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1 List of Underlying Assumptions

The proofs of Theorem [T]and Theorem 2]rely on a number of assumptions on the model parameters
(n,m,p,0,a, 7). We enumerate them before proceeding with the formal proofs in the following
sections.

e n and m tend to oo.

* m = w(logn) and log m = o(n). These assumptions rule out extremely tall or wide matrices,
respectively, so that we can resort to large deviation theories in the proofs.

* m = O(n). This is a sufficient condition for reliable estimation of («, 3, 8) for the proposed
computationally-efficient algorithm. If these parameters are known a priori, this assumption
can be disregarded.

.« 9 =0(1).

e a > 3 > ~. This assumption reflects realistic scenarios in which users within the same group
(or cluster) are more likely to be connected as per the social homophily theory [1]].

e a,8,v=06 (loin).




2 Proof of Theorem 1

Theorem 1 (Information-theoretic limits). Assume that m = w(logn) and logm = o(n). Let
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Fixe > 0. If p > (14-€)p*, then there exists a sequence of estimators ¥ satisfying lim,,_ pY (W) =
0. Conversely, if p < (1 — €)p*, then lim,,_, o, Pe(‘s)(qp) = 0 for any .

md,

2.1 Achievability proof

Let ¢\, be the maximum likelihood estimator. Fix € > 0. Consider the sufficient conditions claimed
in Theorem I}
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b= (/T a - Va)yms.

For notational simplicity, let us define I, := p(v/1 — 6 — \/5)2 Then, the above conditions can be
rewritten as:

1

gnIT > (1+¢)logm, 3)
1

mdgl, + énIg > (14 ¢)logn, (6)
1 1

mo.I, + Enjd + gnfcg > (1+¢)logn. @)

In what follows, we will show that the probability of error when applying ¥ tends to zero if all of
the above conditions are satisfied.

Recall that each cluster consists of three groups and the rating vectors of the three groups respect
some dependency relationship, reflected in v = v{* ® v4' and vF = vE © v, Here, v¥ denotes the
rating vector of the i™ group in cluster = where i € {1,2,3} and = € {A, B}. This then motivates us
to assume that without loss of generality, the ground-truth rating matrix, say My € M), reads:

1%><7'000m 1%><7'001m 1%><701om 1%><7'011m 1%><T100m 1%><7'101m 1%><7'110m 1%><T111m

O%XToogm 0%)(7’001771, O%XT()lom O%X*roum I%XTloom ]-%X'rmlm I%XTllom 1%)(7'111777,

1%)(7’0(](]771 1%)(7‘(][]17?1 1%)(7’01()7?7, 1%><T()11m O%XTloom O%XTlolm O%XTllgm O%Xnum

Mo'

0%)(7’000771 0%)(7’001771 1%><7'010m 1%><T011m O%XTloom 0%)(7’101771 1%)(7’110771 1%><7'111m

O%Xmogm 1%X7001m O%mem 1%><7—011m O%Xnoom 1%><7'101m O%Xnmm 1%><T111m

O%XTo()()m 1%)(7‘001?71 1%)(7’0107?7, O%X'roum O%XTloom 1%)(7‘101771 1%)(7‘110'"1 O%XTlllm

®)

where 0 < 7, < 1 for ¢ € {0,1}3, and Zee{o paTe =1 Here, we divide the columns of M into
eight sections 7, where

Torvars = {c € [m] s column cof My = [1 bily (1@bi)ly baly byly (b2®bs)1g]"},
for by, ba, bs € {0,1}3, and we have 7, = |T;|/m. Accordingly, each row v? is further partitioned
[ (0): L€ {0,111,

By symmetry, P [\ (Y, G) # M] is the same for all M’s as long as the considered matrix respects
the §-constraint, i.e., belongs to the class of M) where § := {6c,04}. Hence,

PO () = max Pl (Y,G) # M] =P (Y,G) # Mol ©)



By applying the union bound together with the definition of MLE, we then obtain

PO () < Y PIL(My) > L(X)] (10)

X#Mo
where L(X) denotes the negative log-likelihood of a candidate matrix X . It turns out that an interested

error event {L(Mp) > L(X)} depends solely on two key parameters which dictate the relationship

between X and My € M(®). Let us first introduce some notations relevant to the two parameters.
Let {v7 : © € {A, B},i € [3]} be the rating vectors w.r.t. My. Let {u? : x € {A, B}, € [3]} be

the counterparts w.r.t. X. The first key parameter, which we denote by &’ ; » indicates the number

of users in group ¢ of cluster x whose rating vector v]’s are swapped with the rating vectors ug’s of

users in group j of cluster y. The second key parameter, which we denote by d¥ (¢), is the hamming
distance between v (£) and uf (£): du (v (€), ui (¢)) where vf (¢) denotes part of v{ concerning
column block £ € {0, 1} (similarly for uZ (¢)).

We also find that the following constraint w.r.t. kr’y’s plays a role in deriving some useful bounds in
Lemma 3] (to be stated later):

YooY EY< (1)
ye{A,B} jel3]

Lemmal [I] (to be stated shortly) shows that the constraint comes without losing generality, i.e., the
constraint does not prevent the representation of all of the possible matrices. To figure out what this
means in detail, we first partition M(®) into numerous matrix classes: M) = Uy X(T). Here each
class, which we denote by X (T'), is characterized by a tuple T that concerns the two key parameters:

<{ i,5€[3], z,ye{A,B} 7{d ( )}i€[3],€€{071}3, IG{A,B}) : (12)

Here, the matrix class X'(T") denotes the set of all rating matrices subject to 7'. Let 7 %) be the set of
such tuples 7"s that also satisfy

Z Z ki < —n 0 < df(l) < mmy. (13)
ye{A,B}j€[3

Lemma 1. Consider X € M©). Then, there exists T € T such that X € X(T). This implies

that M) = T©) i.e., the constraint (13) made in T®) does not lose any generality in matrix
representation.

We refer to Appendix [A.T]for the proof of Lemmal|T]
Using the introduced set 7(%) and the tuple 7', we can then rewrite the RHS of (T0) as:

ZP (M) > L(X Z Z [L(Mo) > L(X)]. (14)

X#Mo TeT(® XeXx(T)

Lemma 2 stated below provides an upper bound on P [L(My) > L(X)] for X € X (T) and T € T,

Lemma 2. Ler B X' Bern(p) B!” "X' Bern(6), B{*) %' Bern(a), B”) "' Bern(8) and
B "X Bern(). Let

ni ni+na
Bi= oy BY (2B ~1) 4+ Y (B - BY)
i=1 j=ni+1
ni+n2+ns ni+nz+ng+ng (15)
te Y (BB ) e Y (BT -BY).
k=ni+n2+1 {=ni1+nz+nz+1
where ny := A(Mo, X), ng := g P ng = =ny " and na nﬂ_w Here, A(My, )lndlcates the

number of distinct entries between MO and X. Moreover, 07 Y denotes the number of pairs of users
who are originally connected with x-type edges (in light of My), but misclassified as y-type edges (in



view of X) where x,y € {«, 3,7}, see Appendix|A.2|for its mathematical definition. Assume that

o, B,7,p = o(1). Then, for X € X(T) and T € T, we have
PIL(My) > L(X)] = P[B > 0] (16)
<exp(—(140(1)) (nly +noly +nzley +nalea)). (17

We refer to Appendix [A-2]for the proof of Lemma[2]
Applying (T7) to the RHS of (T4), we then get

S PIL(My) = LX) < Y | X(D)|exp (—(1+0(1)KTT), (18)

TeT @ XeXx(T) TeT®)

where K := [ny,n9,n3,n4)7 and I := [I,., I, I.1, I.2]". We find that partitioning 7 (%) further into
7'1(6) and the rest 7(®) \ 7'1(6) serves to ease the proof:

6 T l‘ T
T = {({ i jel3] aye A5} Ad; (E)}ie[3],86{0,1}3,756{A,B}) ki < 5” i (f) < Tm}’

where T is some constant that lies in between 0 and 7. Using this further split, we can then rewrite
the RHS of (T8) as

S 1 X@exp (—(L+oWETT) + Y [X(D)]exp (~(1+0o1)KTT).  (19)

TeT®) \7—1(& TE’TI(J)

This together with Lemmas [3]and E| (stated below) yields

Z Z L(Mp) > L(X)] — 0 asn,m — oo. (20)
TeT() XeXx(T)

Applying this to (T4) and (TI0), we conclude that P (¥mL) — 0 as n and m tend to infinity. This

completes the achievability proof of Theorem|I} O
Lemma 3. The first term in (19) is upper-bounded by
6 n 26 m
Z |X(T)| exp (_(1 + O(l))KTI) S 6n26m67$2(nm)1r S <) () . (21)
n m

TeTEN\T

We see that the RHS of 1) tends to 0 as n and m go to infinity, thus leading the LHS to converge to
0 in the limit.

