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Abstract

We introduce COT-GAN, an adversarial algorithm to train implicit generative mod-
els optimized for producing sequential data. The loss function of this algorithm is
formulated using ideas from Causal Optimal Transport (COT), which combines
classic optimal transport methods with an additional temporal causality constraint.
Remarkably, we find that this causality condition provides a natural framework
to parameterize the cost function that is learned by the discriminator as a robust
(worst-case) distance, and an ideal mechanism for learning time dependent data
distributions. Following Genevay et al. (2018), we also include an entropic penal-
ization term which allows for the use of the Sinkhorn algorithm when computing
the optimal transport cost. Our experiments show effectiveness and stability of
COT-GAN when generating both low- and high-dimensional time series data. The
success of the algorithm also relies on a new, improved version of the Sinkhorn
divergence which demonstrates less bias in learning.

1 Introduction

Dynamical data are ubiquitous in the world, including natural scenes such as video and audio data,
and temporal recordings such as physiological and financial traces. Being able to synthesize realistic
dynamical data is a challenging unsupervised learning problem and has wide scientific and practical
applications. In recent years, training implicit generative models (IGMs) has proven to be a promising
approach to data synthesis, driven by the work on generative adversarial networks (GANs) [23].

Nonetheless, training IGMs on dynamical data poses an interesting yet difficult challenge. On one
hand, learning complex spatial structures of static images has already received significant effort
within the research community. On the other hand, temporal dependencies are no less complicated
since the dynamical features are strongly correlated with spatial features. Recent works, including
[16, 36, 39, 41, 44], often tackle this problem by separating the model or loss into static and dynamic
components.

In this paper, we examine training dynamic IGMs for sequential data. We introduce a new adversarial
objective that builds on optimal transport (OT) theory, and constrains the transport plans to respect
causality: the probability mass moved to the target sequence at time t can only depend on the source
sequence up to time t, see [2, 8]. A reformulation of the causality constraint leads to a new adversarial
training objective, in the spirit of [21] but tailored to sequential data. In addition, we demonstrate that
optimizing the original Sinkhorn divergence over mini-batches causes biased parameter estimation,
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and propose the mixed Sinkhorn divergence which mitigates this problem. Our new framework,
Causal Optimal Transport GAN (COT-GAN), outperforms existing methods on a wide range of
datasets from traditional time series to high dimensional videos.

2 Background

2.1 Adversarial learning for implicit generative models

Goodfellow et al. [23] introduced an adversarial scheme for training an IGM. Given a (real) data
distribution µ = 1

N

∑N
i=1 δxi , x

i ∈ X , and a distribution ζ on some latent space Z , the generator is
a function g : Z → X trained so that the induced distribution ν = ζ ◦ g−1 is as close as possible
to µ as judged by a discriminator. The discriminator is a function f : X → [0, 1] trained to output
a high value if the input is real (from µ), and a low value otherwise (from ν). In practice, the two
functions are implemented as neural networks gθ and fϕ with parameters θ and ϕ, and the generator
distribution is denoted by νθ. The training objective is then formulated as a zero-sum game between
the generator and the discriminator. Different probability divergences were later proposed to evaluate
the distance between µ and νθ [4, 27, 30, 31]. Notably, the Wasserstein-1 distance was used in [5, 6]:

W1(µ, ν) = inf
π∈Π(µ,ν)

Eπ[‖x− y‖1], (2.1)

where Π(µ, ν) is the space of transport plans (couplings) between µ and ν. Its dual form turns out to
be a maximization problem over ϕ such that fϕ is Lipschitz. Combined with the minimization over θ,
a min-max problem can be formulated with a Lipschitz constraint on fϕ.

2.2 Optimal transport and Sinkhorn divergences

The optimization in (2.1) is a special case of the classical (Kantorovich) optimal transport problem.
Given probability measures µ on X , ν on Y , and a cost function c : X × Y → R, the optimal
transport problem is formulated as

Wc(µ, ν) := inf
π∈Π(µ,ν)

Eπ[c(x, y)]. (2.2)

Here, c(x, y) represents the cost of transporting a unit of mass from x ∈ X to y ∈ Y , andWc(µ, ν)
is thus the minimal total cost to transport the mass from µ to ν. Obviously, the Wasserstein-1 distance
(2.1) corresponds to c(x, y) = ‖x− y‖1. However, when µ and ν are supported on finite sets of size
n, solving (2.2) has super-cubic (in n) complexity [15, 33, 34], which is computationally expensive
for large datasets.

