
APPENDICES TO PROVABLY EFFICIENT NEURAL ESTIMATION OF
STRUCTURAL EQUATION MODEL: AN ADVERSARIAL APPROACH

A Examples of generalized structural equation models

In Section 2, we introduce our model in its full generality. Here we specialize it in concrete examples
from the causal inference literature and econometrics.

We remark that the convergence result detailed in Theorem 4.1 applies to all examples while con-
sistency result (Theorem 4.2) applies only to Example 1 because compactness of the conditional
expectation operator is required in Theorem 4.2.

We add that the paper by Babii and Florens [6, Page 5, Footnote 4] includes a battery economics
models that involve conditional moment restrictions, including the measurement error models,
dynamic models with unobserved state variables, demand models, neoclassical trade models, models
of earnings and consumption dynamics, structural random coefficient models, discrete games, models
of two-sided markets, high-dimensional mixed-frequency IV regressions, and functional regression
models. We refer readers to the paper for detailed references.

Example 1, revisited (Instrumental Variable Regression, [38, 26, 28]). In applied econometrics,
endogeneity in regressors usually arises from omitted variables, measurement error, and simultaneity
[50]. The method of instrumental variables (IV) provides a general solution to the problem of an
endogenous explanatory variable. Without loss of generality, consider the model of the form

Y “ g0 pXq ` ε, Erε | Zs “ 0, (2 revisited)
where g0 is the unknown function of interest, Y is an observable scalar random variable, X is a
vector of explanatory variables, Z is a vector of instrument variables, and ε is the noise term. For
the special case X “ Z, the estimation of g0 reduces to simple nonparametric regression, since
ErY | X “ xs “ g0pxq, and can be solved via spline regression or kernel regression [49]. When X is
endogenous, which is usually the case in observational data, traditional prediction-based methods fail
to estimate g0 consistently. In this case, g0pxq ‰ ErY | X “ xs, and prediction and counterfactual
prediction become different problems.

To see how the model fits our framework, define the operator A : L2pXq Ñ L2pZq, Ag “ ErgpXq |
Zs. Let b “ ErY | Zs P L2pZq. The structural equation (2) can be written as Ag “ b. The minimax
problem with penalty level α (α ą 0) takes the form

min
fPL2pXq

max
uPL2pZq

ErfpXqupZq ´ Y ¨ upZq ´ 1
2u

2pZq ` α
2 f

2pXqs, (23)

where the expectation is taken over all random variables.

The IV framework enjoys a long history, especially in economics [23]. It provides a means to answer
counterfactual questions like what is the efficacy of a given drug in a given population? What fraction
of crimes could have been prevented by a given policy? However, the presence of confounders makes
these questions difficult. If X is endogenous, which is usually the case in observational data, then
g0pxq ‰ ErY | X “ xs, and prediction and counterfactual prediction become different problems.
When valid IVs are identified, we have a hope to answer these counterfactual questions.

Counterfactual prediction targets the quantity ErY | dopX “ xqs defined by the causal graph (see
Figure 1), where the dop¨q operator indicates that we have intervened to set the value of variable X to
x while keeping the distribution of ε fixed [41]. To facilitate counterfactual prediction, we need to
impose stronger conditions on the model [36, 26]: (i) relevance: PpX | Z “ zq is not constant in z;
(ii) exclusion: Y KK Z | X, ε; and (iii) unconfounded instrument: ε KK Z. Figure 1 encodes such
assumptions succinctly.

Example 2, revisited (Simultaneous Equations Models). Dynamic models of agent’s optimization
problems or of interactions among agents often exhibit simultaneity. Demand and supply model is
such an example. Let Q and P denote the quantity sold and price of a product. Consider the demand
and supply model adapted from [33].

Q “ D pP, Iq ` U1,

P “ S pQ,W q ` U2, (3 revisited)
ErU1 | I,W s “ 0, ErU2 | I,W s “ 0.
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Figure 1: A causal diagram of IV. Three observable variables X,Y, Z (denoted by filled circles)
and one unobservable confounding variable ε. There is no direct effect of the instrument Z on the
outcome Y except through X .

Here D and S are functions of interest, I denotes consumers’ income, W denotes producers’ input
prices, U1 denotes an unobservable demand shock, and U2 denotes an unobservable supply shock.
Equation (3) is generally the results of equilibrium. Due to simultaneity, there is no hope to recover
demand function D by simple nonparametric regression of Q on P and I; nor can we recover supply
function S by regressing P on Q and W . The knowledge of D is essential in predicting the effect
of financial policy. For example, let τ be a percentage tax paid by the purchaser. Then the resulting
equilibrium quantity is the solution Q̂ to the equation

Q̂ “ D
`

p1` τqpSpQ̂, Iq ` U1q,W
˘

` U2.

To cast the model (3) to a minimax problem, define the operators

A1 : L2pP, Iq Ñ L2pI,W q, A1D “ ErDpP, Iq | I,W s,
A2 : L2pQ,W q Ñ L2pI,W q, A2S “ ErSpQ,W q | I,W s.

The resulting minimax problem is

min
DPL2

pP,Iq,

SPL2
pQ,W q

max
u1,u2PL2pI,W q

!Eru1pI,W q¨pDpP,Iq´Qq`u2pI,W q¨pSpQ,W q´P q

´
1
2u1pI,W q

2
´

1
2u2pI,W q

2
s

)

.

Note in this case the operators A1 and A2 are not compact [11] due to common elements. The
min-max derivation remains valid but the stability of the solution is left for future work.

The causal reading of the simultaneous equations models is an open question since an important
assumption often made in causal discovery is that the causal mechanism is acyclic, i.e., that no
feedback loops are present in the system [41]. There are efforts in bridging this gap; see, for example,
[35].

Example 3, revisited (Dynamic Panel Data Model, [46]). Panel data is a common form of econo-
metric data; it contains observations of multiple units measured over multiple time periods. We
consider the dynamic model of the following form that includes time-varying regressors, allowing us
to investigate the long-run relationship between economic factors [46].

Yit “ m pYi,t´1, Xitq ` αi ` εit, (4 revisited)
Erεit | Y i,t´1, Xits “ 0, i “ 1, . . . , N, t “ 1, . . . , T,

whereXit is a pˆ1 vector of regressors,m is the unknown function of interest, αi’s are the unobserved
individual-specific fixed effects, potentially correlated with Xit, and εit’s are idiosyncratic errors.
Xit :“ pXit

J, . . . , Xi1
JqJ and Y i,t´1 :“ pYi,t´1, . . . , Yi1q

J are the history of individual i up to
time t. We assume that pYit, Xit, εitq are i.i.d. along the individual dimension i but may not be
strictly stationary along the time dimension t. Clearly, for a large t the conditional set tY i,t´1, Xitu

contains a large number of valid instruments. We do not pursue a search for an efficient choice of IVs
in the paper.