We refer to Appendix [A3]for the proof of Lemma 3]
Lemma 4. The second term in (19) is upper-bounded by

exp(—(l+o < exp _< t ogm—E + k¢)logn ),
X(T 1 ))KTT 4d 1 5 kg + k)l (22)
TeT TeT®

where

kg := Z ka’

z€{A,B}1i,j€[3]

k= Y Y Yoan

ze{A,B} ye{A,B}\{z} i,j€[3]

do= Y Y di(0) +d3(0) +d3(0).

z€{A,B} £€{0,1}?
Note that the RHS of 22) converges to 0 as n and m tend to infinity.

We refer to Appendix [A-4]for the proof of Lemmal[d]



Remark 1 (Technical distinction). One technical distinction relative to the previous works [2}13]]
arises from the fact that in our setting, the hamming distances (d5(¢),d3(£),d%(¢)) defined w.r.t.
different groups yet within the same cluster are intimately related. Note that the rating vectors of
X € M) are linearly dependent: u§ = uf ® u3 for x € {A, B}. To carefully compute d(£) as a
function of di () and d}(£), we introduce another quantity that represents the number of elements
where ui and v{ differ in column block £, which we denote by Iy, (also for u, v3):

dg(0) == [{c € I s v7(c) # ui(c),v5(c) # uz(c)}. (23)

By the dependency structure,
d3(€) = (d7(€) — dg, (€)) + (d5 (£) — dg, (€)) = di (£) + d5 (£) — 2dg, (0). (24)
This distinction affects all the detailed derivations through the achievability proof. |

2.2 Converse Proof

Define I, := p(v/T — 6 — v/0)?. The goal of the converse proof is to show that Pe(T)(’t/}) - 0 as
n — oo for any set of feasible rating matrices M (%) and estimator 1), if at least one of the following
conditions is satisfied:

%nL« < (1 —¢)logm, (Perfect clustering/grouping regime) (25)
SgmlI, + tnly < (1—€)logn, (Grouping-limited regime) (26)
Seml, 4+ tnly + tnl < (1—€)logn, (Clustering-limited regime) 27)

We first seek a lower bound on the infimum of the worst-case probability of error over all estimators.
Let M be a random variable that denotes the hidden rating matrix (to be estimated) and is uniformly
drawn from M (). Denote the success event of estimation of rating matrix by S, which is given by

S= () (LX)>L(M)). (28)

XeM®
X £M,

From the definition of worst-case probability of error in (9], we obtain

iIdl)f P (p) =inf max P[)(Y? G)# M]

Y MeM©®)
>inf max P[¢(Y?,G)# M, M= M|
P MeM©
= inf Plp(Y?,G)#AM|M=M 29
inf max WY, G) # M | ] (29)
= inf Py(Y*G) =X M=M
13 MIQ/E\L/(X@ X;/I W( ) | ]
> inf Ply(Y*G) =X |M=M
>inf max, D P[(6)=X|M=M]
XeM®
X#M
_ Q _ _
= | oax > Pw(Y?,G)=X|M=M] (30)
Xem®
X#M
> Z P [ (Y2 G) = X | M = My (31)
XeM®
X#Mp
= > PLX)<L(M)] (32)
XemM®
X#M,
>P| |J (LX) <L) (33)
XEM((;)
X#M,



=P[5 (34)
where (29) follows because M is uniformly distributed; (30) follows due to the fact that the maximum
likelihood estimator is optimal under uniform prior; (31)) follows since My € M(®); B2 follows
by the definition of negative log-likelihood in (78); (33) follows from union bound; and finally (34)
follows from @) Therefore, in order to show that lim,,_, . infy Pe(T) () # 0, it suffices to show
that lim,, o P[S] = 0.

Next, we show that lim,,_,, P [S] = 0 under each of the three conditions stated in (23)), 26), 27),
respectively. Before delving into the convergence proof, we present the following key lemma that is
essential for developing the convergence analysis. In this lemma, we use B to refer to a Bernoulli
random variable with (fixed or asymptotic) parameter 1 € [0, 1], thatis, P[B*) = 1] = 1-P[B®) =
0] = p.

Lemma 5. Assume that o, 3,7, p = © (

loin) and 0 € [0,1] is a constant. For positive integers

n1, N2, N3, N4 Satisfying max {pnl, vapfng, Jayns, \/B'ym;} = w(1), consider the sets of inde-
pendent Bernoulli random variables {BZ-(p) 21 €[]}, {Bi(e) 21 € [}, {Bi(a) 21 € [n1+1:nsl},

{Bi(ﬁ) ct1€m+1:ng]Uni+no+ns+1:ny+ns+ns+ngt, and{Bi(W) 1€ +na+1:
ny + n2 + ng + ngl}. Define

ni+nz
Pl =t (1) 5 (201) « 5 o (=55 (4787)

j=ni1+1
ni+nz+ns (1 _ ’}/)OZ ( ) ( )
log (== (B "_B© )
o Og((l—aM) Bk
k=ni+n2+1

ni+na+nz+ng
1—7)B
+ Z log <( ) ) (B,E'Y)—B,Eﬁ)) )

l=ni+4+nz+n3z+1

Then, the probability that B(ny,no, ng, ny) being non-negative can be lower bounded by

1
P[B(n1,ne,ns,ng) > 0] > 5 exp(—(1+0(1)) (m Iy 4+noly+nsle+nales)). (35)

We refer to Appendix [B-I]for the proof of Lemma[3}

Failure Proof for the Perfect Clustering/Grouping Regime. Let 7; be a section of columns of
My with 7y = |Tg|/m = ©(1), and assume ¢ = b1bsbs € {0,1}3. For ¢ € Ty, define M. be a
rating matrix, which is identical to My, except its ¢ column which is given by

[O% bllg bll% bglg bglg (b2@b3)1%].

We focus on the family of rating matrices {M . : ¢ € T¢}. It is easy to verify that the type of all
such matrices is given by

<{k } i,j€[3], z,ye{A,B}’ {dlA(é) = l}ie{l,S},Ee{0,1}3 ’ {d124(€)

B _
{di - 0}1’6[3],26{0,1}3) : (36)
Using the definition of the negative log-likelihood in (78) for M, with ¢ € T;, we obtain
P [L(Mg) > L(Mo)] =1 P [L(M) < L(Mo)]

= 0}66{0,1}3 J

i 11— A(M,, M)
—1-P 1og(0) Z B (23 o _ )20
—1-P|log (:9) iBi(”) (2B ~1) 20 (37)
=1



<1- iexp (~0+ o(l))%[r) (38)
< exp <—i exp (—(1 n 0(1))31,.>> , (39)

where (37) follows from the evaluation of A(M ), My) for the type of M, given in (36), and (38) is

an immediate consequence of LemmaE]by setting ny = 5, ng =nz =nyg = 0.

Next, we can upper bound the success probability of an ML estimator as

P[S] <P Q (L(M () > L(Mp)) ] 161 P [L(M) > L(Mo)] (40)
< exp (—i exp (~(1+ o(l))?h))w (41)
~exp (‘411” exp (—(1+o(1) 51 + logm))
< exp (—jﬂ exp(—((1+ 0(1))(1 — €) 1) log m))

(42)
< exp (—irg exp((e —o(1)(1—¢)) 1ogm)) , 43)

where ([@0) follows from the fact that the events {L(M.) > L(My)} are mutually independent for
all ¢ € 7Ty, since each event corresponds to a different column within the block of columns 7y;
@T) follows from (39); and finally, @2) follows from (23). Therefore, we get

lim P[S]< lim exp (in exp((e —o(1)(1—¢)) log m)) =0, (44)

n,m—00 n,m—co

which shows that if (23) holds, then the recovery fails with high probability.

