
A Omitted Proofs

Proof of Lemma 2.1

Proof of Lemma 2.1. Apply the JL lemma for vectors x
t
/kxtk2, w

⇤
/kw⇤k2 and (xt +

w
⇤)/kxt + w

⇤k2 with � = ✏/3. Then with probability at least 1� ✏ the following three inequalities
hold (using the Union Bound):

(1� ✏) · kxtk2  kJxtk2  (1 + ✏) · kxtk2

(1� ✏) · kw⇤k2  kJw⇤k2  (1 + ✏) · kw⇤k2
(1� ✏) · kxt + w

⇤k2  kJ(xt + w
⇤)k2  (1 + ✏) · kxt + w

⇤k2
Since we can write the dot-product as follows:

hw⇤
, x

ti = 1

2

�
kw⇤ + x

tk22 � kw⇤k22 � kxtk22
�

hJw⇤
, Jx

ti = 1

2

�
kJw⇤ + Jx

tk22 � kJw⇤k22 � kJxtk22
�

then we have:
|hJw⇤

, Jx
ti � hw⇤

, x
ti|  O(✏2)  O(✏) · hw⇤

, x
ti

Proof of Lemma 3.1

Proof of Lemma 3.1. We proceed in three steps:

Step 1: define a transformation from 1-IN-3-SAT to Myersonian regression. Consider a 1-IN-3-SAT
instance with N variables X1, . . . , XN . For 1  i  N let si be the number of clauses that Xi

appears in. Let K be a sufficiently large constant (depending only on c1, c2). We will map to an
instance of Myersonian regression with n = 2N variables, where i = 1..N will correspond to
boolean literals Xi and i = (N + 1)..2N will correspond to negated literals Xi. We will build the
instance as follows: for each i = 1..N we will create the following datapoints (xt

, v
t). In each case,

the unset coordinates are zero.

• K
2
si datapoints with v

t = 1� 2
Ksi

, xt

i
= 1.

• K
2
si datapoints with v

t = 1� 2
Ksi

, xt

N+i
= 1.

• K
3
s
2
i
�K

2
si datapoints with v

t = 1
Ksi

, xt

i
= 1.

• K
3
s
2
i
�K

2
si datapoints with v

t = 1
Ksi

, xt

N+i
= 1.

• K
2
si points with v

t = 1� 1
Ksi

, xt

i
= 1, xt

N+i
= 1

We call these data points auxiliary data points. Now for each clause Xi _Xj _Xk we will add a
datapoint with v

t = 1 and x
t

i
= x

t

N+j
= x

t

k
= 1. We call these data points clause-data points. This

concludes the transformation2

Step 2: we show that the optimal revenue of the Myersonian regression is attained when for each

i exactly one of wi, wi+N is in the interval

⇣
2

3Ksi
,

1
Ksi

i
and the other is in the interval

�
2
3 , 1

⇤
.

Furthermore, the maximum possible revenue from all auxiliary data points is 3 ·K2(s1+ · · ·+ sN )�
3KN .

2It is worth noticing that while the Myersonian regression problem has the assumption kxtk2  1, in the
transformation we can have kxtk2 

p
3. We can rescale every parameter by

p
3, but since constants don’t

matter in our analysis, we keep the slightly larger norm to keep the notation simpler.
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First note that if we set wi = 1 � 2
Ksi

and wi+N = 1
Ksi

the total revenue from the auxiliary data
points involving wi and wi+N is

K
2
si

✓
1� 2

Ksi

◆
+K

3
s
2
i

✓
1

Ksi

◆
+K

2
si

✓
1� 1

Ksi

◆

= 3 ·K2
si � 3K

Now we verify that in each of the following cases, if we fix the values of wj , wj+N for j 6= i, then
the revenue can be strictly increased by setting wi = 1� 2

Ksi
and wi+N = 1

Ksi
:

• wi  2
3Ksi

or wi+N  2
3Ksi

If wi  2
3Ksi

then the total revenue from the auxiliary data points involving wi, wi+N is at
most

K
3
s
2
i

✓
2

3Ksi

◆
+max

✓
K

3
s
2
i

✓
1

Ksi

◆
,K

2
si

✓
1� 2

Ksi

◆◆
+K

2
si

✓
1� 1

Ksi

◆

which is at most 2.7K2
si. If we instead set wi = 1� 2

Ksi
and wi+N = 1

Ksi
, we increase

the revenue from auxiliary data points by at least 0.3K2
si � 3K and we affect at most si

clause data points so the total revenue is increased.

• 1
Ksi

< wi  2
3 or 1

Ksi
< wi+N  2

3

This case is dealt with similar to the above.

• wi + wi+N  2
3 or wi + wi+N > 1� 1

Ksi

This case is dealt with similar to the above.

The main claim in this step can be verified by inspecting the leftover regions, which correspond to
the white regions in Figure 2.

2
3Ksi

1
Ksi

2
3

1� 1
Ksi

2
3Ksi

1
Ksi

2
3

1� 1
Ksi

wi

wi+N

Figure 2: Optimal revenue for the instance in the reduction are achieved for (wi, wi+N ) in the white
region.