To see how it relates to model (1), we consider the first-differenced model

∆Yit “ m pUi,t´1q ´m pUi,t´2q `∆εit, (24)
Er∆εit | Ui,t´2s “ 0, i “ 1, . . . , N, t “ 3, . . . , T, (25)

where ∆Yit :“ Yit ´ Yi,t´1, Ui,t´2 :“ rYi,t´2, X
J
i,t´1s

J and ∆εit :“ εit ´ εi,t´1. The conditional
expectation (25) is obtained by applying law of iterated expectation to (4) conditional on Ui,t´2.
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Model (24) cannot be solved via traditional nonparametric regression because ∆εit is generally
correlated with Yi,t´1 on the RHS of (24).

Now we cast the model (25) into a minimax problem. For ease of exposition we assume strict
stationarity on the sequence tUitu, which implies that the marginal distribution of Ui,t´1 and
the transition distribution ppUi,t´1|Ui,t´2q are time-invariant. Now we define a random vector
pD1, E1, D,E, F, εq “d pYi,t´1, Xit, Yi,t´2, Xi,t´1,∆Yit,∆εitq, and the definition is valid due to
stationarity. Equation (25) can be rewritten as

ErF ´mpD1, E1q `mpD,Eq | E,Ds “ 0.

Define the operator A : L2pD1, E1q Ñ L2pE,Dq, Am “ ErmpD1, E1q | E,Ds and the function
b “ ErF | E,Ds. Equation (25) becomes pA´ Iqm “ b, which is a Frehdolm equation of type II.
The key difference between type I and type II Fredholm equations lies in stability of the solution. If
I ´K : HÑ H is injective, then it is surjective, the inverse operator pI ´Kq´1 is continuous and
therefore the solution to type II equation is stable [30].

We remark that 1 is the greatest eigenvalue of A because pD1, E1q and pD,Eq are identically
distributed. Therefore we assume the multiplicity of 1 is one in order to identify m up to a constant.
The resulting min-max problem is

min
mPL2pD1,E1q

max
uPL2pE,Dq

ErupE,Dq ¨
`

F ´mpD1, E1q `mpD,Eq
˘

´ 1
2upE,Dq

2s.

In the absence of the lagged term Yi,t´1 on the RHS of (4), the model (4) reduces to the nonparametric
panel data model [27],

Yit “ m pXitq ` αi ` εit, i “ 1, . . . , n, t “ 1, . . . , T.

If the lag term does not appear, we recover the measurement error model studied in [11].

Example 4 (Euler Equation and Utility, [20]). In economic models, the behavior of an optimizing
agent can be characterized by Euler equations [25]. Consumption-based capital asset pricing model
(CCAPM) is such an example. Here we consider a simplified setting of [20] where at time t an agent
receives income Wt and purchases or sells certain units of an asset at price Pt. For simplicity we
assume there is only one asset on the market. Let U be a time-invariant utility function, and b P p0, 1q
be the discount factor. U and b are parameters of interests known to the agent but unknown to the
researchers. The stream of consumption tCtu is the solution to the optimization problem

max
tCt,Qtu

8
t“0

E
„ 8
ÿ

t“0

βtUpCtq



(26)

s.t. Ct ` PtQt “ PtQt´1 `Wt, (27)

where Qt is the quantity of the asset owned by the agent at time t. RHS of the constraint (27) is
the total value owned by the agent before the exchange at time t, while the LHS represents the total
value after the exchange. The agent manipulates his consumption, Ct, and the quantity of the asset he
holds, Qt, to maximize his expected long-run discounted utility.

Define Rt “ Pt`1{Pt. Using the method of Lagrange multiplier, one can obtain the optimality
condition of (26)

E
„

Rt`1β
U 1 pCt`1q

U 1 pCtq
´ 1 | It



“ 0, (28)

where It represents the information available at time t. A derivation can be found in [20]. Let g “ U 1

be the marginal utility function. Conditioning on Ct in (28), we obtain

ErβRt`1gpCt`1q | Cts “ gpCtq. (29)

The goal to estimate the function g given tCt, Rt`1, Ct`1u. To see how our min-max derivation
applies, define the operator A : L2pCt`1q Ñ L2pCtq, pAgqpcq “ ErgpCt`1qRt`1 | Ct “ cs. We
assume A is well-defined. Then (28) can be succinctly written as

βAg “ g.
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We remark that g is identified up to an arbitrary sign and scale normalization; [20] provides a detailed
discussion on identification. Assuming β is known, the resulting min-max problem is

min
gPL2pCt`1q

max
uPL2pCtq

E
“

βgpCt`1qRt`1upCtq ´ gpCtqupCtq ´
1
2u

2pCtq
‰

.

One caveat is that g “ 0 is a trivial solution to (29) and therefore during the training of NNs we
should avoid such a solution. The empirical performance of Algorithm 1 in this example is left for
future work.

Example 5 (Proxy Variables of an Unmeasured Confounder, [34]). Consider the causal DAG in
Figure 2 in the sense of Pearl [41]. Here X and Y denote the treatment and the outcome, respectively.
The confounder U is unobserved, while its proxies Z and W are observed. Assume U,W,Z
are continuous and in the discussion we assume X and Y are fixed at px, yq. The conditional
independence encoded in Figure 2 is W KK pZ,Xq | U and Z KK Y | pU,Xq. Using the do-operator
of Pearl [41], the causal effect of X on Y is

ppy| dopxqq “

ż

ppy|x, uqppuqdu,

where pp¨q stands for probability mass functions of a discrete variable or the probability density
function for a continuous variable. However, U is unobserved so we cannot directly calculate the
causal effect.

The work of Miao et al. [34] provides an identification strategy for the causal effect of X on Y
with the help of the confounder proxies Z and W . Consider the solution hpw, x, yq to the following
integral solution: for all px, yq and for all z,

ppy|z, xq “

ż `8

´8

hpw, x, yqppw|z, xqdw, (30)

which is a Fredholm integral equation of the first kind.

Lemma A.1 (Theorem 1 of [34]). Assume the causal DAG in Figure 2 and that a solution to (30)
exists. Assume the following completeness condition: ErgpUq|Z,Xs “ 0 almost surely if and only if
gpuq “ 0 almost surely. Then ppy|dopxqq “

ş`8

´8
hpw, x, yqppwqdw.