Failure Proof for the Grouping-Limited Regime. Without loss of generality, assume 6,m =
dy (le, v?), i.e., the rating vectors of groups G and G4 that have the minimum inter-group
Hamming distance. In the following, we will introduce a class of rating matrices, which are obtained
by switching two users between groups G{* and G4, and prove that if holds, then with high
probability the ML estimator will fail by selecting one of the rating matrices from this class, instead
of M, 0-

First, we present the following lemma that guarantees the existence of two subsets of users with
certain properties. The proof of the lemma is presented in Appendix [B.2]

Lemma 6. Let o, = © (loﬁ) Consider groups G4 and G4'. As n — oo, with probability

approachmg 1, there exists two subgroups GA C G{ and GA C G4 with size \G | > log and
1G4 > joas5 Such that there is no edge between the nodes in G{UGH, that is,

EnN ((G{‘ UGS x (G u Gg‘)) =g.

For given sub-groups éf‘ and @’2“, we define the set of rating matrices
(Mg f€ G g€ Gy}

where M ¢, is identical to Mo, except its ™ and g™ rows, which are swapped. Note that for every
M 4y in this class, we have A(M; 4y, Mo) = 25,m. Moreover, the groups induced by My ;y are

G =GPAU{g)\ {f}and G4 = G5 U{f}\ {g}. while the other four groups are identical to those
of matrix My. Therefore, for each M; ;) we have



L(Mo) — L(Mz,q))

= log ( > 2%51 Bl(p (23(0 )

(1-0) N
e (G200) | S (i) X (- 5)

i)

heGM\{f} heG#\{g}
26gm 2(%_1)
») 0) (1-P8)a B _ ple
]og( ) Z BY (2B 1) +log <(1 —i ; (B - )

- B (25gm,2(g _ 1),0,0)
Then, using Lemma[5} we can write
PL(Myg) > L(Mp)] =1—P [B(Qégm, 2(% ~1),0,0) > 0}
< 1fiexp(f(1+0( ) (25 ml, +2(ff1) ))
< exp (—iexp (—(1 +o(1)) (25 ml, +2 (g - 1) Ig))> (45)

Finally, we can bound the success probability of an ML estimator as

P[S] <P (N LMy >LM)) | =  J[ PLOMg) >L(M)]  (46)
feG{,geGy JeGp geGy o
< <exp <—iexp (—(1 +o(1)) (26 mlI, + 2 (g - 1) I )))) e @7)
— exp (410;2(@ exp (—(1+ o(1)) (20,mI, +2 (% -1) Ig))) (48)
< exp (—41022(”) exp (—2(1+ o(1))(1 — €) log n)) (49)
n2(e—o(1)(1-6)

where ([@6) holds since events {L(M; 4) > L(Mj)} are independent due to the fact that there is no
edge between nodes in G4 U G4'; @) follows from (@3)); we used |G| = |G4| = Togbyy iN
and ({9) follows from the condition in (26). Finally, we obtain

n2(e—o(1)(1—¢))
lim P[S] < lim exp (6> =0,

which implies that the ML estimator will fail in finding M with high probability.

Failure Proof for the Clustering-Limited Regime. The proof of this case follows the same
structure as that of the grouping-limited regime. Without loss of generality, assume v{' and v

be rating vectors whose minimum hamming distance is §.m, i.e., dy (vi', v¥) = d.m. Note that
the corresponding groups defined by such rating vectors, G4 and G, belong to dlfferent clusters.
Similar to Lemma@, we pick subsets G € Gf* and G5 C GQB with |G1'| = |GF| = . Note

that the subgraph induced by é‘f‘ U (;”23 is edge-free. Then, we consider the set of all rating matrices

log n’

{Msq) : f €GitgeGEY,



where

Mo(f,:) ifr=g,
My(r,:) otherwise.

{ Myo(g,:) ifr=f,

Then, for M (f.g)» WE have

L(Mo) — L(My.q))
A(M g, gy, Mo)

~log (1 ; 9) Z Bi(p) (232(0) _ 1)

i=1

(1-7)a ) (@) ™) (@)
+log <(1 )| X (B -BEn) X (B -B6h)
L REGLN{f} heGF\{g}
(1-7)B ) (8) &) (8)
+log <(1_5)7 > (Bow-BG)+ > (Biw-Bih)
LheGEUGH heGPUGEH
n 2n
=B 25c 7a27_]-17 .

Applying Lemma 5] we get

P [L(M () > L(Mo)] = 1= B | B(28,m,2(5 = 1),0,0) > 0|

< exp (—q e (~(1+ o) (28mt, 42 ( ~1) I + 23 12)) ).
D

Therefore, the success probability of the ML estimator can be bounded as

PSI< ] PLMyg) > L(M)] (52)
feG{ geGH

1 NN
< <exp (-4 exp (—(1 +o(1)) (2(5le +2 (g - 1) I + 23@)))) (53)

2
< exp (_”6 exp(—2(1+0(1))(1—e)logn)) (54)
4log’(n)
- n2(670(1)(176)) 5
e -,
< Xp( T ) (55)

where @) is a consequence of independence of the events {L(M y,4y) > L(Mo)}; (53) follows from
(31); and in (54) we have used the condition (27). This immediately implies

lim P[S] =0,

n— o0
which leads to the failure of the ML estimator.

Since lim,,—,oc P [S] = 0 is proved under each of the three conditions stated in 23), (26), and (]7_7[)
the converse proof of Theorem T]is concluded.

10



3 Proof of Theorem 2

Theorem 2 (Theoretical guarantees of the proposed algorithm). Assume that m = w(logn), logm =
o(n), m = O(n), I.o > 210% and I, > w(L). Then, as long as the sample size is beyond the

n

optimal sample complexity in Theorem [l| (i.e., mnp > mnp*), then the algorithm presented in
Section 4 (in the main paper) with T = O(logn) iterations ensures the worse-case error probability

tends to 0 as n — oc. That is, the algorithm returns M such that IP’[M\ =M]=1-o(1).

Proof. We propose a computationally feasible matrix completion algorithm that achieves the optimal
sample complexity characterized by Theorem [I] It consists of four phases described as below.

Phase 1 (Exact Recovery of Clusters): We use the community detection algorithm in [4]] on G to
exactlyE] recover the two clusters A and B. As proved in [4], the decomposition of the graph into two

clusters is correct with high probability when I.o > 210%. This completes Phase 1.

Phase 2 (Almost Exact Recovery of Groups): The goal of Phase 2 is to decompose the set of users
in cluster A (or cluster B) into three groups, represented by G4, G4, G4 (or GE, GE, GP). Tt is
worth noting that grouping at this stage is almost exacﬂ and will be further refined in the next phases.
To this end, we run a spectral clustering algorithm [|6]] on A and B separately. Let @f (0) denote the
initial estimate of the i group of cluster z that is recovered by Phase 2, for i € [3] and z € {4, B}.
It is shown that the groups within each cluster are recovered with a vanishing fraction of errors if
I, = w(1/n). Itis worth mentioning that there are other clustering algorithms [[7H14] that can be
employed for this phase. Examples include: spectral clustering [7H11]], semidefinite programming
(SDP) [12]], non-backtracking matrix spectrum [13]], and belief propagation [14]. This completes
Phase 2.

Phase 3 (Exact Recovery of Rating Vectors): We propose a novel algorithm that optimally recovers
the rating vectors of the groups within each cluster. The algorithm is based on maximum likeli-
hood (ML) decoding of users’ ratings based on the partial and noisy observations. For this model,
the ML decoding boils down to a counting rule: for each item, find the group with the maximum
gap between the number of observed zeros and ones, and set the rating entry of this group to 0. The
other two rating vectors are either both 0 or both 1 for this item, which will be determined based on
the majority of the union of their observed entries. It turns out that the vector recovery is exact with
probability 1—o0(1). We first present the proposed algorithm. Then, the theoretical guarantee of the
algorithm is provided.

