{D}^{\prime}(\mathbf{x}) \mathbf{Z} \succeq \mathbf{0}$ for all $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$, while convexity holds if and only if $\mathbf{M}(\mathbf{x}) \preceq \mathbf{0}$ for all $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$. We are going to show that $\mathbf{M}(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$ whenever $\|\mathbf{Z}-\mathbf{I}\|_{2 \rightarrow 2} \leq q / 2$ and that there is no $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$ for which $\mathbf{M}(\mathbf{x}) \preceq \mathbf{0}$ when \mathbf{Z} is symmetric. We shall establish the latter result first. Dropping the dependence of \mathbf{M} on $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$ for ease of notation, we observe that

$$
\begin{equation*}
M_{i, i}=2(\mathbf{Z} \mathbf{x})_{i}^{q-2}-(2-q) \sum_{k} Z_{k, i}^{2} x_{k}(\mathbf{Z} \mathbf{x})_{k}^{q-3} \tag{25}
\end{equation*}
$$

Choosing $i \in[1: N]$ such that $(\mathbf{Z x})_{i}^{q-3}=\max _{k \in[1: N]}(\mathbf{Z} \mathbf{x})_{k}^{q-3}$ and keeping in mind that $Z_{k, i}^{2} \leq Z_{k, i}$ since $Z_{k, i} \in[0,1]$, we obtain

$$
\begin{align*}
M_{i, i} & \geq 2(\mathbf{Z} \mathbf{x})_{i}^{q-2}-(2-q)\left(\sum_{k} Z_{k, i} x_{k}\right)(\mathbf{Z} \mathbf{x})_{i}^{q-3} \tag{26}\\
& =2(\mathbf{Z} \mathbf{x})_{i}^{q-2}-(2-q)\left(\mathbf{Z}^{\top} \mathbf{x}\right)_{i}(\mathbf{Z} \mathbf{x})_{i}^{q-3}=q(\mathbf{Z} \mathbf{x})_{i}^{q-2}>0 \tag{27}
\end{align*}
$$

The matrix \mathbf{M}, having a positive diagonal element, cannot be negative semidefinite, as announced. To establish that it is positive semidefinite when \mathbf{Z} is close to \mathbf{I}, we shall prove that $\langle\mathbf{M v}, \mathbf{v}\rangle \geq 0$ for all $\mathbf{v} \in \mathbb{R}^{N}$. Also dropping the dependence of \mathbf{D} and \mathbf{D}^{\prime} on $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$, we write

$$
\begin{align*}
\langle\mathbf{M v}, \mathbf{v}\rangle & =\langle\mathbf{D} \mathbf{Z} \mathbf{v}, \mathbf{v}\rangle+\left\langle\mathbf{Z}^{\top} \mathbf{D} \mathbf{v}, \mathbf{v}\right\rangle-(2-q)\left\langle\mathbf{Z}^{\top} \mathbf{D}^{\prime} \mathbf{Z} \mathbf{v}, \mathbf{v}\right\rangle \tag{28}\\
& =2\langle\mathbf{D} \mathbf{v}, \mathbf{Z} \mathbf{v}\rangle-(2-q)\left\langle\mathbf{D}^{\prime} \mathbf{Z} \mathbf{v}, \mathbf{Z} \mathbf{v}\right\rangle \geq 2\langle\mathbf{D} \mathbf{v}, \mathbf{Z} \mathbf{v}\rangle-(2-q)\langle\mathbf{D Z} \mathbf{z}, \mathbf{Z} \mathbf{v}\rangle \tag{29}
\end{align*}
$$

where the last step used the fact that $\mathbf{D}^{\prime} \preceq \mathbf{D}$ (by virtue of $x_{\ell} \leq(\mathbf{Z} \mathbf{x})_{\ell}$ for all $\ell \in[1: N]$, see (5). Decomposing \mathbf{Z} as $\mathbf{Z}=\mathbf{I}+\widetilde{\mathbf{Z}}$ (with $\widetilde{\mathbf{Z}} \geq 0$), a straightforward calculation and then the Cauchy-Schwarz inequality gives