The result suggests that one can identify the causal effect by first solving for h in (30) and then
applying Lemma A.1, since ppy|z, xq, ppw|z, xq and ppwq can be estimated from the data. To see
how (30) fits into our framework, we note that Equation (30) implies Er1tY “ yu | Z,Xs “
ErhpW,X, yq | Z,Xs for all y, and thus similar min-max problem derivation goes through. However,
in [34] the identification strategy is limited to the case where X and Y are categorical, and it would
be interesting to see how our method performs in the setting of continuous treatment and continuous
outcome.

X Y

WUZ

Figure 2: A causal graph of confounder proxies. Adapted from Figure 1(f) of [34].

B Linear approximation error of multi-layer NNs

Without assumptions on the distribution of data (Assumption A.4), we have slightly worse upper
bounds on the error of linearization for multi-layer NNs.

Lemma B.1 (Error of local linearization, multi-layer, [2, 22]). Consider the multi-layer neural
networks described in (10). Under Assumption A.2, with probability at least 1´ expp´Ωplog2mqq
with respect to the random initialization, for any W P SB,H and all x such that }x} “ 1,
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1. | pfpx,W q| “ OpBH3{2 logmq,

2. }∇W fpx,W q} “ OpHq,

3. |fpx,W q ´ pfpx,W q| “ OpB4{3m´1{6H3 log1{2mq, and

4. }∇W fpx,W q ´∇W pfpx,W q} “ OpB1{3m´1{6H5{2 log1{2mq.

Proof. See Section D.2 in Appendix D.

C Bounds on the terms (19), (20) and (21)

C.1 Bounds on the terms (19), (21)

First, we establish the closeness between the original function φ and the one consists of linearized NNs,
pφ. The following lemma shows that pφ is a good surrogate for φ in the sense that the approximation
error is of order OpaB5{2m´1{4q, which vanishes as mÑ8.

Denote F pθ, ω;X1, X2q “ uωfθ ´ uωb ´
1
2u

2
ω `

α
2 f

2
θ . Note EX rF pθ, ω;X1, X2qs “ φpθ, ωq.

Similarly we define pF pθ, ω;X1, X2q “ puω pfθ ´ puωb´
1
2pu

2
ω `

α
2
pf2
θ .

Lemma C.1 (Closeness between pφ and φ). Let a “ maxt1, αu. For any θ, ω P SB , we have

Einit

“

|pφpθ, ωq ´ φpθ, ωq|
‰

“ O
`

aB5{2m´1{4
˘

.

Proof. See Section D.4 in Appendix D. The proof relies on the decay rates of approximation error, as
detailed in Lemma 5.1.

Lemma C.1 suggests it suffices to set

εf “ OpaB5{2m´1{4q `max
θ

´ 1

T

T
ÿ

t“1

pφtpθtq ´
1

T

T
ÿ

t“1

pφtpθq
¯

. (31)

We now turn to bound the term (20) using techniques adapted from convex online learning analysis.

C.2 A bound on the term (20)

We emphasize we apply online learning analysis (Lemma C.2) to the regret associated with pφt’s but
using updates designed for φt’s.
Lemma C.2 (Online convex learning with noisy and biased gradient). Given a sequence of convex
functions on a convex space Θ, f1, f2, ¨ ¨ ¨ : Θ Ñ R, consider the projected gradient descent updates

θt`1 “ ΠΘ

`

θt ´ η pζt ` ξtq
˘

, (32)

where E rζt|θts “ ∇ft pθtq, ΠΘpθq P argmaxθ1PΘ }θ ´ θ1} is the projection map to Θ. Assume
supt }ζt ` ξt} ă K a.s. and supθ }θ} ăM . Then with probability at least 1´ δ,

1

T

T
ÿ

t“1

ft pθtq ´
1

T

T
ÿ

t“1

ftpθq ď
ηK

2
`
M

Tη
` 8K

c

M lnp1{δq

T
`

2
?

2M

T

T
ÿ

t“1

}ξt} (33)

for all θ P Θ.

Proof. See Section D.5 in Appendix D.

In order to apply Lemma C.2 to analyze the regret generated by the sequence tpφtu with actual updates
being ∇θFtpθt;X1,t, X2,tq instead of ∇θ pφtpθtq, we need to verify two conditions: (i) bounded
update steps, i.e., }∇θFtpθt;X1,t, X2,tq} is bounded for all t, and (ii) bounded parameter space.

To achieve global convergence, we also require that bias in updates, }∇θFtpθt;X1,t, X2,tq ´

∇θ pφtpθtq}, which corresponds to the }ξt} term in (33), converges to zero as m Ñ 8. In our
analysis we assume∇θ pFtpθ;X1,t, X2,tq is an unbiased estimate of∇pφtpθq. The following lemma
summarizes the results we need to apply Lemma C.2 and obtain a bound on the term (20).
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Lemma C.3 (Bounded gradient and vanishing bias). Consider the updates in algorithm
(Algorithm 1). For all ωt, θ, the following holds.

1. }∇θFtpθ;x1, x2q} “ OpaBq for all x, y, and

2. Einit,X

“

}∇θF pθ, ωt;X1, X2q ´∇θ pF pθ, ωt;X1, X2q}
‰

“ OpaB3{2m´1{4q.

Proof. See Section D.6 in Appendix D.

Equipped with Lemma C.1 and Lemma C.3, we are now ready to obtain a bound on the regret εf
defined in (18). Set M “ B, K “ aB, }ξt} “ OpaB3{2m´1{4q in the RHS of (33), continue (31),
and we obtain with probability at least 1´ δ with respect to sampling process,

Einitrεf s “ O
`

aB5{2m´1{4
˘

linearization error (19) and (21)

`O
´aηB

2
`

B

Tη
`
aB3{2 log1{2

p1{δq

T 1{2
`
aB4

m1{4

¯

optimization error (20)

.

It can be shown εu is of the same order, thus completing the proof of claim 1 in Theorem 4.1.