Step 3: Bound the revenue for c1-unsatisfiable and c2-satisfiable 1-IN-3-SAT instances. If the
instance is c2-satisfiable, then we can assign xi = 1 � 2

Ksi
and xN+i =

1
Ksi

when Xi is true in
the c2-satisfying assignment and xi+N = 1 � 2

Ksi
and xi =

1
Ksi

otherwise. This achieves a total
revenue of

R2 = 3K2(s1 + · · ·+ sN )� 3KN + c2S
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where S is the number of clauses in the formula. Note s1 + · · ·+ sN = 3S so
R2 = (9K2 + c2)S � 3KN

If the formula is not c1-satisfiable then there can be no solution to the Myersonian regression that
achieves revenue more than

R1 = 9K2
S � 3KN + c1S +

3

K
(1� c1)S

This is because for any values for the variables, we can consider letting Xi be true in the Boolean
formula whenever wi 2

�
2
3 , 1

⇤
and Xi be false when wi+N 2

�
2
3 , 1

⇤
. By assumption, at least

1� c1-fraction of the clauses (e.g. (Xi _Xj _Xk)) in the Boolean formula are violated meaning
that either there is more than one true literal, in which case:

wi + wj+N + wk � 4

3
or all literals are false, in which case:

wi + wj+N + wk  3

K

Now clearly S > N/3 (since each variable must appear in at least one clause). Since 0 < c1 < c2  1
are fixed constants (independent of N ), if we choose K sufficiently large in terms of c1, c2, there is a
(1� ✏)-factor gap between R1 and R2 for some small constant ✏ > 0 independent of N .

Proof of Lemma 3.3

Proof of Lemma 3.3. Note we can assume that in the original 1-IN-3-SAT instance, there are at most
O(N3) clauses and each variable appears in at most O(N2) clauses. In the instance constructed in
the proof of Lemma 3.1, the optimal solution w has ||w||2 = O(

p
N). Construct the same instance

but with all values vt scaled down by a factor of 1/
p
N . Call this instance M .

Following the same argument as in the proof of Lemma 3.1, if the original 1-IN-3-SAT instance is
completely satisfiable, then in instance M it is possible to achieve a total revenue of

R =
3K2(s1 + · · ·+ sN )p

N
� 3K

p
N +

Sp
N

=
(9K2 + 1)Sp

N
� 3K

p
N

and if the original 1-IN-3-SAT instance is not satisfiable then the maximum possible revenue in
instance M is at most

R
0  9K2

Sp
N

� 3K
p
N +

S � 1p
N

+
3

K
· 1p

N
 R� 1

2
p
N

where the last inequality holds as long as K � 6.

Proof. Let w̃ be the optimal solution for data (x̃t
, ṽ

t)t=1..m. We will construct a vector w such that:
X

t

REV(hw, x̄ti; v̄t) �
X

t

REV(hw̃, x̃ti; ṽt)�O(�m)

Construct a vector w such that w1 = (1� 3�)(w̃1 � 3�) and wi = (1� 3�)w̃i for i > 1. We have
kwk2  (1� 3�)(1 + 3�)  1

so the solution is feasible. For each point t such 0  hw̃, x̃ti  v
t observe that:

hw, x̄ti � (1� 3�)(w̃1 � 3�) + (1� 3�)hw̃2..n, x̄2..ni
� (1� 3�)hw̃, x̃i � 3� � kx̃2..n � x̄2..nk � hw̃, x̃i � 7�

and that:
hw, x̄ti  (1� 3�)(w̃1 � 3�) + (1� 3�)[hw̃2..n, x̃2..ni+ �]

 (1� 3�)hw̃, x̃i � (1� 3�)2�  hw̃, x̃i � �  ṽ
t � �  v̄

t

and hence
REV(hw, x̄ti; v̄t) � REV(hw̃, x̃ti; ṽt)� 5�

Summing over all t gets us the desired expression. This shows in particular that R̄� R̃  5�m. Since
the setting is symmetric, the same proof (with roles of R̃ and R̄ reversed) gives us R̃� R̄  5�m.
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Proof of Theorem 4.1

Proof of Theorem 4.1. Let w̃ be the optimal solution for data (x̃t
, ṽ

t)t=1..m. We will construct a
vector w such that:

X

t

REV(hw, x̄ti; v̄t) �
X

t

REV(hw̃, x̃ti; ṽt)�O(�m)

Construct a vector w such that w1 = (1� 3�)(w̃1 � 3�) and wi = (1� 3�)w̃i for i > 1. We have

kwk2  (1� 3�)(1 + 3�)  1

so the solution is feasible. For each point t such 0  hw̃, x̃ti  v
t observe that:

hw, x̄ti � (1� 3�)(w̃1 � 3�) + (1� 3�)hw̃2..n, x̄2..ni
� (1� 3�)hw̃, x̃i � 3� � kx̃2..n � x̄2..nk � hw̃, x̃i � 7�

and that:
hw, x̄ti  (1� 3�)(w̃1 � 3�) + (1� 3�)[hw̃2..n, x̃2..ni+ �]

 (1� 3�)hw̃, x̃i � (1� 3�)2�  hw̃, x̃i � �  ṽ
t � �  v̄

t

and hence
REV(hw, x̄ti; v̄t) � REV(hw̃, x̃ti; ṽt)� 5�

Summing over all t gets us the desired expression. This shows in particular that R̄� R̃  5�m. Since
the setting is symmetric, the same proof (with roles of R̃ and R̄ reversed) gives us R̃� R̄  5�m.

Proof of Corollary 4.3

Proof of 4.3. Let w⇤ be the solution of maxkwk21 FD(w). By the previous theorem we have:

FD(wS) � FS(wS)�O (✏)

FS(w
⇤) � FD(w

⇤)�O (✏)

Since FS(wS) � FS(w⇤) by the definition of wS we obtain the result in the statement.
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