$$
\begin{align*}
\langle\mathbf{M} \mathbf{v}, \mathbf{v}\rangle & \geq q\langle\mathbf{D} \mathbf{v}, \mathbf{v}\rangle-2(1-q)\langle\mathbf{D} \mathbf{v}, \widetilde{\mathbf{Z}} \mathbf{v}\rangle-(2-q)\langle\mathbf{D} \widetilde{\mathbf{Z}} \mathbf{v}, \widetilde{\mathbf{Z}} \mathbf{v}\rangle \tag{30}\\
& \geq q\langle\mathbf{D} \mathbf{v}, \mathbf{v}\rangle-2(1-q)\langle\mathbf{D} \mathbf{v}, \mathbf{v}\rangle^{1 / 2}\langle\mathbf{D} \widetilde{\mathbf{Z}} \mathbf{v}, \widetilde{\mathbf{Z}} \mathbf{v}\rangle^{1 / 2}-(2-q)\left\langle\mathbf{D} \widetilde{\mathbf{Z}}_{\mathbf{v}}, \widetilde{\mathbf{Z}} \mathbf{v}\right\rangle \tag{31}
\end{align*}
$$

Let us for the moment make the assumption that

$$
\begin{equation*}
\langle\mathbf{D} \widetilde{\mathbf{Z}} \mathbf{v}, \widetilde{\mathbf{Z}} \mathbf{v}\rangle \leq \frac{q^{2}}{4}\langle\mathbf{D} \mathbf{v}, \mathbf{v}\rangle \quad \text { for all } \mathbf{v} \in \mathbb{R}^{N} . \tag{32}
\end{equation*}
$$

This assumption allows us to derive that, for all $\mathbf{v} \in \mathbb{R}^{N}$,

$$
\begin{equation*}
\langle\mathbf{M v}, \mathbf{v}\rangle \geq q\left(1-(1-q)-\frac{(2-q) q}{4}\right)\langle\mathbf{D v}, \mathbf{v}\rangle \geq q\left(q-\frac{q}{2}\right)\langle\mathbf{D} \mathbf{v}, \mathbf{v}\rangle \geq 0 \tag{33}
\end{equation*}
$$

i.e., that $\mathbf{M} \succeq \mathbf{0}$, as announced. It now remains to verify (32). Stated as $\widetilde{\mathbf{Z}}^{\top} \mathbf{D} \widetilde{\mathbf{Z}} \preceq\left(q^{2} / 4\right) \mathbf{D}$, it also reads, after multiplying on both sides by $\mathbf{D}^{-1 / 2}$,

$$
\begin{equation*}
\mathbf{C}^{\top} \mathbf{C} \preceq \frac{q^{2}}{4} \mathbf{I}, \quad \mathbf{C}:=\mathbf{D}^{1 / 2} \widetilde{\mathbf{Z}} \mathbf{D}^{-1 / 2} \tag{34}
\end{equation*}
$$

This is equivalent to $\lambda_{i}\left(\mathbf{C}^{\top} \mathbf{C}\right)=\sigma_{i}(\mathbf{C})^{2} \leq q^{2} / 4$ for all $i \in[1: N]$, i.e., to $\sigma_{\max }(\mathbf{C}) \leq q / 2$. In view of $\sigma_{\max }(\mathbf{C})=\sigma_{\max }\left(\mathbf{D}^{1 / 2} \widetilde{\mathbf{Z}} \mathbf{D}^{-1 / 2}\right)=\sigma_{\max }(\widetilde{\mathbf{Z}})=\|\widetilde{\mathbf{Z}}\|_{2 \rightarrow 2}=\|\mathbf{Z}-\mathbf{I}\|_{2 \rightarrow 2}$, this indeed reduces to the announced condition $\|\mathbf{Z}-\mathbf{I}\|_{2 \rightarrow 2} \leq q / 2$.

