
A Further Analysis1

A.1 Approximation of Expectation of Non-Linear Function2

Suppose x ∼ N(µ,Σ). We seek a local approximation to Ex [f(x)]. Using a second order Taylor3

expansion about µ,4

Ex [f(x)] ≈ Ex
[
f(µ) + (x− µ)T∇f(µ) +

1

2
(x− µ)THf(µ)(x− µ)

]
(1)

where Hf(x) is the Hessian of f(x). Then, as the gradient term vanishes,5

Ex [f(x)] ≈ f(µ) +
1

2
Ex
[
(x− µ)THf(µ)(x− µ)

]
(2)

6

Ex [f(x)] ≈ f(µ) +
1

2
Ex
[
xTHf(µ)x− 2xTHf(µ)µ+ µTHf(µ)µ

]
(3)

or7

Ex [f(x)] ≈ f(µ) +
1

2

[
Ex
[
xTHf(µ)x

]
− µTHf(µ)µ

]
. (4)

Now using Ex
[
xTΛx

]
= TR(ΛΣ) + µTΛµ,(TR is the trace, see [1]),8

Ex [f(x)] ≈ f(µ) +
1

2
TR(Hf(µ)Σ) . (5)
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A.1.1 Third and Fourth Moments9

In the following we analyze expectations of the third and fourth Taylor expansion terms, showing10

that the third term vanishes, and that the fourth is proportional to σ4
∑

1≤i,j≤N ∂
2
i ∂

2
j f(µ). We will11

refer to the terms schematically as Taylor3µ f(x) and Taylor4µ f(x) . We use x ∼ N(µ,Σ = σ2I) as12

in Sec. 2.3 of the paper. This implies that for any given i: xi ∼ N(µi, σ
2); Exi

[
(xi − µ)3

]
= 0;13

and Exi

[
(xi − µ)4

]
= 3σ4. For convenience, in the following derivations nonzero constants of each14

term of the Taylor series have been omitted, and we denote ∂n

∂nxi
as ∂ni , ommiting the superindex for15

n = 1.16

Third Moment17

Ex
[
Taylor3µ f(x)

]
∝

∑
1≤i≤j≤k≤N

Ex [∂i∂j∂kf(x)(xi − µi)(xj − µj)(xk − µk)] (6)

linearity of E =
∑

1≤i≤N

Ex
[
∂3i f(µ)(xi − µi)3

]
(7)

+
∑

1≤i 6=j≤N

Ex
[
∂2i ∂jf(µ)(xi − µi)2(xj − µj)

]
(8)

+
∑

1≤i 6=j 6=k≤N

Ex [∂i∂j∂kf(µ)(xi − µi)(xj − µj)(xk − µk)] (9)

linearity of E =
∑

1≤i≤N

∂3i f(µ)Ex
[
(xi − µi)3

]
(10)

+
∑

1≤i 6=j≤N

∂2i ∂jf(µ)Ex
[
(xi − µi)2(xj − µj)

]
(11)

+
∑

1≤i 6=j 6=k≤N

∂i∂j∂kf(µ)Ex [(xi − µi)(xj − µj)(xk − µk)] (12)

independence (Σ is σ2I) =
∑

1≤i≤N

∂3i f(µ)Exi

[
(xi − µi)3

]
(13)

+
∑

1≤i 6=j≤N

∂2i ∂jf(µ)Exi

[
(xi − µi)2

]
Exj [xj − µj ] (14)

+
∑

1≤i 6=j 6=k≤N

∂i∂j∂kf(µ)

· Exi
[xi − µi]Exj

[xj − µj ]Exk
[xk − µk]

(15)

Due to x ∼ N(µ, σ2I) =
∑

1≤i≤N

∂3i f(µ) · 0 (no skew) (16)

+
∑

1≤i 6=j≤N

∂2i ∂jf(µ)Exi

[
(xi − µi)2

]
0 (µ mean) (17)

+
∑

1≤i 6=j 6=k≤N

∂i∂j∂kf(µ) · 0 · 0 · 0 (µ mean) (18)

= 0 (19)
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Fourth Moment We now derive the fourth moment without most of the tedious algebra we used to18

derive the third, but following the same ideas.19

Ex
[
Taylor4µ f(x)

]
∝ ∑
1≤i≤j≤k≤l≤N

Ex [∂i∂j∂k∂lf(x)(xi − µi)(xj − µj)(xk − µk)(xl − µl)] (20)