Instead, Genevay et al. [21] proposed training IGMs by minimizing a regularized Wasserstein distance
that can be computed more efficiently by the Sinkhorn algorithm; see [15]. For transport plans with
marginals µ supported on a finite set {xi}i and ν on a finite set {yj}j , any π ∈ Π(µ, ν) is also
discrete with support on the set of all possible pairs {(xi, yj)}i,j . Denoting πij = π(xi, yj), the
Shannon entropy of π is given by H(π) := −

∑
i,j πij log(πij). For ε > 0, the regularized optimal

transport problem then reads as
Pc,ε(µ, ν) := inf

π∈Π(µ,ν)
{Eπ[c(x, y)]− εH(π)}. (2.3)

Denoting by πc,ε(µ, ν) the optimizer in (2.3), one can define a regularized distance by

Wc,ε(µ, ν) := Eπc,ε(µ,ν)[c(x, y)]. (2.4)
Computing this distance is numerically more stable than solving the dual formulation of the OT
problem, as the latter requires differentiating dual Kantorovich potentials; see e.g. [13, Proposition 3].
To correct the fact thatWc,ε(α, α) 6= 0, Genevay et al. [21] proposed to use the Sinkhorn divergence

Ŵc,ε(µ, ν) := 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν) (2.5)
as the objective function, and to learn the cost cϕ(x, y) = ‖fϕ(x) − fϕ(y)‖ parameterized by ϕ,
resulting in the following adversarial objective

inf
θ

sup
ϕ
Ŵcϕ,ε(µ, νθ). (2.6)

In practice, a sample-version of this cost is used, where µ and ν are replaced by distributions of
mini-batches randomly extracted from them.
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3 Training generative models with Causal Optimal Transport

We now focus on data that consists of d-dimensional (number of channels), T -long sequences, so
that µ and ν are distributions on the path space Rd×T . In this setting we introduce a special class
of transport plans, between X = Rd×T and Y = Rd×T , that will be used to define our objective
function; see Definition 3.1. On X × Y , we denote by x = (x1, ..., xT ) and y = (y1, ..., yT ) the first
and second half of the coordinates, and we let FX = (FXt )Tt=1 and FY = (FYt )Tt=1 be the canonical
filtrations (for all t, FXt is the smallest σ-algebra s.t. (x1, ..., xT ) 7→ (x1, ..., xt) is measurable;
analogously for FY ).

3.1 Causal Optimal Transport

Definition 3.1. A transport plan π ∈ Π(µ, ν) is called causal if

π(dyt|dx1, · · · , dxT ) = π(dyt|dx1, · · · , dxt) for all t = 1, · · · , T − 1.

The set of all such plans will be denoted by ΠK(µ, ν).

Roughly speaking, the amount of mass transported by π to a subset of the target space Y belonging
to FYt depends on the source space X only up to time t. Thus, a causal plan transports µ into ν in a
non-anticipative way, which is a natural request in a sequential framework. In the present paper, we
will use causality in the sense of Definition 3.1. Note that, in the literature, the term causality is often
used to indicate a mapping in which the output at a given time t depends only on inputs up to time t.

Restricting the space of transport plans to ΠK in the OT problem (2.2) gives the COT problem

Kc(µ, ν) := inf
π∈ΠK(µ,ν)

Eπ[c(x, y)]. (3.1)

COT has already found wide application in dynamic problems in stochastic calculus and mathematical
finance, see e.g. [1, 2, 3, 7, 9]. The causality constraint can be equivalently formulated in several
ways, see [8, Proposition 2.3]. We recall here the formulation most well-suited for our purposes. Let
M(FX , µ) be the set of (X ,FX , µ)-martingales, and define

H(µ) := {(h,M) : h = (ht)
T−1
t=1 , ht ∈ Cb(Rd×t), M = (Mt)

T
t=1 ∈M(FX , µ), Mt ∈ Cb(Rd×t)},

where, as usual, Cb(X) denotes the space of continuous, bounded functions on X. Then, a transport
plan π ∈ Π(µ, ν) is causal if and only if

Eπ
[∑T−1

t=1 ht(y≤t)∆t+1M(x≤t+1)
]

= 0 for all (h,M) ∈ H(µ), (3.2)

where x≤t := (x1, x2, . . . , xt) and similarly for y≤t, and ∆t+1M(x≤t+1) := Mt+1(x≤t+1) −
Mt(x≤t). Therefore H(µ) acts as a class of test functions for causality. Intuitively, causality can
be thought of as conditional independence (“given x≤t, yt is independent of x>t”), that can be
expressed in terms of conditional expectations. This in turn naturally lends itself to a formulation
involving martingales. Where no confusion can arise, with an abuse of notation we will simply write
ht(y),Mt(x),∆t+1M(x) rather than ht(y≤t),Mt(x≤t),∆t+1M(x≤t+1).