Define 07 as the estimated rating vector of v7, i.e., the output of Algorithm (see below). Let the ¢t
element of the rating vector v¥ (or 0¥) be denoted by v¥(c) (or v¥(c)) fori € [3], z € {A, B} and
¢ € [m]. Let Y, . be the (r, ¢)-entry of matrix Y, and Z, . be its mapping to {+1,0, —1} for r € [n]
and ¢ € [m]. The pseudocode is given below.

Algorithm 1 Exact Recovery of Rating Vectors
1: function VECRCV (n,m, Z,{GZ(0) : i € [3],2 € {4, B}})
2 for c € [m] and « € {A, B} do

3 fori € [3] do p; »(c) Zreé@(o) Zrc

4: J < argmax;cs piz(c)

5: v7(c) 0
6.
7

8

9

if Zq‘,e[g]\{j} piz(c) > 0 then
fori € 3]\ {j} do¥f(c) 0
else
: fori € [3]\ {j} dovf(c) < 1
10: return {07 : i € [3],x € {4, B}}

2Exact recovery requires the number of wrongly clustered users vanishes as the number of users tends to
infinity. The formal mathematical definition is given in [S} Definition 4].

3 Almost exact recovery means that groups are recovered with a vanishing fraction of misclassified users.
The mathematical definition is given in [5, Definition 4].
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Remark 2. AlgorithmlI]is one of the technical distinctions, relative to the prior works [2)3|] which
employ the simple majority voting rule under non-hierarchical SBMs. Also our technical novelty
in analysis, reflected in (see below), exploits the hierarchical structure to prove the theoretical
guarantee. |

Let us now prove the exact recovery of the rating vectors of the groups within cluster A. The
proof w.r.t. cluster B follows by symmetry. Without loss of generality, assume that v{!(c) = 0 for
c € [m/2], and v{!(c) = 1 for c € m \ [m/2]. In what follows, we will prove that v;* can be exactly
recovered, i.e., P[0 = vi{!] = 1 — o(1). Similar proofs can be constructed for v3' and v§'. The

probability of error in recovering v{' is expressed as
P [5{‘ # vf‘]
=P U @e=11|u U &@e@=0

c€[m/2] cem\[m/2]

Y P =1] |+ > Poi(e) =0 (56)

(ce[m/2] cem\[m/2]

IA

d>oop ﬂ{v )=1}n{0g()=0}| +P| [ {5i(c)=1}n {55 (c) = 0}

c€[m/2] i€[2 i€{1,3}

+ > P ﬂ{ o)=0} +P {5t =0}n () {5(c)=1} (57)

cem\[m/2] 1€[3] 1€{2,3}
< D Plora(e) +p2ale) <01+ > Plprale) +psalc) < 0]
c€[m/2] c€[m/2]
+1 > Ploaald)+psale) = 00+ > Plprale) +psalc) > 0] (58)
cem\[m/2] cem\[m/2]

=| D> P D Zret D Zrme 0|+ D Pl D Zpet Y Zre <0

c€m/2]  |r,eG4(0) ro€GA(0) c€m/2]  |r eG4(0) r3€GA(0)

Termy Termy

1 DS P D et Y e 20|+ Y P Y Zeet D Zrye > 0

cem\[m/2] |r,eG4(0)  r3eGL(0) cem\[m/2] [r,eG4(0)  r3eG4(0)

Terms Termy

(59)

where (56)) follows from the union bound; (57)) follows from v{' @ v4' = v4'; (B8) follows from the
ML decoding outlined in Algorithm|[T} and (39) follows from the definition of p; .(c) on Line 3 in
Algorithm 1]

Next we show that each of the four terms in (39) is o(m~!). We prove that for Term; and Terms, and

similar proofs can be carried out for Terms and Termy. Define R; := G2A(0) \ G2 and n; == |R;| /n.
From the theoretical guarantees (i.e., exact clustering and almost-exact grouping) in Phases 1 and 2,
we have lim,,_, o, 7; = 0, Vi € [3] with high probability. Define n;; = (% - 17,;) n and nio == nn

fori € [3]. Let {Bi(p)}i-iN-d- Bern(p), and {Bi(e)}“N-‘i Bern(6). Hence, for ¢ € [m/2], Term; can be
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upper bounded by

Pl Y Znet D, Zne <0

r€G£(0) r2€G2(0)
=P| > Zie+ > Ziet D>, Znet Y, Zie <0
LicGA(0)\Ry JERL keG4 (0)\Rs LERy
<P Y Zie= Y NZiel+ Y. Zee— D N Zee] <0
LicGA(0)\Ry JERL keG4 (0)\ Ry ¢ERy
[ nii ) ) niit+niz )
—p|-3 BY (zB. —1)— S B
7 7 J
L =1 Jj=ni11+1
ni1+niz+na nii1+niz+nei+na2
- > BB 1) - > BP <o (60)
k=ni1+niz+1 =ni1+ni2+n21+1
ni1+naz1 ( ) ni1+nzi+niz+nae (
_ ) 0 )
B SR E S o
i=1 j=ni1+n21+1

where (60) follows since v{!(c) = 0 for ¢ € [m/2],

V. — 0 wp. p(1-20);
€71 1 wp. pb,

and Z;. = —(2Yj. — 1).
The following lemma introduces a large deviation result employed in [2] to further bound (61).

Lemma 7. Let 0 < € < 1, and 0 < p < 1/2. Suppose X ~ Binom(en, p). Then,

Knp Knp
Plx>_P | <9 (—7) > 2. 62
[ > log(l/e)} < 2exp 5 forany k > 2e (62)
Proof. The proof is given by [2, Lemma 7]. O

Let  be sufficiently large such that > 4e. Thus, the RHS of (6I) can be upper bounded by

Pl > Zunet D Zpe <0

r1eGA(0) ro€G2(0)
_n11+n21 ni1+nz21+niz+no:
<P| X B (28" -1)>- ¥ B
L i=1 j=ni1+n21+1
[m11+n21 . ni1t+n21+niz+nas K
<o "S5 0 a0 1) > - e[S g e
- [ [ lOg 1 - J g 1
i=1 n+n2 j=ni1+na1+1 n1+mn2
[m11+n21 K K
<p| 3 BY (QBZ.(O) _ 1) >4 gexp (——p) 63)
, log 2
L =1 n1+mn2
i 1-0 n11+n21 1-0
<Pllog(—) 3 BY (2B§"> - 1) > —log TP omY) (64
0 ‘ 0 log
L i=1 n1+n2
1 1-6 cn 1
<exp| =log pl —14+o01)z—(m+mn)|nl |+ o(mfl) (65)
2 0 log 3
m-+n2
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3
< exp (7(1 +0(1)) (1 + i) logm> +o(m™) (67)
=o(m™) (68)

where (63) follows from Lemmal7} (64) follows since np = Q(logm); (63) readily follows from
Lemma 2; (66) follows as the first term in the exponent is insignificant compared to the other

term since np = O(nl,) and lim,, ,, o+ ﬁ = 0; and (67) follows since inl, > (1 +
n1+n2

€) log m guarantees that (% —(m+n2)) ndy > (14+5) logm as long as (n; +12) is sufficiently small
compared to €.

~ exp (_(1 +o(1)) (1 - n2>) nIr> +o(m~1) (66)

Similarly, for ¢ € m \ [m/2], Terms can be upper bounded by

Pl Y Znet D, Zpe 20

r2€G2(0) r3€G2(0)

=P| > Ziet ) Ziet D, Zeet Yy Zie 20

LicG4(0)\R2 JER2 keG£(0)\Rs £ER3

<SPl Y Zie+ Y NZiel+ D Zie+ D | Ziel = 0

LicG4(0)\Rs JER2 keG£(0)\Rs £ER3

n21+mna2

na1
=p > BP (2" -1)+ Y BY
i=1

Jj=n21+1

n21+n22+n31 nz1+n22+n3zi+nz2

+ > BP0 -1)+ Y BP0 (69)
k=na1+naz+1 ¢=nz1+n22+n3z1+1

n21+ns31 n21+nsi+nz2+nse
-p| 3 BY (2B§9> _ 1) > _ 3 B (70)
i=1 j=n21+ns31+1

where ([9) follows since vil(c) = 1 forc € m \ [m/2],

~_ ] 0 wp. pb;
Yj _{ 1 wp. p(1-19),

and Z;. = —(2Yj. — 1). Applying similar bounding techniques used for (60), one can show that

P| > Zmet+ D>, Zme > 0| <om™). (71)
r2€G5(0) r3€G4(0)

Finally, by (68) and (7)), the probability of error in recovering v;* is upper bounded by
P [ﬁlA # UIA]

< Z o(m™) + Z o(m™) | + Z o(m™h) + Z o(m™1)

c€[m/2] c€[m/2] cem\[m/2] cem\[m/2]
= o(1). (72)
This completes the proof of exact recovery of rating vectors.