D Proof of theorems

A remark on notations. Throughout the proof we ignore dependence on θ, ω,X1, X2 and the NN
initial parameters Ξ0 or ΞH,0 defined in (9) and (10), respectively. For readers’ convenience, we now
restate the dependence of all the functions on their parameters. Recall the NN fθpX1q “ fpθ;X1q is
an NN with weights θ and input X1 and similarly for uωpX2q “ upω;X2q. Note fθ and uθ depend
on the initialization implicitly through the range of NN weights (which is centered around the initial
weight) and the output layer weights (and the input layer weight, too, in the case of multi-layer NNs).
Recall

φ “ φpθ, ωq “ φpfθ, uωq :“ E
“`

fpθ;X1q ´ bpX2q
˘

upω;X2q `
α
2 fpθ;X1q

2 ´ 1
2upω;X2q

2
‰

,

and

F “ F pθ, ω;X1, X2q “
`

fpθ;X1q ´ bpX2q
˘

upω;X2q `
α
2 fpθ;X1q

2 ´ 1
2upω;X2q

2,

and they satisfy φpθ, ωq “ EX1,X2rF pθ, ω;X1, X2qs. Note φ is convex-concave in pf, uq but not
in pθ, ωq. Recall the linearized counterparts of f and u, defined in (17), are pfθ “ pfpθp0q;X1q `

x∇θfpθp0q, X1q, θ´θp0qy and similarly for puω . Now we replace NNs fθ and uω by their hat-versions
in the definition of φ and F and obtain pφ “ pφpθ, ω,Ξ0q, and pF “ pF pθ, ω,Ξ0;X1, X2q. In the proof
we only discuss the case where b “ bpX2q is known. The proof goes thorough for the more general
case bpX2q “ Erb̃pX1, X2q | X2s with little modifications.

D.1 Proof of Lemma 5.1

Proof. The proof follows closely Lemma 5.1 and Lemma 5.2 in [10]. Recall that the weights of a 2-
layer NN is represented by W P Rmd where d is the input dimension and m is the number of neurons.
Wr P Rd represents the weights connecting inputs and the r-th neuron. W “ rWJ

1 , . . . ,W
J
r s
J.

We start with

}∇W fpx;W q}
2
2 ď

1

m

m
ÿ

r“1

1
 

WJ
r x ą 0

(

}x}22 ď 1

for all W P SB , all x. So claim 2 follows. Claim 1 is indeed true because fpx,W q is 1-Lipschitz wrt
W and that }W ´W p0q}2 ď B for all W P SB . To show claim 3 we first analyze the expression
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|fpx,W q ´ pfpx,W q|.

|fpx,W q ´ pfpx,W q|

“
1
?
m

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

r“1

`

1
 

WJ
r x ą 0

(

´ 1
 

Wrp0q
Jx ą 0

(˘

¨ brW
J
r x

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
?
m

m
ÿ

r“1

ˇ

ˇ1
 

WJ
r x ą 0

(

´ 1
 

Wrp0q
Jx ą 0

(
ˇ

ˇ ¨
`
ˇ

ˇWrp0q
Jx

ˇ

ˇ` }Wr ´Wrp0q}2
˘

ď
1
?
m

m
ÿ

r“1

1
 ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

¨
`ˇ

ˇWrp0q
Jx

ˇ

ˇ` }Wr ´Wrp0q}2
˘

ď
2
?
m

m
ÿ

r“1

1
 
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

¨ }Wr ´Wrp0q}2 . (34)

Here the first inequality follows from }x}2 “ 1. The second inequality follows from the following
reasoning.

1
 

WJ
r x ą 0

(

‰ 1
 

Wrp0q
Jx ą 0

(

ùñ
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď
ˇ

ˇWJ
r x´Wrp0q

Jx
ˇ

ˇ ď }Wr ´Wrp0q}2 .

The third inequality follows from 1t|x| ď yu|x| ď 1t|x| ď yuy for all x, y ą 0.

Next we square both sides of (34), invoke Cauchy-Schwartz inequality, and the fact that }W ´

W p0q}2 ď B.

|fpx,W q ´ pfpx,W q|2 ď
4B2

m

m
ÿ

r“1

1
 
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

. (35)

To control the expectation of the RHS of (35), we introduce the following lemma.

Lemma D.1. There exists a constant c1 ą 0, such that for any random vector W such that }W ´

W p0q}2 ď B, it holds that

Einit,x

«

1

m

m
ÿ

r“1

1
 
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

ff

ď c1B ¨m
´1{2.

Taking expectation on both sides of (35) we get

Einit,x

”

|fpx,W q ´ pfpx,W q|2
ı

ď 4c1B
3 ¨m´1{2,

establishing claim 3. Claim 4 also follows from Lemma D.1 as follows.

}∇W fpx,W q ´∇W pfpx,W q}22

“
1

m

m
ÿ

r“1

`

1
 

WJ
r x ą 0

(

´ 1
 

Wrp0q
Jx ą 0

(˘2
¨ }x}22

ď
1

m

m
ÿ

r“1

1
 
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

.

Proof of Lemma D.1

Proof. The proof follows Lemma H.1 of [10] and is stated for completeness. By the assumption that
there exists c0 ą 0, for any unit vector v P Rd and any constant ζ ą 0, such that PXp|vJX| ď ζq ď
cζ, we have

Einit,x

«

1

m

m
ÿ

r“1

1
 
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

ff

ď Einit

«

1

m

m
ÿ

r“1

c0 ¨ }Wr ´Wrp0q}2 { }Wrp0q}2

ff

. (36)
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Note the expectation in (36) does not involve the data distribution. Next we apply Hölder’s inequality.

Einit,x

«

1

m

m
ÿ

r“1

1
 
ˇ

ˇWrp0q
Jx

ˇ

ˇ ď }Wr ´Wrp0q}2
(

ff

ď c0{m ¨ Einit

»

–

˜

m
ÿ

r“1

}Wr ´Wrp0q}
2
2

¸1{2

¨

˜

m
ÿ

r“1

1

}Wrp0q}
2
2

¸1{2
fi

fl

ď c0Bm
´1 ¨ Einit

«

m
ÿ

r“1

1

}Wrp0q}
2
2

ff1{2

ď c0Bm
´1 ¨

?
m ¨ Ew„Np0,Id{dq

“

1{}w}22
‰1{2

.

Setting c1 “ c0 ¨ Ew„Np0,Id{dq
“

1{}w}22
‰1{2

finishes the proof.

D.2 Proof of Lemma B.1

Proof. See [3, 22] for a detailed proof. Also see Appendix F in [10]. In detail, claim 1 follows from
equation F.10 of [10]. Claim 2 and claim 4 follow from Lemma F.1 of [10]. Claim 3 follows from
Lemma F.2 of [10].