3.2 Regularized Causal Optimal Transport

In the same spirit of [21], we include an entropic regularization in the COT problem (3.1) and consider

PKc,ε(µ, ν) := inf
π∈ΠK(µ,ν)

{Eπ[c(x, y)]− εH(π)} . (3.3)

The solution to such problem is then unique due to strict concavity of H . We denote by πKc,ε(µ, ν)
the optimizer to the above problem, and define the regularized COT distance by

Kc,ε(µ, ν) := Eπ
K
c,ε(µ,ν)[c(x, y)].

Remark 3.2. In analogy to the non-causal case, it can be shown that, for discrete µ and ν (as in
practice), the following limits holds:

Kc(µ, ν)←−−−
ε→0

Kc,ε(µ, ν) −−−→
ε→∞

Eµ⊗ν [c(x, y)],

where µ⊗ ν denotes the independent coupling.
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Figure 1: Regularized distance (2.4), Sinkhorn divergence (2.5) and mixed Sinkhorn divergence
(3.8) computed for mini-batches of size m from µ and νθ, where µ = ν0.8. Color indicates batch size.
Curve and errorbar show the mean and sem estimated from 300 draws of mini-batches.

See Appendix A.1 for a proof. This means that the regularized COT distance is between the
COT distance and the loss obtained by independent coupling, and is closer to the former for small
ε. Optimizing over the space of causal plans ΠK(µ, ν) is not straightforward. Nonetheless, the
following proposition shows that the problem can be reformulated as a maximization over non-causal
problems with respect to a specific family of cost functions.
Proposition 3.3. The regularized COT problem (3.3) can be reformulated as

PKc,ε(µ, ν) = sup
l∈L(µ)

Pc+l,ε(µ, ν), (3.4)

where

L(µ) :=

{
J∑
j=1

T−1∑
t=1

hjt (y)∆t+1M
j(x) : J ∈ N, (hj ,M j) ∈ H(µ)

}
. (3.5)

This means that the optimal value of the regularized COT problem equals the maximum value over
the family of regularized OT problems w.r.t. the set of cost functions {c+ l : l ∈ L(µ)}. This result
has been proven in [2]. As it is crucial for our analysis, we show it in Appendix A.2.

Proposition 3.3 suggests the following worst-case distance between µ and ν:

sup
l∈L(µ)

Wc+l,ε(µ, ν), (3.6)

as a regularized Sinkhorn distance that respects the causal constraint on the transport plans.

In the context of training a dynamic IGM, the training dataset is a collection of paths {xi}Ni=1 of
equal length T , xi = (xi1, .., x

i
T ), xit ∈ Rd. As N is usually very large, we proceed as usual by

approximatingWc+l,ε(µ, ν) with its empirical mini-batch counterpart. Precisely, for a given IGM gθ,
we fix a batch size m and sample {xi}mi=1 from the dataset and {zi}mi=1 from ζ . Denote the generated
samples by yiθ = gθ(z

i), and the empirical distributions by

x̂ =
1

m

m∑
i=1

δxi , ŷθ =
1

m

m∑
i=1

δyiθ .

The empirical distanceWc+l,ε(x̂, ŷθ) can be efficiently approximated by the Sinkhorn algorithm.

3.3 Reducing the bias with mixed Sinkhorn divergence

When implementing the Sinkhorn divergence (2.5) at the level of mini-batches, one canonical
candidate clearly is

2Wcϕ,ε(x̂, ŷθ)−Wcϕ,ε(x̂, x̂)−Wcϕ,ε(ŷθ, ŷθ), (3.7)

which is indeed what is used in [21]. While the expression in (3.7) does converge in expectation to
(2.5) for m→∞ ([20, Theorem 3]), it is not clear whether it is an adequate loss given data of fixed
batch size m. In fact, we find that this is not the case, and demonstrate it here empirically.
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Example 3.4. We build an example where the data distribution µ belongs to a parameterized family
of distributions {νθ}θ, with µ = ν0.8 (details in Appendix A.3). As shown in Figure 1 (top two rows),
neither the expected regularized distance (2.4) nor the Sinkhorn divergence (2.5) reaches minimum at
θ = 0.8, especially for small m. This means that optimizing ν over mini-batches will not lead to µ.