Proof of Proposition 3 . Since the minimum of a concave function on a convex set is achieved at an extreme point of the set, there is a minimizer \mathbf{x}^{\sharp} of MinDiv which is a vertex of the polygonal set $\Delta^{N} \cap \mathbf{A}^{-1}(\{\mathbf{y}\})=\underline{\mathbf{x}}+\{\mathbf{u} \in \operatorname{ker} \mathbf{A}: \underline{\mathbf{x}}+\mathbf{u} \geq 0\}$. This set has dimension $d \geq N-m$. Since a vertex is obtained by turning d of the N inequalities $\underline{x}_{j}+u_{j} \geq 0$ into equalities, we see that x_{j}^{\sharp} is positive $N-d \leq m$ times, i.e., that \mathbf{x}^{\sharp} is m-sparse. The inequality $\left\|\mathbf{x}^{\sharp}\right\|_{\mathbf{Z}, q}^{q} \leq m$ follows from (8).

Proof of Proposition 4 We simply write, using Hölder's inequality and the defining property of $\mathbf{x}^{(n+1)}$,

$$
\begin{align*}
\sum_{k=1}^{K}\left(\widetilde{x}_{k}^{(n+1)}+\varepsilon\right)^{q} & =\sum_{k=1}^{K} \frac{\left(\widetilde{x}_{k}^{(n+1)}+\varepsilon\right)^{q}}{\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{q(1-q)}}\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{q(1-q)} \tag{35}\\
& \leq\left[\sum_{k=1}^{K} \frac{\widetilde{x}_{k}^{(n+1)}+\varepsilon}{\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{1-q}}\right]^{q}\left[\sum_{k=1}^{K}\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{q}\right]^{1-q} \\
& \leq\left[\sum_{k=1}^{K} \frac{\widetilde{x}_{k}^{(n)}+\varepsilon}{\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{1-q}}\right]^{q}\left[\sum_{k=1}^{K}\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{q}\right]^{1-q} \\
& =\sum_{k=1}^{K}\left(\widetilde{x}_{k}^{(n)}+\varepsilon\right)^{q}
\end{align*}
$$

Referenced Claims This section collects the justifications of a few facts that were mentioned in passing in the text, namely: 1) an additional property of the diversity, 2) a counterexample to the concavity of $\|\cdot\|_{\mathbf{Z}, q}^{q}$, and 3) the NP-hardness of MinDiv with $\mathbf{Z}=\mathbf{I}$.

1) We are concerned here with the effect on diversity of the merging of two communities.

Proposition 6. Let two communities be described by concentration vectors $\mathbf{x} \in \Delta^{N}$ and $\mathbf{x}^{\prime} \in \Delta^{N}$, respectively, and let $t \in(0, \infty)$ represent the relative abundance of the second relative to the first. For $q \in(0,1)$, the community obtained by merging these two communities, whose concentration vector is

$$
\begin{equation*}
\mathbf{x}^{\prime \prime}=\frac{1}{1+t} \mathbf{x}+\frac{t}{1+t} \mathbf{x}^{\prime} \tag{36}
\end{equation*}
$$

has diversity bounded from above as

$$
\begin{equation*}
D_{\mathbf{Z}, q}\left(\mathbf{x}^{\prime \prime}\right) \leq\left[\frac{1}{(1+t)^{q}} D_{\mathbf{Z}, q}(\mathbf{x})^{1-q}+\frac{t^{q}}{(1+t)^{q}} D_{\mathbf{Z}, q}\left(\mathbf{x}^{\prime}\right)^{1-q}\right]^{\frac{1}{1-q}} \tag{37}
\end{equation*}
$$

and bounded from below, in case $\|\cdot\|_{\mathbf{Z}, q}^{q}$ is concave, as

$$
\begin{equation*}
D_{\mathbf{Z}, q}\left(\mathbf{x}^{\prime \prime}\right) \geq\left[\frac{1}{1+t} D_{\mathbf{Z}, q}(\mathbf{x})^{1-q}+\frac{t}{1+t} D_{\mathbf{Z}, q}\left(\mathbf{x}^{\prime}\right)^{1-q}\right]^{\frac{1}{1-q}} \tag{38}
\end{equation*}
$$