D.3 Proof of Lemma 5.2

Proof. Recall φpf, uq is convex in f and concave in u, and that Lpfq is convex in f . The final output
sfT is the average of the sequence tftuTt“1 and so is suT . Recall εf , εu satisfy

1

T

T
ÿ

t“1

φpft, utq ď min
fPFNN

1

T

T
ÿ

t“1

φpf, utq ` εf ,

1

T

T
ÿ

t“1

φpft, utq ě max
uPFNN

1

T

T
ÿ

t“1

φpft, uq ´ εu.

Note both f and u range over the space of NNs. We start with the equivalent expression for L defined
in (7). By Assumption A.5, for all f P FNN , Lpfq “ maxuPFNN

φpf, uq with φ defined in (8). We
have

Lp sfT q ´ L
˚

“ max
uPFNN

φp sfT , uq ´ min
fPFNN

max
uPFNN

φpf, uq

ď max
uPFNN

φp sfT , uq ´ min
fPFNN

φpf, suT q

ď max
uPFNN

1

T

T
ÿ

t“1

φpft, uq ´ min
fPFNN

1

T

T
ÿ

t“1

φpf, utq

“

«

´

max
uPFNN

1

T

T
ÿ

t“1

φpft, uq
¯

´
1

T

T
ÿ

t“1

φpft, utq

ff

`

«

´ 1

T

T
ÿ

t“1

φpft, utq
¯

´ min
fPFNN

1

T

T
ÿ

t“1

φpf, utq

ff

ď εf ` εu.

In fact, we easily have 1
T

řT
t“1 Lpfiq ´ L

˚ ď εf ` εu.

D.4 Proof of Lemma C.1

Proof. Recall X “ rXJ1 , X
J
2 s
J, φpθ, ωq “ EX rF pθ, ω;X1, X2qs “ EXY ruf ´ ub ´ p1{2qu2 `

pα{2qf2s.
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Denote pF pθ, ωq “ pu pf ´ pub´ p1{2qpu2 ` pα{2qf̂2, where the hat-version are the linearized NN. We
start by noting

Einit

“

|pφpθ, ωq ´ φpθ, ωq|
‰

“ Einit,X

“

|F̂ ´ F
ˇ

ˇs

“ Einit,X

“

|ppu pf ´ pub´ 1
2pu

2 ` α
2
pf2q ´ puf ´ ub´ 1

2u
2 ` α

2 f
2qq|

‰

ď Einit,XY

“

|pu pf ´ uf |
‰

` Einit,X

“

|ppu´ uqb|
‰

` p1{2qEinit,X

“

|pu2 ´ u2|
‰

` pα{2qEinit,X

“

| pf2 ´ f2|
‰

.

Now bound the terms

Einit,X

“

|pu pf ´ uf |
‰

, (37)

Einit,X

“

|ppu´ uqb|
‰

, (38)

Einit,X

“

|pu2 ´ u2|
‰

, (39)

Einit,X

“

| pf2 ´ f2|
‰

. (40)

For the term (37), we have

Einit,X

“

|pu pf ´ uf |
‰

ď Einit,X

“

|pup pf ´ fq|
‰

` Einit,X

“

ppu´ uqf
‰

ď

b

Einit,X

“

pu2
‰

Einit,X

“

| pf ´ f |2
‰

`

b

Einit,X

“

f2
‰

Einit,X

“

|pu´ u|2
‰

(Cauchy-Schwarz inequality)

“

b

OpB2 ¨B3m´1{2q `

b

OpB3m´1{2q ¨OpB2q (Lemma 5.1)

“ OpB5{2m´1{4q.

We can apply similar techniques and obtain the following bounds on (38) and (40).

Einit,X

“

|ppu´ uqb|
‰

“ OpB3{2m´1{2q,

Einit,X

“

|pu2 ´ u2|
‰

“ OpB5{2m´1{4q.

Putting all pieces together we get

Einit

“

|pφpθ, ωq ´ φpθ, ωq|
‰

“ Opp1` αqB5{2m´1{4q.

D.5 Proof of Lemma C.2

Proof. We need the following lemma that controls regret in the context of online learning with exact
gradient, and then we extend it to our noisy and biased gradient scenario.

Lemma D.2 (Regret analysis in online learning, [45]). Let f1, f1, ¨ ¨ ¨ : Θ Ñ R be convex functions,
where Θ is convex. Consider the mirror descent updates,

ζt`1 “ ∇h˚ p∇h pθtq ´ η∇ft pθtqq ,
θt`1 “ arg min

θPΘ
Dh pθ, ζt`1q ,

where h is 1-strongly convex with respect to the norm } ¨}, Dhpx, yq “ hpxq´hpyq´∇hpyqJpx´yq
is the Bregman divergence, h˚ is the convex conjugate of h, and } ¨ }˚ is the dual norm of } ¨ }.
Suppose that supt }∇ft pθtq}˚ ă K and supθ hpθq ăM . Then for all θ P Θ,

1

T

T
ÿ

t“1

ft pθtq ´
1

T

T
ÿ

t“1

ftpθq ď
ηK

2
`
M

Tη
.

We refer readers to [45] for a proof of Lemma D.2. Now we take hpxq “ 1
2}x}, and }x} is the

Euclidean norm.
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Note that in our case the actual update is ζt ` ξt, where ζt is an unbiased estimate of the
gradient ∇ftpθtq, and ξt is a noise term. We construct linear surrogate functions pftpθq “

ft pθtq ` pζt ` ξtq
J
pθ ´ θtq and notice that ζt ` ξt is indeed the gradient of the surrogate at θt, i.e.,

∇ pftpθtq “ ζt ` ξt. Now we apply Lemma D.2 to the sequence t pftu and obtain

1

T

T
ÿ

t“1

pft pθtq ´
1

T

T
ÿ

t“1

pftpθq ď
ηB

2
`
M

Tη
,

which implies

1

T

T
ÿ

t“1

ft pθtq ´
1

T

T
ÿ

t“1

ftpθq

ď
ηB

2
`
M

Tη
`

1

T

T
ÿ

t“1

pftpθq ´
1

T

T
ÿ

t“1

ftpθq

ď
ηB

2
`
M

Tη
`

1

T

T
ÿ

t“1

pζt ´∇ft pθtqqJ pθ ´ θtq `
1

T

T
ÿ

t“1

ξJt pθ ´ θtq .

Now we bound the term
řT
t“1 pζt ´∇ft pθtqq

J
pθ ´ θtq. We note the boundedness of the quantities

pζt ´∇ft pθtqqJ pθ ´ θtq ď }ζt ´∇ft pθtq} 2
?

2M ď 4B
?

2M.