Instead, we propose the following mixed Sinkhorn divergence at the level of mini-batches:

Ŵ mix
c,ε (x̂, x̂′, ŷθ, ŷ

′
θ) :=Wc,ε(x̂, ŷθ) +Wc,ε(x̂

′, ŷ′θ)−Wc,ε(x̂, x̂
′)−Wc,ε(ŷθ, ŷ

′
θ), (3.8)

where x̂ and x̂′ are the empirical distributions of mini-batches from the data distribution, and ŷθ
and ŷ′θ from the IGM distribution ζ ◦ g−1

θ . The idea is to take into account the bias within both the
distribution µ as well as the distribution νθ when sampling mini-batches.

Similar to (3.7), when the batch size m→∞, (3.8) also converges to (2.5) in expectation. So, the
natural question arises: for a fixed m ∈ N, which of the two does a better job in translating the idea
of the Sinkhorn divergence at the level of mini-batches? Our experiments suggest that (3.8) is indeed
the better choice. As shown in Figure 1 (bottom row), Ŵ mix

c,ε finds the correct minimizer for all m in
Example 3.4. To support this finding, note that the triangular inequality implies

E
[∣∣Wcϕ,ε(x̂, ŷθ) +Wcϕ,ε(x̂′, ŷ′θ)− 2Wc,ε(µ, ν)

∣∣] ≤ 2E
[∣∣Wcϕ,ε(x̂, ŷθ)−Wc,ε(µ, ν)

∣∣] .
One can possibly argue that in (3.8) we are using two batches of size m, thus simply considering a
larger mini-batch in (3.7), say of size 2m, may perform just as well. However, we found this not to be
the case and our experiments confirm that the mixed Sinkhorn divergence (3.8) does outperform (3.7)
even when we allow for larger batch size. This reasoning can be extended by consideringWc,ε(., .)
with more terms for different combinations of mini-batches. In fact, this is what is done in [37],
which came to our attention after submitting this paper for review. We have tested different variations
in several experiments and while empirically there is no absolute winner, adding more mini-batches
increases the computational cost; see Appendix A.3.

3.4 COT-GAN: Adversarial learning for sequential data

We now combine the results in Section 3.2 and Section 3.3 to formulate an adversarial training
algorithm for IGMs. First, we approximate the set of functions (3.5) by truncating the sums at a fixed
J , and we parameterize hϕ1 := (hjϕ1

)Jj=1 and Mϕ2 := (M j
ϕ2

)Jj=1 as two separate neural networks,
and let ϕ := (ϕ1, ϕ2). To capture the adaptedness of those processes, we employ architectures where
the output at time t depends on the input only up to time t. The mixed Sinkhorn divergence between
x̂ and ŷθ is then calculated with respect to a parameterized cost function

cKϕ (x, y) := c(x, y) +

J∑
j=1

T−1∑
t=1

hjϕ1,t(y)∆t+1M
j
ϕ2

(x). (3.9)

Second, it is not obvious how to directly impose the martingale condition, as constraints involving
conditional expectations cannot be easily enforced in practice. Rather, we penalize processes M for
which increments at every time step are non-zero on average. For an (X ,FX )-adapted process M j

ϕ2

and a mini-batch {xi}mi=1 (∼ x̂), we define the martingale penalization for Mϕ2
as

pMϕ2
(x̂) :=

1

mT

J∑
j=1

T−1∑
t=1

∣∣∣∣∣
m∑
i=1

∆t+1M
j
ϕ2

(xi)√
Var[M j

ϕ2 ] + η

∣∣∣∣∣,
where Var[M ] is the empirical variance of M over time and batch, and η > 0 is a small constant.
Third, we use the mixed normalization introduced in (3.8). Each of the four terms is approximated by
running the Sinkhorn algorithm on the cost cKϕ for an a priori fixed number of iterations L.