Phase 4 (Exact Recovery of Groups): The goal in this last step is to refine the groups which are
almost recovered in Phase 2, thereby obtaining an exact grouping. To this end, we propose an
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iterative algorithm that locally refines the estimates on the user grouping within each cluster for T'
iterations. More specifically, at each iteration, the affiliation of each user is updated to the group that
yields the maximum point-wise likelihood w.r.t. the considered user. The exact computation of the
point-wise likelihood requires the knowledge of the model parameters («, 3, 8). But we do not rely
on such knowledge, instead estimate them using the given ratings and graph (Y, G). Hence, we use
an approximated point-wise log-likelihood which can readily be computed as:

a
—= (73)
( )5)
where (@, B, 5) denote the maximum likelihood estimates of («, §,0). Here |{c: ;.. = v¥(c)}|
indicates the number of observed rating matrix entries of the user that coincide with the corresponding

~r 1_§ Az
He: Y. =77(c)}] - log <§> +e ({r}, G7(t— 1)) . log<

entries of the rating vector of that group; and e ({r}, éf (t— 1)) denotes the number of edges between
the user and the set of users which belong to that group. The pseudocode is described in Algorithm 2]

Algorithm 2 Local Iterative Refinement of Groups (Set flag = 0)

1: function REFINE (flag, n,m,T,Y,G,{(GZ(0),0%) : i € [3],z € {4, B}})

2: aeti(n#(;)|{(f,g)eE:f,geG';?,xe{A,B},ie[3]}\

% Be &{(focB:feGgeGhoe {ABYic e\l

4 0 {(r,c) € Q: Yo # 07 (c),r € GF(0)}/|€

5: fort € [T]and z € {A, B} do

6: fori € [3]do G¥(t) + @

7: for r < 1tondo R R _
8 j e argmax;cpy |{e: Yo = 5 (0)}log (52) e ({r}, G (¢ — 1)) -log (423
9: G3(t) + GE(t) U {r}

10: if flag ==1 then R

11: {v?:i € [3],x € {A,B}} < VECRcV (n,m,Y,{G¥(t):i € [3],z € {A, B}})

12: return {GZ(T) :i € [3],x € {A,B}}, {07 :i € [3],2 € {4, B}}

In order to prove that Algorithm 2]ensures the exact recovery of groups, we intend to show that the
number of misclassified users in each cluster strictly decreases with each iteration. To this end, we
rely on a technique that was employed in many relevant papers [2,3,/15]. The technique aims to prove
that the misclassification error rate is reduced by a factor of 2 with each iteration. More specifically,
assuming that the previous phases are executed successfully, if we start with nn misclassified users
within one cluster, for some small 77 > 0, then it intends to show that we end up with gn misclassified
users with high probability as n — oo after one iteration of refinement. Hence, with this technique,

running the local refinement for T' = % within the groups of each cluster would suffice to
converge to the ground truth assignments. The proof of such error rate reduction follows the one
in [3} Theorem 2] in which the problem of recovering K communities of possibly different sizes is
studied. By considering the case of three equal-sized communities, the guarantees of exact recovery

of the groups within each cluster readily follows when T' = O(log n).

Remark 3. The iterative refinement in Algorithm |2| can be applied only on the groups (when
flag = 0), or on the groups as well as the rating vectors (for flag = 1). Even though the former is
sufficient for reliable estimation of the rating matrix, we show, through our simulation results in the
following section, that the latter achieves a better performance for finite regimes of n and m. |

This completes the proof of Phase 4, and concludes the proof of Theorem [2] O
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4 Supplementary Experimental Results

Similar to [2,/3}|16L/17], the performance of the proposed algorithm is assessed on semi-real data
(real graph but synthetic rating vectors). We consider a subgraph of the political blog network [18]],
which is shown to exhibit a hierarchical structure [19]]. In particular, we consider a tall matrix setting
of n = 381 and m = 200 in order to investigate the gain in sample complexity due to the graph
side information. The selected subgraph consists of two clusters of political parties, each of which
comprises three groups. The three groups of the first cluster consist of 98, 34 and 103 users, while
the three groups of the second cluster consist of 58, 68 and 20 users.

In order to visualize the underlying hierarchical structure of the considered subgraph of the political
blog network, we apply a dimensionality reduction algorithm, called t-Distributed Stochastic Neighbor
Embedding (t-SNE) [20] to visualize high-dimensional data in a low-dimensional space. Fig.[I]shows
two clusters that are colored in red and blue. Each cluster comprises three groups, represented by
circle, triangle and square.

Cluster 1, Group 1
ster 1, Grot

Cluster 2, Group 2
Clsuter 2, Group 3

g>ooro

Figure 1: Visualization of a subgraph of the political blog network [18]] using t-SNE algorithm [20].
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A Proofs of Lemmas for Achievability Proof of Theorem[I]

A.1 Proof of Lemmal[ll

We prove that the set 7(%) of tuples, characterized by (13), is sufficient to fully represent all X €
M@ 1t should be noted that, for a fixed G¥, one can interpret > ye{A,B} > jel kij as the number
of users in G whose rating vectors are swapped from v to other rating vectors.

Suppose .there exists a group G? such that ) ve{A,B} > jell kf]y > g—z. This implies that the nl?mber
of users in G} whose rating vectors are unaltered is less than or equal to 5. Note that the size of

each group is n/6, and the group sizes must be conserved that for any X € M), Consequently,
there must be users whose rating vectors are swapped from other rating vectors to v;’, and the number

of such users is given by
= 5n
> D K= Z Z Ky > 74)
yElcl jelg]
Since there are 5 groups other than G¥, hence, by (74), there exists at least one group G? such that
n
kY > 75
ji 2 35 (75)
where the LHS of (73) gives the number of users in such a group G? whose rating vectors are swapped
from v of such Gy to vy. Switch the roles of G7 and G?. Hence, the number of users in G whose

rating vectors are unaltered is larger than g5, which implies that

DO DL
y€(c] j€lg]

as per (I3). This completes the proof of LemmalI] O

A.2 Proof of Lemmal[2l

We will first calculate L(X). Let e, (X)) be the number of edges between groups within clusters and
e. (X) be the number of edges across clusters w.r.t. a rating matrix X . Then, we get

P[Y | X] = (1—p)l?prm=I@l(1 — g)/ 2=~ 09A0R0, (76)
P[G | X] = 7% (1 — 5)(8) =€) ges(X) (1 _ gy6(%)" —es(X)
alBl=es(X0=ec(X) (1 _ )6("4%)=(1Bl=eq (X)—ec(X) a7

where || indicates the number of observed entries and A(Y, X) denotes the number of distinct
entries between Y and X. By (76) and (77),

L(X) = —logP[Y' | X] — logP[G | X]
= log (T) A(Y, X) + log <(1_ﬁ)g) eq (X) + log (8:7”) e.(X)+e

(1-a) @)y
=AY, X)+coeg(X)+eze.(X)+c¢ (78)
e (126 (-0 oy = log (=2 , o
where ¢1 = log (152), ¢z = log =a)5 = log ( (723 ) and c is some constant which is
irrelevant to X.
By (78), L(X) — L (Mp) can be written as
c1 (A(Y, X) = A(Y, Mo)) + c2 (eq (X) — eg (Mo)) + 3 (ec (X) — ec (Mo)) - (79

Since A(Y, X) indicates the number of distinct entries between Y and X, its mathematical definition
reads