Remark. If the communities are disjoint and totally dissimilar, then (37) becomes an equality - this is the modularity result proved in [14, Prop. A10]. As for (38), in which equality obviously occurs when $\mathbf{x}=\mathbf{x}^{\prime}$, it implies the intuitive result that $D_{\mathbf{Z}, q}\left(\mathbf{x}^{\prime \prime}\right) \geq \min \left\{D_{\mathbf{Z}, q}(\mathbf{x}), D_{\mathbf{Z}, q}\left(\mathbf{x}^{\prime}\right)\right\}$.

Proof. By subadditivity (see Lemma 1 , and degree- q homogeneity of $\|\cdot\|_{\mathbf{Z}, q}^{q}$, we have

$$
\begin{equation*}
\left\|\mathbf{x}^{\prime \prime}\right\|_{\mathbf{Z}, q}^{q} \leq \frac{1}{(1+t)^{q}}\|\mathbf{x}\|_{\mathbf{Z}, q}^{q}+\frac{t^{q}}{(1+t)^{q}}\left\|\mathbf{x}^{\prime}\right\|_{\mathbf{Z}, q}^{q} \tag{39}
\end{equation*}
$$

and taking the $1 /(1-q)$ th power yields 37. Now, in case $\|\cdot\|_{\mathbf{Z}, q}^{q}$ is concave, we have

$$
\begin{equation*}
\left\|\mathbf{x}^{\prime \prime}\right\|_{\mathbf{Z}, q}^{q} \geq \frac{1}{1+t}\|\mathbf{x}\|_{\mathbf{Z}, q}^{q}+\frac{t}{1+t}\left\|\mathbf{x}^{\prime}\right\|_{\mathbf{Z}, q}^{q} \tag{40}
\end{equation*}
$$

and taking the $1 /(1-q)$ th power yields 38 .
2) We give here an example showing that $\|\cdot\|_{\mathbf{Z}, q}^{q}$ is not always concave on \mathbb{R}_{+}^{N} (hence $D_{\mathbf{Z}, q}$ is not always concave on \mathbb{R}_{+}^{N} either): we take $N=2, q=1 / 5, \mathbf{Z}=\left[\begin{array}{cc}1 & 1 / 4 \\ 1 / 4 & 1\end{array}\right]$, and

$$
\mathbf{x}=\left[\begin{array}{c}
8 \tag{41}\\
1.05
\end{array}\right], \quad \mathbf{x}^{\prime}=\left[\begin{array}{c}
10 \\
0.95
\end{array}\right], \quad \text { and } \mathbf{x}^{\prime \prime}=\frac{1}{2} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\prime}=\left[\begin{array}{l}
9 \\
1
\end{array}\right] .
$$

The nonconcavity follows from the easy computation

$$
\begin{equation*}
\left\|\mathbf{x}^{\prime \prime}\right\|_{\mathbf{Z}, q}^{q} \approx 1.90768 \nsupseteq \frac{1}{2}\|\mathbf{x}\|_{\mathbf{Z}, q}^{q}+\frac{1}{2}\left\|\mathbf{x}^{\prime}\right\|_{\mathbf{Z}, q}^{q} \approx \frac{1}{2} 1.90734+\frac{1}{2} 1.90816 \approx 1.90775 . \tag{42}
\end{equation*}
$$

3) We explain here why the optimization program MinDiv is NP-hard when $q \in(0,1)$. To this end, we claim that the minimization problem