Altogether, we arrive at the following adversarial objective function for COT-GAN:

Ŵmix,L
cKϕ ,ε

(x̂, x̂′, ŷθ, ŷ
′
θ)− λpMϕ2

(x̂), (3.10)

where x̂ and x̂′ are empirical measures corresponding to two samples of the dataset, ŷθ and ŷ′θ are
the ones corresponding to two samples from νθ, and λ is a positive constant. We update θ to decrease
this objective, and ϕ to increase it.
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Algorithm 1: training COT-GAN by SGD

Data: {xi}Ni=1 (real data), ζ (probability distribution on latent space Z)
Parameters: θ0, ϕ0, m (batch size), ε (regularization parameter), L (number of Sinkhorn

iterations), α (learning rate), λ (martingale penalty coefficient)
Result: θ, ϕ
Initialize: θ ← θ0, ϕ← ϕ0

for k = 1, 2, . . . do
Sample {xi}mi=1 and {x′i}mi=1 from real data;
Sample {zi}mi=1 and {z′i}mi=1 from ζ;
(yiθ, y

′i
θ )← (gθ(z

i), gθ(z
′i));

Compute Ŵmix,L
cKϕ ,ε

(x̂, x̂′, ŷθ, ŷ
′
θ) (3.8) by the Sinkhorn algorithm, with cKϕ given by (3.9);

ϕ← ϕ+ α∇ϕ
(
Ŵmix,L
cKϕ ,ε

(x̂, x̂′, ŷθ, ŷ
′
θ)− λpMϕ2

(x̂)
)

;

Sample {xi}mi=1 and {x′i}mi=1 from real data;
Sample {zi}mi=1 and {z′i}mi=1 from ζ;
(yiθ, y

′i
θ )← (gθ(z

i), gθ(z
′i));

Compute Ŵmix,L
cKϕ ,ε

(x̂, x̂′, ŷθ, ŷ
′
θ) (3.8) by the Sinkhorn algorithm, with cKϕ given by (3.9);

θ ← θ − α∇θ
(
Ŵmix,L
cKϕ ,ε

(x̂, x̂′, ŷθ, ŷ
′
θ)
)

;

end

While the generator gθ : Z → X acts as in classical GANs, the adversarial role here is played by
hϕ1

and Mϕ2
. In this setting, the discriminator, parameterized by ϕ, learns a robust (worst-case)

distance between the real data distribution µ and the generated distribution νθ, where the class of cost
functions as in (3.9) originates from causality. The algorithm is summarized in Algorithm 1. Its time
complexity scales as O((J + d)LTm2) for each iteration.

4 Related work

Early video generation literature focuses on dynamic texture modeling [17, 38, 42]. Recent efforts
in video generation within the GAN community have been devoted to designing GAN architectures
of a generator and discriminator to tackle the spatio-temporal dependencies separately, e.g., [36, 39,
41]. VGAN [41] explored a two-stream generator that combines a network for a static background
and another one for moving foreground trained on the original GAN objective. TGAN [36] proposed
a new structure capable of generating dynamic background as well as a weight clipping trick to
regularize the discriminator. In addition to a unified generator, MoCoGAN [39] employed two
discriminators to judge both the quality of frames locally and the evolution of motions globally.

The broader literature of sequential data generation attempts to capture the dependencies in time
by simply deploying recurrent neural networks in the architecture [19, 24, 29, 44]. Among them,
TimeGAN [44] demonstrated improvements in time series generation by adding a teacher-forcing
component in the loss function. Alternatively, WaveGAN [16] adopted the causal structure of
WaveNet [32]. Despite substantial progress made, existing sequential GANs are generally domain-
specific. We therefore aim to offer a framework that considers (transport) causality in the objective
function and is suitable for more general sequential settings.

Whilst our analysis is built upon [15] and [21], we remark two major differences between COT-GAN
and the algorithm in [21]. First, we consider a different family of costs. While [21] learns the cost
function c(fϕ(x), fϕ(y)) by parameterizing f with ϕ, the family of costs in COT-GAN is found by
adding a causal component to c(x, y) in terms of hϕ1 and Mϕ2 . The second difference is the mixed
Sinkhorn divergence we propose, which reduces biases in parameter estimation and can be used as a
generic divergence for training IGMs not limited to time series settings.
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Figure 2: Results on learning the multivariate AR-1 process. Top row shows the auto-correlation
coefficient for each channel. Bottom row shows the correlation coefficient between channels averaged
over time. The numbers on top of each panel are the mean and standard deviation (in brackets) of the
sum of the absolute difference between the correlation coefficients computed from real (leftmost) and
generated samples for 16 runs with different random seeds.
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Figure 3: Results on EEG data. The same correlations as Figure 2 are shown.