=
∑

1≤i≤N

∂4i f(µ)Ex
[
(xi − µi)4

]
(21)

+
∑

1≤i6=j≤N

∂2i ∂
2
j f(µ)Exi

[
(xi − µi)2

]
Exj

[
(xj − µj)2

]
(22)

+
∑

1≤i6=j≤N

∂3i ∂jf(µ)Exi

[
(xi − µi)3

]
Exj

[(xj − µj)] (23)

+
∑

1≤i6=j 6=k≤N

∂2i ∂j∂kf(µ)

· Exi

[
(xi − µi)2

]
Exj

[xj − µj ]Exk
[xk − µk]

(24)

+
∑

1≤i6=j 6=k 6=l≤N

∂i∂j∂k∂lf(µ)

· Exi
[xi − µi]Exj

[xj − µj ]Exk
[xk − µk]Exl

[xl − µl]
(25)

=
∑

1≤i≤N

∂4i f(µ)Ex
[
(xi − µi)4

]
(26)

+
∑

1≤i6=j≤N

∂2i ∂
2
j f(µ)Exi

[
(xi − µi)2

]
Exj

[
(xj − µj)2

]
(27)

= σ4

3
∑

1≤i≤N

∂4i f(µ) +
∑

1≤i 6=j≤N

∂2i ∂
2
j f(µ)

 (28)

∝ σ4
∑

1≤i,j≤N

∂2i ∂
2
j f(µ) (29)

A.2 Laplacian of Log Likelihood20

We derive here the Laplacian of the log likelihood of the base network.21

4L(θ) =
∑
k

∂2

∂θ2k

∑
i

lnLi(θ) =
∑
k

∑
i

∂2

∂θ2k
lnLi(θ) . (30)

Differentiating,22

4L(θ) =
∑
k

∑
i

∂

∂θk

∂
∂θk

Li(θ)

Li(θ)
, (31)

then23

4L(θ) =
∑
k

∑
i

 ∂2

∂θ2k
Li(θ)

Li(θ)
−

( ∂
∂θk

Li(θ))
2

L2
i (θ)

 , (32)

or,24

4L(θ) =
∑
i

[
4Li(θ)
Li(θ)

− ∇Li(θ)
2

L2
i (θ)

]
, (33)

where ∇Li(θ)2 = ∇Li(θ) · ∇Li(θ). Then25

4L(θ) =
∑
i

[
4Li(θ)
Li(θ)

− (∇ lnLi(θ))
2

]
. (34)
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B Evaluation metrics26

For a K-class classification problem, with N samples, NLL and Brier score are calculated as27

−N−1
∑N
n=1

∑K
k=1 yi,k · ln (pi,k) and −K−1N−1

∑N
n=1

∑K
k=1(yi,k − pi,k)2, respectively. Where28

yi,k is the true one-hot encoded label which is 1 if sample i has label k ∈ K, and otherwise is 0.29

pi,k is the predicted class probability of sample i belonging to class k ∈ K. Reliability diagrams30

plot expected accuracy as a function of class probability (confidence). Expected Calibration Er-31

ror (ECE) is used to summarize the results of reliability diagrams. Details of evaluation metrics32

are given in the Supplementary Material. For expected accuracy measurement, the samples are33

binned into N groups and the accuracy and confidence for each group are computed. Assuming34

Dm to be indices of samples whose confidence predictions are in the range of
(
m−1
M , mM

]
, the35

expected accuracy of the Dm is Acc(Dm) = |Dm|−1
∑
i∈Dm

yi,k. The average confidence on36

bin Dm is calculated as P (Dm) = |Dm|−1
∑
i∈Dm

pi,k. ECE is calculated by summing up the37

weighted average of the differences between accuracy and the average confidence over the bins:38

ECE =
∑M
m=1N

−1|Dm|
∣∣ACC(Dm)− P (Dm)

∣∣.39

C Additional Results on ImageNet40

Figure 1 shows reliability diagrams together with ECE values for baseline, temperature scaling and41

parameter ensembling with perturbation (PEP) for the pre-trained ImageNet networks.42
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Figure 1: Reliability diagrams and ECE values before and after calibration with Temperature
Scaling and PEP, for experiments described in Section 3.1 of the manuscript. From top to bottom:
DenseNet121, InceptionV3, ResNet50, VGG16, and VGG19.
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