To control the sum of bounded random variables, we invoke Hoeffding-Azuma inequality, and obtain
that for 0 ă δ ă 1,

P

#

1

T

T
ÿ

t“1

`

ζt ´∇ft pθtq
˘J
pθ ´ θtq ě 8B

c

M logp1{δq

T

+

ď δ.

Finally we have ξJt pθ ´ θtq ď }ξt} 2
?

2M . Putting all the pieces together completes the proof.

D.6 Proof of Lemma C.3

Proof. The gradients of F with respect to ω, θ are

∇θF “ puω ` αfθq∇θfθ,
∇ωF “ pfθ ´ b´ uωq∇ωuω.

First we show for all x1, x2, ω and θ, we have that∇θF is bounded. It is easy to see by Lemma 5.1

}∇θF }2 “ Opp1` αqBq.

Next we show that for all θ, ω, Einit,X r}∇θFt ´∇θ pF }s goes to zero as mÑ8.

Einit,X

“

}∇θF ´∇θ pF }
‰

ď

b

Einit,X

“

}∇θf}2
‰

Einit,X

“

pu´ ûq2
‰

`

b

Einit,X

“

}∇θf̂ ´∇θf}2
‰

Einit,X

“

û2
‰

` α

b

Einit,X

“

}∇θf}2
‰

Einit,X

“

pf ´ f̂q2
‰

` α

b

Einit,X

“

}∇θf̂ ´∇θf}2
‰

Einit,X

“

f̂2
‰

“ Opp1` αqB3{2m´1{4q
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D.7 Proof of Theorem 4.1

Remark. In fact, the two bounds in Theorem 4.1 are also valid bounds on Einitr
1
T

řT
t“1Epftqs and

1
T

řT
t“1Epftq, respectively. For example, in the 2-layer NN case, it also holds that

Einit

„

1

T

T
ÿ

t“1

Epftq



“ O
´

aηB `
B

Tη
`
aB3{2 log1{2

p1{δq

T 1{2
`
aB5{2

m1{4

¯

. (41)

During training we obtain a sequence of NN weights θ1, θ2, ¨ ¨ ¨ , θT and the corresponding NNs
f1, f2, . . . , fT . The difference lies in that in (41) we bound the average of the suboptimality of the
NNs f1, f2, . . . , fT rather than the suboptimality of the averaged NN f̄T “

1
T

ř

t ft, as is done in
Theorem 4.1. The bound (41) implies that to choose the output NN it suffices to just pick one NN
from the sequence of NNs f1, f2, . . . , fT uniformly.

Proof of Theorem 4.1, two-layer NN

Proof. Based on the analysis in Appendix C, all we need to do is to estimate the rate of the following
quantities

1. Einit

“

|pφpθ, ωq ´ φpθ, ωq|
‰

“ Opp1` αqB5{2m´1{4q,

2. sup }θ} “ OpBq, }∇θF } “ Opp1` αqBq,

3. sup }ω} “ OpBq, }∇ωF } “ OpBq,

4. Einit,X

“

}∇θF ´∇θ pF }
‰

“ Opp1` αqB3{2m´1{4q, and

5. Einit,X r}∇ωF ´∇ω pF }s “ OpB3{2m´1{4q.

The missing pieces are

• }∇ωF } is bounded, and

• Einit,X

“

}∇ωF ´∇ω pF }
‰

“ OpB3{2m´1{4q .

First we bound the term }∇ωF }. It is easy to see

}∇ωF } “ OpBq.

Then we show Einit,X r}∇ωF ´∇ω pF }s “ OpB3{2m´1{4q

Einit,X

“

}∇ωF ´∇ω pF }
‰

ď

b

Einit,X r|f ´ b´ u|2sEinit,X r}∇ωû´∇ωu}2s

`

b

Einit,X r|pf ´ f̂q ` pu´ ûq|2sEinit,X r}∇ωû}2s (Cauchy-Schwarz inequality)

“ OpB3{2m´1{4q

Proof of Theorem 4.1, multi-layer NN

Proof. We mimic the same proof technique as the two-layer case. We need to verify with probability
at least 1´ exppΩplog2mqq over the NN initialization,

1. |pφpθ, ωq ´ φpθ, ωq| “ Opp1` αqB8{3H6m´1{6 log3{2mq, for all θ, ω P SB,H ,

2. sup }θ}2 “ H1{2B, }∇θF } “ Opp1` αqB4{3H4 logmq for all θ, ω P SB,H and x1, x2,

3. sup }ω}2 “ H1{2B, }∇ωF } “ OpB4{3H4 logmq, for all θ, ω P SB,H and x1, x2,
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4. EX r}∇ωF ´∇ω pF }s “ OpB4{3H4m´1{6 log3{2mq, for all θ, ω P SB,H , and

5. EX r}∇θF ´∇θ pF }s “ Opp1` αqB4{3H4m´1{6 log3{2mq for all θ, ω P SB,H .

To show claim 1, we need to find high probability bounds of the terms

|pu pf ´ uf |, (42)
|ppu´ uqb|, (43)

|pu2 ´ u2| (44)

| pf2 ´ f2| (45)

For the term (42),

|pu pf ´ uf |

ď |pup pf ´ fq| ` |ppu´ uqf |

ď

b

}pu}2} pf ´ f}2 `
a

}f}2}pu´ u}2 (Cauchy-Schwarz inequality)

“

b

OpB2H3 log2m ¨B8{3H6m´1{3 logmq

`

b

OpB8{3H6m´1{3 logmq ¨OpB2H3q (46)

“ OpB7{3H9{2m´1{6 log3{2mq,

where equality (46) is valid with probability at least 1 ´ exppΩplog2mqq. Similarly we have the
following high probability bounds.

|ppu´ uqb| “ OpB4{3m´1{6H3 log1{2mq,

|pu2 ´ u2| “ OpB8{3m´1{6H6 log3{2mq.

Putting all the pieces together completes the proof of claim 1.

For claim 2, }W ´W p0q}2 ď
?
HB implies sup }θ}2 ď H1{2B. For }∇θF },

}∇θF }2
“ }pu` αfq∇θf}2
“ Opp1` αqB4{3H4 logmq.