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{minimize}}\|\mathbf{x}\|_{q}^{q}=\sum_{j=1}^{N}\left|x_{j}\right|^{q} \quad \text { subject to } \quad \mathbf{A} \mathbf{x}=\mathbf{y} \tag{43}
\end{equation*}
$$

without nonnegativity constraint is essentially as 'easy' as the minimization problem

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{minimize}}\|\mathbf{x}\|_{q}^{q}=\sum_{j=1}^{N} x_{j}^{q} \quad \text { subject to } \quad \mathbf{A} \mathbf{x}=\mathbf{y} \text { and } \mathbf{x} \geq 0 \tag{44}
\end{equation*}
$$

with nonnegativity constraints - given that (43) is NP-hard, this implies that 44) is also NP-hard. To establish the claim, we show that if $\widetilde{\mathbf{z}} \in \mathbb{R}^{2 N}$ denotes a solution to

$$
\begin{equation*}
\underset{\mathbf{z} \in \mathbb{R}^{2 N}}{\operatorname{minimize}} \sum_{j=1}^{2 N} z_{j}^{q} \quad \text { subject to } \quad[\mathbf{A} \mid-\mathbf{A}] \mathbf{z}=\mathbf{y} \text { and } \mathbf{z} \geq 0 \tag{45}
\end{equation*}
$$

then $\widetilde{\mathbf{x}}:=\widetilde{\mathbf{z}}_{[1: N]}-\widetilde{\mathbf{z}}_{[N+1: 2 N]} \in \mathbb{R}^{N}$ is a solution to 43]. Indeed, let us consider $\mathbf{x} \in \mathbb{R}^{N}$ such that $\mathbf{A x}=\mathbf{y}$ and let us prove that $\|\widetilde{\mathbf{x}}\|_{q}^{q} \leq\|\mathbf{x}\|_{q}^{q}$. Let us decompose \mathbf{x} as $\mathbf{x}=\mathbf{x}^{+}-\mathbf{x}^{-}$where $\mathrm{x}^{+}, \mathrm{x}^{-} \in \mathbb{R}^{N}$ are nonnegative and disjointly supported. Noticing that $\left[\mathrm{x}^{+} ; \mathrm{x}^{-}\right] \in \mathbb{R}^{2 N}$ is feasible for (45), since $[\mathbf{A} \mid-\mathbf{A}]\left[\mathbf{x}^{+} ; \mathbf{x}^{-}\right]=\mathbf{A} \mathbf{x}^{+}-\mathbf{A} \mathbf{x}^{-}=\mathbf{A x}=\mathbf{y}$ and $\left[\mathbf{x}^{+} ; \mathbf{x}^{-}\right] \geq 0$, we have

$$
\begin{equation*}
\sum_{j=1}^{2 N} \widetilde{z}_{j}^{q} \leq \sum_{j=1}^{N}\left(x_{j}^{+}\right)^{q}+\sum_{j=1}^{N}\left(x_{j}^{-}\right)^{q}=\sum_{j=1}^{N}\left|x_{j}\right|^{q}=\|\mathbf{x}\|_{q}^{q} \tag{46}
\end{equation*}
$$

Besides, by subadditivity of $\|\cdot\|_{q}^{q}$, we also have

$$
\begin{equation*}
\|\widetilde{\mathbf{x}}\|_{q}^{q} \leq\left\|\widetilde{\mathbf{z}}_{[1: N]}\right\|_{q}^{q}+\left\|\widetilde{\mathbf{z}}_{[N+1: 2 N]}\right\|_{q}^{q}=\sum_{j=1}^{2 N} \widetilde{z}_{j}^{q} \tag{47}
\end{equation*}
$$

It follows that $\|\widetilde{\mathbf{x}}\|_{q}^{q} \leq\|\mathbf{x}\|_{q}^{q}$, as announced.