AY, X) = [{(r0) s (Ve # (Xl = Y L{(Y),. # (X),.}-

(r,c)eQ
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Thus, A(Y, X) — A(Y, My) can be computed as

AY,X) =AY, M) = Y 1{(Y), . # X), .} — Y. 1{(Y), # (M),.}

(r,c)eQ (r,c)EN
= > H{()e = (Mo)re} = 1{(Y),. = (X)rc}]
(r,c)eq:
(M0)7'L'¢(X)7'C
A(MO)X)
(0) 0
_ Z |:Bl(p) (1 _ Bl ) _ Bl(p)Bl( ):|
=1
A(Mo,X

Z [B“’)( —25")]. (80)

Furthermore, A(My, X) = [{(r,¢) : (Mo)re # (X)rc}| reads

AMo, X = > > > N K dy (vf,uY)

ze{A,B}i€[3]ye{A,B} j€[3]
n 1[3] T
> Z D ORD Ol | DR O | NG
ze{A,B}i€[3 ye{A,B} je[3] £e{0,1}3

where dy ( vy, j) denotes the hamming distance between two vectors v;’ and u

We decompose vectors into £-blocks. The vector v7 (¢) is an either all-one or all-zero vector, for
every choice of (z,1,£). Hence, dy (v{(£),vY(€)) is either 0 or §;. Therefore, dy (v¥,u?) can be

. ) o J
written as
du (v ud) = > du (v7(0),ul(0))

£€{0,1}3

= Y du(oF(0),u(0) + d (07 (6), 5 (0))
LeA(vF vY) LEA(vF vY)

DN (L, @00, 0l(0) + Y du (0 (0),ul(0))
LeA(vT ] Y LEA(v7 5 )

= Z (60 — du (07 (0),ud(0))) + Z di (v} (£), w4 (0))
ZGA(T}?,U?) feA(i)?ﬂ)}/)

= > 6= > &+ Z dy(0)
ZEA(vf,v;’) [EA(U;HU?) LA (v 7,1) Y
Y. da(IO.0) - >, O+ Y 4O
£€{0,1}3 éeA(vf,v;’) EQA(U?,’U}’)

=du(vf, o)) = D O+ D A, (82)

LeA(v] ,vY) LEA(vY vY)

where A(v?, v; ¥) indicates the set of subscripts of indices of the column blocks at which the rating
vectors v and vy differ where

A, vf) = {€ € {0,117 : o7 () # v} (O} (83)

Note that (a) holds since whenever ¢ ¢ A(vf,vY) we have v (£) = vj(£), and £ € A(vf,v)
implies v (¢) and v (¢) are different in all positions. Thus, (81) can be wr1tten as
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A(Mo, X)

DD DI I 4 (A G E DR TR SR ()

z€{A,B}i€[3]ye{A,B} j€[3] LeA(v¥ U5 ) ZE{O,I}:}\A(vf,v;’)
n T
X 2lg X2 Zk > d@ |l (84)
ze{A,B}i€[3] ye{A,B} j€[3 £€{0,1}3

We will now evaluate e, (X) — e, (M) and e. (X) — e. (Mp). Let us denote z-type edges that
appear with probability = between users where = € {«, 5,7}. Then, e, (X) — e, (Mp) denotes the
difference between the number of S-type edges for X and that of My, while e.(X) — e.(Mj) denotes
the difference between the number of y-type edges for X and that of M, where

a—f3 y—B B—a B—ry
Nt Nt Ny +np
eg(X)—eg(Mo)= > B+ > BV - N BY, (85)
i=1 i=1 =1
ngﬁwnrﬂ
ee(X) — eo(My) = Z B + Z B > B (86)

=1

From group’s perspective, the number of possible combinations of users within a group should be
preserved because the size of each group is preserved. For the same reason, the number of possible
combinations of users in distinct clusters are also conserved from cluster’s viewpoint. These are
reflected as:

—B + na—)’y _ n:]yﬂ—)a + nﬂ—ﬂx’ (87)

n%ﬁ"‘ P =g (88)

In the case of x < y, where x,y € {«, 8,7}, n;_w can be interpreted as the outgoing flow of edges
from groups and clusters; otherwise, it can be interpreted as the ingoing flow of edges to groups and
clusters. Then, due to the preservation law of total number of edges,

e (89)
Thus, by (87), (88) and (89), the RHS of (85) can be rewritten as
;ﬁB ?Hw
Z (B](a) o B](B)) 4 Z (Bé’Y) o Béﬁ)) ) (90)
j=1 =1

and the RHS of is given by

a—=y B—r
T

> (B -8+ TZ (B - BD). o1)

k=1 =1
On the other hand, one can compute

LD VDI DML DI 2

z€{A,B} i€[3] ye{A,B} j€[3] J€[3]

Term; Term2

CUEIp VDN L ST I o oL | )
ze{A,B}i€3] | ye{A,B}\{=} je[3] ye{A,B}\{=}j€[3

ZeD VDS I RN SIED SL- 1 D DEEND BB BL+] BINCD
ze{A,B}i€3] | ye{A,B}\{=} je[3] ye{A,B}\{=} he[3]\ {3} j€[3]

19



In (92), Term1 means the number of remaining users in G¥, and Term2 means the number of users

that moved to other groups within cluster .. Note that (93)) and (94) can be interpreted in a similar
manner.

Thus, by (80) and (90) — (94), we obtain
PIL(Mo) > L(X)] =P[B > 0]

where B refers to the quantity defined earlier in the statement of Lemma 2. This completes the first
part of the proof (T6) in Lemma 2.

Now, we will prove (T7). Let

Ui =i BY (2B =1), ie[lin], (95)
W= co (B](.B) - B](.O‘)) . j€ni+1:n1+ng, (96)
Vi =g (B = BY), ke lm+na+1:m +ng+ngl, 07
Ze =ea (B = B{"), telutnatng+lim+nmotngtn].  O8)

By Chernoff bound [21]],

Nl

P[B>0] <mink ['"] <E |

i B} —F [e%UI}MIE [e%Wj]n21E [e%YkrsE [e%Zf}M. (99)

We will calculate only E {e%Uf} and E [eéwf}, since E [eéy’@} and E [eézf} can be calculated in a

similar way. One can evaluate E [e%U"} and E {eéwf] as follows

1 1 1-46 1 1-46
E {eri] =1—-p+plexp (210g (0>> +p(1—6)exp (—210g (9 ))
AT
:lfp(\/I*Q*\/é)2, (100)

E [G%WJ} =(1-a)1-B)+aBf+(1—a)bexp Glog (W))

1 (1-Pa
ca=mer (305 (=g55))
— (1-a)(1 - §) +aB+2y/aBl — @)1= F)
= (VaB+T—a)1-7) . (100

Taking a negative log on both sides, we get

o8 4] = 1o (1 (V77 - 5)’)

—p(VI“0-VE) +0(?) (102)
= (1+0o(1)) I, (103)

—logE [e%W-J} — 2log (\/cTﬂ+ \/m)
= —2log <\/@+ <1 - %oz + O(a2)> (1 - %5 + 0(52)» (104)

= —2log (1— %a— ;5+\/@+0(a2+ﬂ2)>
=a+8-2/aB+0 (a®+ 3?) (105)
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2

= (Va-VB) +0(a*+6)

= (1+o0(1)) Iy, (106)
where (T02) and (T03) hold since log(1 + z) = = + O(z?) for z ~ 0; and (T04) is due to /1 — z =

1 — 22+ O(2?). Similarly, we obtain
—logE {e%ﬂ — _log (F+ VI—a)d- ) (1+ o(1)) L1, (107)
—1ogE[ 32 } “log (\/ By + /A - B)(1—~ ) (1+ o(1)) Lo. (108)

Thus, we have
PIB > 0 < [e10] " B [o1] "B [o%] g 1]
= exp (m logE[ Ui } + nq logE [e? } + nglogE [e? "} +nglogE [ez D

= exp (= (1+0(1)) (mly +naly +ngler + nales)) . (109)
This completes the proof of (I7), and concludes the proof of Lemma 2] O

A.3 Proof of Lemma[3

First, we show that if either & > In or dj(¢) > 7m holds for some (a: y,1,7,£), then