This completes proof of claim 2. Claim 3 follows similarly. For claim 4,

}∇ωF ´∇ω pF }

“ }pf ´ b´ uq∇ωu´ p pf ´ b´ puq∇ωpu}

ď

b

| pf ´ b´ pu|2}∇ωpu´∇ωu}2

`

b

|pf ´ pfq ` pu´ puq|2}∇ωu}2

“ OpB4{3H4m´1{6 log3{2mq

where the last equality holds with high probability. Recall the decomposition (22),

1

T

T
ÿ

t“1

φtpθtq ´
1

T

T
ÿ

t“1

φtpθq (22, revisited)

“
1

T

T
ÿ

t“1

φtpθtq ´
1

T

T
ÿ

t“1

pφtpθtq

(19)

`
1

T

T
ÿ

t“1

pφtpθtq ´
1

T

T
ÿ

t“1

pφtpθq

(20)

`
1

T

T
ÿ

t“1

pφtpθq ´
1

T

T
ÿ

t“1

φtpθq

(21)

.
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Finally, we put together the pieces. Define the events

E1 “

#

1

T

T
ÿ

t“1

φtpθtq ´
1

T

T
ÿ

t“1

pφtpθtq

(19)

`
1

T

T
ÿ

t“1

pφtpθq ´
1

T

T
ÿ

t“1

φtpθq

(21)

“ Opp1` αqB8{3H6m´1{6 log3{2mq

+

and

E2 “

#

1

T

T
ÿ

t“1

pφtpθtq ´
1

T

T
ÿ

t“1

pφtpθq

(20)

“ OpP1ηa logm`
P2

Tη
`
aP3 logm log1{2

p1{δq

T 1{2
`
P3a log3{2m

m1{6
q

+

where P1 “ H4B4{3, P2 “ H1{2B and P3 “ H5B2, defined in Theorem 4.1. By claim 1 we
have PpE1q ě 1 ´ exppΩplog2mqq. By claim 2, claim 5 and Lemma C.2 we have PpE2q ě

1 ´ δ ´ exppΩplog2mqq. Then PpE1 X E2qq ě 1 ´ cδ ´ c exppΩplog2mqq for some absolute
constant c. The same analysis applies for ω and therefore we complete the proof.

D.8 Proof of Theorem 4.2

The proof relies on the following lemma that controls the regularization bias by imposing smoothness
assumption on the truth.
Lemma D.3 (Hilbert scale and regularization bias). Assume the operator A in (1) is injective and
compact. Let fα “ argminfPH

1
2}Af ´ b}

2
E `

α
2 }f}

2
H for some α ą 0. If the solution f to (1) lies

in the regularity space Φβ defined in (15) for some β ą 0, then

}f ´ fα}2H “ Opαmintβ,2uq.

Proof. See Section 3.3 of [11].

Compactness of a conditional expectation operator is a mild condition; see Appendix E for a
discussion.

We remark that four quantities are involved in this proof: the truth f that uniquely solves Af “ b, the
Tikhonov regularized solution fα defined in (5), the Tikhonov regularized solution approximated
by the class of NNs (see Equation (7)), denoted fαNN, and the average of the iterates generated by
Algorithm 1, sfT . Lemma D.3 provides a bound on the gap between f and fα; Theorem 4.1 controls
fαNN ´

ĎfT . Theorem 4.2 assumes that fαNN “ fα. See Section G for a graphical representation.

We start with the decomposition of } sfT ´ f}2H

} sfT ´ f}
2
H ď 2} sfT ´ f

α}2H ` 2}fα ´ f}2H.

Here the first term on the RHS represents optimization error and the second term is regularization
bias. Lemma D.3 provides a bound on the second term. Now we bound the first term.

Recall the definition of Tikhonov regularized functional for a compact linear operator A

Lpfq “ Lαpfq “
1

2
}Ag ´ b}2E `

α

2
}f}2H.

Denote by fα the unique minimizer of L overH. This is always well-defined for a compact linear
operator A. We want to show the strong convexity of Lα, i.e.,

α

2
} sfT ´ f

α}2H ď Lαp sfT q ´ Lαpf
αq. (47)
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If (47) is true, under the conditions of Theorem 4.1 (2-layer NN case), we have with probability at
least 1´ δ over the sampling process,

Einitr} sfT ´ f
α}2Hs ď

2

α
EinitrLαp sfT q ´ Lαpf

αqs (48)

“
2

α
O
´

aηB `
B

Tη
`
aB3{2 log1{2

p1{δq

T 1{2
`
aB5{2

m1{4

¯

. (49)

Setting η “ paT q´1{2 where a “ maxtα, 1u, and combining results from Lemma D.3 and (49) we
complete the proof.

Now we show (47). For all x P H, x` h P H,

2Lαpx` hq “ }Apx` hq ´ b}
2
E ` α}x` h}

2
H (50)

“ }Ax´ b}2E ` }Ah}
2
E ` xAx´ b, AhyE ` α}x}

2
H ` α}h}

2
H ` 2αxx, hyH (51)

“ 2Lαpxq ` 2αxx, hyH ` 2xAx´ b, AhyE ` }Ah}
2
E ` α}h}

2
H (52)

“ 2Lαpxq ` 2αxx, hyH ` 2xA˚pAx´ bq, hyH ` }Ah}
2
E ` α}h}

2
H (53)

“ 2Lαpxq ` 2xαx`A˚Ax´A˚b, hyH ` }Ah}
2
E ` α}h}

2
H. (54)

Moreover, the regularized solution fα is given by the unique solution to the equation αfα `
A˚Afα “ A˚b and depends continuously on b [30]. Setting x “ fα, h “ f ´ fα and applying
αfα `A˚Afα “ A˚b complete the proof of (47).

E Compactness of conditional expectation operators

Let X “ rXJ1 , X
J
2 s
J be a random vector with distribution FX and let FX1

, FX2
be the marginal

distributions of X and Y , respectively. Assume there is no common elements in X1 and X2. Define
Hilbert spacesH “ L2pX1q and E “ L2pX2q. Let A be the conditional expectation operator:

A :HÑ E
fp¨q Ñ ErfpX1q | X2 “ ¨ s .

If there is no common elements in X1 and X2, compactness of an conditional expectation operator is
in fact a mild condition [11]. If p.d.f.s of X,X1 and X2 exist, denoted fX , fX1

and fX2
, then A can

be represented as an integral operator with kernel

kpx1, x2q “
fX1,X2

px1, x2q

fX1
px1qfX2

px2q
,

and pAfqpx2q “
ş

kpx1, x2qfpx1qfX1
px1qdx2. In this case, a sufficient condition for compactness

of A is
ĳ

„

fX1,X2
px1, x2q

fX1
px1qfX2

px2q

2

fX1
px1qfX2

px2qdx1dx2 ă 8.