A(Mo, X7) = Q(nm) holds. Suppose there exists x, y, i*, j* such that k7. > £n, ki) < In for

i€ 3]\ {#*},7 €3]\ {j*} and d¥(¢) < 7m. Then, the following inequality holds from @)
A(My, X)

> > > > Zky da (vF,0!) = > &0+ Y &

xE{A B} i€[3]ye{A,B} je[3] LEA(vY vY) Ce{0,1}3\A (v v])
;n min {dy, 0.} — _ma[);] Aoy, v7)] -7 | m = Q(nm). (110)
1,]€
x,yé{A,B}

This is because
dy (vf, 0" ) >m-min{dy, 0.},

and
E di(t) <Tm - _ma[{g] |A (o], v7)]. (111)
INISIE
teA@? ) e {AB)

Suppose there exists x, i*, £* such that df. ,. > ™m, d7, < rmforalli € [3]\{i*}, £ € {0,1}*\{¢*}
and k;/ < In. Since 3 jelBlyelA B} ki < 2n, the following inequality holds from (84)

T 1 1
A(Mo, X Z Z Z Zk" Z'di(é) 2%n~rmzﬂ(nm).
a:E{A B} i€[3] ye{A,B} je[3] £€{0,1}3
(112)

Also, ETET\Tl |X(T)] < 6m2°™ holds. Here 6725 represents the total number of possible

configurations of rating matrices. Since (3), (6) and (7) imply mnlI, = Q(nlogn + mlogm), the
first term of (T9) is upper bounded by

> XD exp (—(1+ o(1)A(My, X)) < 6"25m eI < <6>n (26)

s n m
TeTO\T

This completes the proof of Lemma 3] O
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A4 Proof of Lemmald|
We calculate the upper bound on the cardinality of matrix class | X (T)| as

‘ - ‘ {k i,j€[3],x,ye{A,B} | | {d;’t(g)}ie[3],@6{0,1}3,936{/1,}3} ‘
The following inequality holds

n
zy 6
| {kij i,5€[3],z,y€{A,B} | = H <k19>’ (113)
z,ye{A,B} v
i,5€(3]

i ry th .
since we choose {k:ij }j€[3],y€{A¢B} users from "' group of size ¢ in a cluster z.

Next, [{di(€)};c30e(0,132 2e{a,5y | is equal to the number of cases where we first choose

d$(¢) columns in v{ and (d}(¢) — dZ,(¢)) columns in v among md, columns, and then choose
d%,(¢) columns among dj(¢) columns within the column block I, for x € {A,B}. Thus,

| {df(5)}1-6[3]16{0’1}37%{1473} | is equal to

o ) ( dm)) 114
me{l},g} <d”f<€>,d§<é>—dgv<£> dz,(0)) (114
0e{0,1}3

By (I13) and (TT4), the following holds

i< 1 m<d;c(e),dg(6;)dgv(€)> (;lj(é))) 1 (kgy)

ze{A,B} z,yc{A,B}
2e{0,1}° i,j€[3]
< ] exp(d5©) +d50) - dz () logm+di () [ n»* (115)
z€{A,B} z,ye{A,B}
2e{0,1}* i,j€[3]
= exp YooY A0 +d30) —di(0) | logm+ Y > di(0)
z€{A,B} £€{0,1}3 z€{A,B} £€{0,1}3

X exp >0 > D kY | logn (116)

x€{A,B}i€[3|ye{A,B} j€[3]

= exp —logm+ Z Z di(0) + (kg + k) logn |, (117)
z€{A,B} £€{0,1}3

where (TT3) follows by (3) < a” = exp(bloga) and (") < 2™ < ™.
Under the conditions of k:””y < Inand df(¢) < Tm, the following inequalities hold from (84), (92),

(©3) and (94)

1
o> (6_7) nk,, (118)
1 3
ng > (6 — 57) nke, (119)
1
i > <3 _ §T> nke, (120)
1
A(Mo, X1) > (8 — Tg)kg + (6c — Te) ke + <6 — T> ndoal, (121)
where
Ty 1= 11?2[}:%] |A(vf,v§")| T,
z,ye{A,B}
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7o := max |A(vy,vY)| - 7.

i,J€[3] Yt
TFy
By (I17) — (121)), the second term of (T9) is upper bounded by
C
> exp (;dt — Coky — C’gkc) (122)
TETl(é)
where
1
Cq = (3 - 27') nl. —logm — 1, (123)
1
Cy = (8g — Tg)mI, + <6 - ’7'> nl, —logn, (124)
1 3 1 6
Cs:= (0. — Te)mI, + <6 — 57’) nl. + (3 — 57’) nl. —logn. (125)

For sufficiently large n and m, the following inequalities hold from (3, (6) and (7))

Cy > %logm7 (126)
Cy > glog n, (127
C3 > %log n. (128)
Thus, by (126) —(128)), (I22) is upper bounded by
Z exp (—fdt logm — 5( +k )logn) . (129)

TeT,”

Now, we show that (I29) converges to 0 as n and m tend to infinity. Let k; := k, + k.. Note that k;

is an even number because
DIEDILIEEDY Z Ky

ye{A,B} j€[3] ye{A,B}j€[3
holds for all 7 and «x since the size of group should be preserved. Also, d; is an even number due to

de= Y Y di(t)+d5(0) +d5(0)

z€{A,B} re{0,1}3

S> 0 2di ) + d3(0) — d(0).

z€{A,B} ¢e{0,1}*

The maximum value of k, is 67m and d, is 487m by the definition of 7;*). Then, (T29) is upper
bounded by

Z exp (_idt logm — %kt logn)
TeT®
61Tn 48™Tm

< mT Y Y i {T sk = kY| [{T : dy = d}

k=2 d=2

67n 48™m
< e _e k+29 d+47
<nThmTE YN iRy Ed - 130

b +m2+k:2d:2n2m4 ( 29 ) ( 47 ) ( )

67n 48™m

mTE 42103 "N (272 ) (2m ) (131)

k=2 d=2
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1— (4n—e)37n 1— (4m—§)247m
1—4n~¢ 1—4m™%

=n"4+m 2 427. AnTC AmT 3, (132)
where (T30) follows from the fact that the number of cases of y .., @; = r,; > 0 for all ¢ is equal
to (TZ’_L;I); and (T31)) is due to (§) < 2. Since (I32) goes to zero as n, m — oo, this completes the

proof of Lemma ] U
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B Proofs of Lemmas for Converse Proof of Theorem 1]

B.1 Proof of Lemmal3

We will follow a similar proof technique to that of Lemma 5.2 in [22]. Recall that we denote by B+
a Bernoulli random variable with parameter i, that is, P[B*) = 1] = 1 — P[B") = 0] = p.

Forp =0 (loﬁ) and a constant 6 € [0, 1], we can define X (p, #) = log (%) B® (2B — 1),
with ¢/ = log ( ) that is,

—log (452) w.p. p(1-19),
X(p,0)=< 0 w.p. 1 —p,

log (1%00) w.p. pb.

Then, we can evaluate the moment generating function of X (p,6) att = 1/2 as

Myipa () = Elexp(x/2)

__Ml_gyxp(_;mg(l99)>+%1—p)+pmxp<;mg<l99>)
:M1_quﬁe+wl—m+ﬂﬁ 3§9

=2p\/0(1—0)+1—p, (133)
which implies
— ].Og Mx(p,g) (;) = (]. + O(l))(\/ 1-— 9 — \/5)210 (134)

We also define X = X (p, 0) as a new random variable with the same range as X (p, #), and probability
mass function given by

o) = S
X Mx(3)

More precisely, we have

_ Vo0(1—0

—log(lee) w.p. pM(( )

s 1—
X(p,0)=< 0 W.p. MX(1
1

p4/0(1-0)

log (1%09) WP D)

i

3)
)

Then it is straightforward to see that

E[X (p,0)] =0 (135)
N ) 10\
Var[X (p,0)] = o SO =0) 11— p (log 7 > = O(p). (136)

Next, for u,v = © <1°g") [0, 1], define Y (11, v) = ¢(B™ — B™)), where ¢ = log (8:’:3:) More

precisely, we have

~log (8:*:3:) p. (1— v,
Yp,v)=4 0 p- (1 —p)(1 —v)+ pv,
log ({=49)  wp. (1= ).

The moment generating function of Y (u, v) at t = 1/2 is given by

My () = Blexp(1 /2]
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v exp( c/2 +u(l-v) expc/2 w) (1 —v)+ pv

(I1—p 1/ a 1-v) 1/ _N w(l—v)+ puv

—2\/1— Y 1=—v)ur+ (1 —p) (1 —v)+pv
2
= (v + V= =v)) ", (137)
which implies
1
—log My (1,1 (2> =(1+o0(1)) (\f — \/ﬁ)z (138)

Define a random variable ¥ = )A/(/UL7 v) with fo(y) = W Then, for Y( v), we have

1 = ks [0 (-5) 0o ()
S S DT R (€ el 2 R RO L € e DL
1
T () {—\/(1 — ) =) e+ /(1= p)(1 —v)uv- c} =0, (139

and

Var[Y (1, v)] = ACIDI AT . (log (1= “)”>2 =0 (Vi) (140)
(v + VT—mi-—n) v

where y,v = © (10%)

Now, we can rewrite the random variable of interest in the lemma as

B = Zlog( )B(”) (28"-1) + n§2 log (8:32) (B"-B{)

Jj=n1+1

+n1+§+n3 : (1 B ’Y)OZ (B(V)_B(a)) +n1+n§13+n4 | (1 o "Y)B (B(W)_B(,B)>
A =ayy) \ T T E\@—pn ) \7 )

k=ni+n2+1 f=ni+n2+n3+1
ni ni+ns ni+nz+ng ni+nz+ng+ng
=Y Xip,0)+ D, YiBa)+ Y. Yi(na)+ Y, Yi(y,B). (14D
i=1 j=ni1+1 k=ni+4+no+1 l=ni1+ns+nsz+1
Therefore, we can write
P[B > 0]
[ ni ni+nz ni+nz+ns ni+na+nz+ng
=P Y Xip.0)+ > ViBa)+ Y. Yive)+ D Yi(.8)>0
=1 j=ni1+1 k=ni+n2+1 {=n1+n2+nz+1
ni ni+nz ni+nz+ns ni+na+nz+ng
> P osZXi(p,f)H Y YiBa)+ D Yive)+ > Yy <¢
=1 j=ni+1 k=ni+na+1 l=ni+nz+n3z+1
(@ n1+n2 ni+nz+ns3 ni+ns+nz+ng
=3 fo(p,e) ) T rew@w) I oo ] fy (.8 (ye)
R(E) j=ni1+1 k=ni+ns+1 l=n1+ns+nz+1
1 1 n
O (Mxpo (3)" My (3)™ My (5)™ Myee (5)"
B exp (3¢)

26



ni+nsz

.S HeXp( 12:) fx(p.) (@) il exp (3y5) fy (s.0) (U5)

R(E) |i=1 MX(p,G) (5) j=n141 MY(,B,a) (%)

ni+natng exp (%yk) fY(»y,a) (y1) ni1+nz+nz+ng exp (zyz) fY (yz)‘|
1 1
k=ni+no+1 MY(’Y’Q) (5) {=ni+ns+ns+1 Y(’YMB) (5)
1 1 1 1 1
= exp | n1log Mx (p,0) tn2logMy(sa) | 5 ) T nslog My(ya) | 5 ) T nalogMyp (5 ) =58
ni+no ni+nz2+ns3 ni+na+nz+ng
x Z HfX<p 0@ 11 Freow) 11 Feww 11 FHesw
j=ni1+1 k=ni+n2+1 L=n1+nz+nz+1
c 1
© exp <—(1 +o(1))(n1 L, +nely +ngle +nalen) — 25)
n ni+ns R ni+nzs+nsg R ni+nz+nsz+na .
xPl0<Y Xip,0)+ > Y(Ba)+ Y. Vi(vna)+ D Y(n,B) <€,
i=1 j=ni1+1 k=ni4+nz+1 l=n1+nz+nz+1

(142)

where (a) follows from independence of X;(-,-)’s and Y;(+, -)’s variables in (I41) since their indices
are different, hence they are generated from independent Bernoulli random variables, and note that
the summation in (a) is over

ny ni+nz+ng+ng
R(E) = {wa ity Ay ™ 0< Y wt Y oy <€
i=1 j=ni1+1

Moreover, (b) holds since exp (% <Z?:11 T; + Z;L;:?fjnﬁm %)) < exp (%€); and (c) holds
due to the independence of }71(7 -)’s and )A(Z(, -)’s. Finally I, I, I.; and I, in (T42) are given by

(Vi—o- \/5)2,

(a)
(
(

\/&—)

which follow from (134) and (138).

Note that (T42)) holds for any value of &. In particular, we can choose &,, satisfying

én
I =0 143
nl—>ngo TL1I +7’L2I +n3161 +n4102 ’ ( )
- n1p+nzr+£3\ﬁ+”4r =0. (144)
n— o0

Therefore, (T43) implies that the exponent in (T42)) can be rewritten as

1
—(1 + 0(1)) (n1IT + ngfg + nal.q + 714[62) — 7§n = —(1 + 0(1)) (nllr + 77/2]9 + nzl.q + 7’L4ICQ) .

2
(145)
Moreover, the probability in (I42)) can be bounded as
ni ni+na N ni+nz+nsg . ni+nz+nsz+na N
0<> Xi(p.0)+ > Y(Ba)+ Y. Vilvva)+ Y. Yiv,B) <&
=1 j=n1+1 k=ni4+no+1 l=ni+ns+nz+1
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ni+mna ni+nz+ng ni+nz2+nz+ng

(@ ~ ~ ~
5P ZX PO+ Y. ViBa)+ Y Vet Y Vi) 26

j=ni+1 k=ni+n2+1 l=ni1+n2+n3+1
®1 n1Var[X (p, 0)] + naVar[Y (8, a)] + nsVar[Y (v, )] + ngVar[Y (v, B)]
-2 &2
© 1 n10(p) + n20(vap) + n30(/ay) + naO(VB7)
S 2 £2
@ % —o(1) > i, (146)

where (a) is due to the symmetry of random variables X (-, ) and Y (-, -), (b) follows from Cheby-
shev’s inequality, in (c) the variances are replaced by (I36) and (T40), and finally (d) is a consequence
]

of (T44). Plugging (143)) and in (T42), we get the desired bound in Lemma[5}

B.2 Proof of Lemmal6

The proof hinges on the alteration method [23]]. We present a constructive proof for the existence
of subgroups G{! and G4 Letr = =% G

. —A . . .
of size |G; | = 2r, for i = 1,2. Then, we prune these sets to obtain the desired edge free subsets.

To this end, for any pair of nodes f,g € 614 U é;, we remove both f and g from éf u 6; if
(f,9) € E. We continue this process until the remaining set of nodes is edge-free. Let P be the set

of nodes we remove from 514 U 5; throughout the pruning process. The expected value of P can be
upper bounded by

E[P|<2E| > 1[(f.9)€E]

f.9eG UGS
=2 Y E 9)€EN+2 > E[L[(fg) € E]+2 Z Z 9) € EJ]
f.9€Gy f.9€Gy feGY geGy
2y ae2 Y ae2Y Y
f.9€Gy f.9€G3 feay geiGy

2 2
= 2( 2T>a + 2( 2T>a +2(2r)?B < 16r%a

where the last inequality holds since 5 < «. Using Markov’s inequality for the non-negative random
variable |P|, we obtain

B[P| > < 2 o 16n a:@< n xlog”>:0(1). (147)
r log”n log”n n

Therefore, the number of remaining nodes (after pruning) satisfies
P [@f‘ué;\m >3r} —P[[P|<r]=1-P[P|>r] =1—o().
Hence, éf \ P and @? \ P together have at least 3r elements. This, together with the fact that

|Gy | = |G5 | = 2r, implies each of @f \ P and @;4 \ P have at least 7 elements. Therefore, we

can choose r from é:‘ \ P to form the desired set éf, for i = 1,2. This completes the proof of
Lemmal6 O
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