We now discuss well-posedness of (1). The operator equation (1) is called well-posed (in Hadamard’s
sense) if (i) (existence) a solution f exists, (ii) (uniqueness) the solution f is unique, and (iii) (stability)
the solution f is continuous as a function of b. More precisely, if A : H Ñ E is bijective and the
inverse operator A´1 is continuous, then equation (1) is well-posed [30]. Injectivity is usually a
property of the data distribution and is tantamount to assuming identifiability of the structural function

F A comment on Dual IV

In this section, we review the work of Dual IV [36] and point out the differences between their work
and ours. Dual IV considers nonparametric IV estimation using min-max game formulation and bears
similarities with this work. However, we remark that our framework (1) includes a wide range of
models, including IV regression, and that the use of NNs and detailed analysis on the convergence of
the training algorithm also distinguish our work from Dual IV. The goal of this section is to show the
resulting min-max problem for IV regression in this paper has a natural connection with GMM.
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Recall that IV regression considers the following conditional moment equation

ErY ´ gpXq | Zs “ 0. (2, revisited)

Let G be an arbitrary class of continuous functions which we assume contains the truth that fulfills
the integral equation. Dual IV proposes to solve

min
gPG

Rpgq :“ EY Z
”

`

Y ´ ErgpXq | Zs
˘2
ı

, (55)

while this paper solves

min
gPG

Lpgq “ }Af ´ b}2E “ EZ
”

`

ErY | Zs ´ ErgpXq | Zs
˘2
ı

,

an unregularized version of Example 1. The operator A and b P E are defined in Example 1.

To introduce the maximizer, Dual IV [36] resorts to the interchangeability principle.

Lemma F.1 (Interchangeable principle). Let pΩ,F ,Pq be a probability space, f : Rn ˆ Ω Ñ

R Y t`8u, and L2 “ L2pΩ,F ,Pq be the class of square integrable functions. Let X be the
set of mappings χ : Ω Ñ Rn such that fχ P L2, where fχp¨q :“ fpχp¨q, ¨q. Assume F pωq :“
supxPX fpx, ωq P L2 and that f is upper semi-continuous2. Then the following holds.

E
”

sup
xPX

fpx, ωq
ı

“ sup
χPX

Erfpχpωq, ωqs.

Proof. See Proposition 2.1 in [43]. See also Proposition 1 in [16] for a proof for the case where
f : Rˆ Ω Ñ R.

With the interchangeability principle, (55) can be rewritten as

min
gPG

max
uPU

Ψpg, uq :“ EXY ZrpgpXq ´ Y qupY,Zqs ´ 1
2EY Z

“

upY,Zq2
‰

.

By comparison, an unregularized version of the min-max problem derived in this paper (23) is

min
gPL2pXq

max
uPL2pZq

EXY ZrpgpXq ´ Y q ¨ upZq ´ 1
2u

2pZqs. (56)

The absence of the variable Y in the maximizer u in (56) facilitates a natural connection between
(56) and GMM.

To achieve such interpretation, we first introduce a GMM estimator for (2). The conditional moment re-
striction (2) implies that for a set of functions f1, f2, . . . , fm of Z, we have E rpY ´ gpXqqfjpZqs “
0. Define by ψpf, gq :“ EXY ZrpY ´ gpXqqfpZqs the moment violation function, and the GMM
estimator

gGMM P arg min
gPG

1

2

m
ÿ

j“1

ψ pfj , gq
2
.

Collect the moment violations by a vector ψvpgq :“ pψ pf1, gq , . . . , ψ pfm, gqq
J
P Rm. To achieve

efficiency the moments are usually weighted. Let Λ be a m by m symmetric matrix. We define the
quadratic norm }φ}2Λ “ φJΛφ given a vector φ.

Now we are ready to state the connection between GMM and (56). Define the space of maximizer
U “ span tf1, . . . , fmu. We focus on the inner maximization of (56). Define

Jpgq :“ max
uPU

EXY ZrpgpXq ´ Y q ¨ upZq ´ 1
2u

2pZqs.

Note that maximizer is now constrained in U . Mimicking Theorem 5 in [36], we can show Jpgq is in
fact a weighted sum of the moment violations tψpfj , gqu.

Lemma F.2. Let f1, f2, . . . , fm be a set of real-valued functions of Z. Define the weight matrix
Λ :“ EZrfpZqfpZqJs where f :“ pf1pZq, . . . , fmpZqq

J. Then Jpgq “ 1
2}ψvpgq}

2
Λ´1 .

2Random upper semi-continuous, to be precise.
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Proof. The proof is identical to Appendix C of [36] except for replacing fpY,Zq with fpZq. The
proof relies on simple algebra manipulation and is presented for completeness. For any u P U , u “
řm
j“1 αjfj for some α “ pα1, . . . , αmq

J
P Rm.

Jpgq “ max
αPRm

EXY Z

«

pgpXq ´ Y q

˜

m
ÿ

j“1

αjfjpZq

¸ff

´
1

2
EZ

»

–

˜

m
ÿ

j“1

αjfjpZq

¸2
fi

fl

“ max
αPRm

m
ÿ

i“1

αjEXY Z rpgpXq ´ Y qfjpZqs ´
1

2
EZ

»

–

˜

m
ÿ

j“1

αjfjpZq

¸2
fi

fl

“ max
αPRm

αJψv ´
1

2
αJΛα

“
1

2
ψJv Λ´1ψv.

Lemma F.2 shows that if the maximizer is constrained to be in the span of a set of pre-defined test
functions tfju, the minimization in (56) in fact produces a weighed GMM estimator. In contrast, the
GMM interpretation provided in Section 3.5 of [36] requires the definition of a so-called augmented
IV W :“ pY,Zq. It is unnatural to view the response variable Y as a component of the IV.

28



G A roadmap to the proof of Theorem 4.2

In Figure 3 we can see throughout the discussion we make a couple of simplifying assumptions (e.g.,
Assumption A.5 assumes the conditional expectation operator is close in FNN, and Assumption A.6
assumes the primal problems (7) and (5) give the same solution). These assumptions are justified by
the representation power of NNs. One could instead explicitly incorporate approximation error in the
bounds.

Af “ b (1)
ñ f

arg min
fPH

}Af ´ b}E `
α
2 }f}

2
H

(5)
ñ fα

arg min
fPFNN

}Af ´ b}E `
α
2 }f}

2
H

(7)
ñ fαNN

min
fPFNN

max
uPFNN

φpf, uq (8)

ñ A saddle point

Algorithm 1

ñ sfT

Assumption A.7, Lemma D.3

Assumption A.6

Assumption A.5

Convergence of SGD, NN linearization

Figure 3: Relation between the quantities of interest. Texts above/near the arrows summarize the key
elements of connecting different problems.
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