5 Experiments

5.1 Time series

We now validate COT-GAN empirically1. For times series that have a relatively small dimensional-
ity d but exhibit complex temporal structure, we compare COT-GAN with the following methods:
TimeGAN [44] as reviewed in Section 4; WaveGAN [16] as reviewed in Section 4; and Sinkhorn-
GAN, similar to [21] with cost c(fϕ(x), fϕ(y)) where ϕ is trained to increase the mixed Sinkhorn
divergence with weight clipping. All methods use c(x, y) = ‖x− y‖22. The networks h and M in
COT-GAN and f in SinkhornGAN share the same architecture. Details of models and datasets are in
Appendix B.1.

Autoregressive processes. We first test whether COT-GAN can learn temporal and spatial correla-
tion in a multivariate first-order auto-regressive process (AR-1).

For these experiments, we report two evaluation statistics: the sum of the absolute difference of the
correlation coefficients between channels averaged over time, and the absolute difference between the
correlation coefficients of real samples and those of generated samples. We evaluate the performance
of each method by taking the mean and standard deviation of these two evaluation statistics over 16
runs with different random seeds.

In Figure 2, we show an example plot of results from a single run, as well as the evaluation statistics
aggregated over all 16 runs on top of each panel. COT-GAN samples have correlation structures that
best match the real data. Neither TimeGAN, WaveGAN nor SinkhornGAN captures the correlation

1Code and data are available at github.com/tianlinxu312/cot-gan
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Figure 4: Ablation investigation.

structure for this dataset. The small standard deviation of the evaluation statistics demonstrates that
COT-GAN is the most stable model at least in the AR-1 experiment since it produces similar results
from each run of the model.

Noisy oscillations. The noisy oscillation distribution is composed of sequences of 20-element
arrays (1-D images) [43]. Figure 8 in Appendix B.1 shows data as well as generated samples by
different training methods. To evaluate performance, we estimate two attributes of the samples by
Monte Carlo: the marginal distribution of pixel values, and the joint distribution of the location at
adjacent time steps. COT-GAN samples match the real data best.

Electroencephalography (EEG). This dataset is from the UCI repository [18] and contains record-
ings from 43 healthy subjects each undergoing around 80 trials. Each data sequence has 64 channels
and we model the first 100 time steps. We compare performance of COT-GAN with respect to other
baseline models by investigating how well the generated samples match with the real data in terms
of temporal and channel correlations, see Figure 3, and how the coefficient λ affects sample quality,
see Appendix B.1. COT-GAN generates the best samples compared with other baselines across two
metrics.

In addition, we provide an ablation investigation of COT-GAN, in which we study the impact of the
components of the model by excluding each of them in the multivariate AR-1 experiment. In Figure 4,
we compare the real samples with COT-GAN, COT-GAN using the original Sinkhorn divergence
without the mixing, COT-GAN without the martingale penalty pM, direct minimization (without a
discriminator) of the mixed and original Sinkhorn divergences from (3.8) and (3.7). We conclude
that each component of COT-GAN plays a role in producing the best result in this experiment, and
that the mixed Sinkhorn divergence is the most important factor for improvements in performance.

5.2 Videos

We train COT-GAN on animated Sprites [28, 35] and human action sequences [12]. We pre-process
the Sprites sequences to have a sequence length of T = 13, and the human action sequences to have
length T = 16. Each frame has dimension 64× 64× 3. We employ the same architecture for the
generator and discriminator to train both datasets. Both the generator and discriminator consist of a
generic LSTM with 2-D convolutional layers. Details of the data pre-processing, GAN architectures,
hyper-parameter settings, and training techniques are reported in Appendix B.2.

Baseline models chosen for the video datasets are MoCoGAN from [39], and direct minimization
of the mixed Sinkhorn divergence (3.8), as it achieves a good result when compared to the other
methods addressed in Figures 2 and 4. We show the real data and generated samples from COT-GAN
side by side in Figure 5. Generated samples from all methods, without cherry-picking, are provided
in Appendix C. The evaluation metrics we use to assess model performance are the Fréchet Inception
Distance (FID) [25] which compares individual frames, the Fréchet Video Distance (FVD) [40]
which compares the video sequences as a whole by mapping samples into features via pretrained 3D
convolutional networks, and their kernel counterparts (KID, KVD) [11]. Previous studies suggest
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that FVD correlates better with human judgement than KVD for videos [40], whereas KID correlates
better than FID on images [46].

Figure 5: Animated (top) and human (bottom) action videos. Left column reports real data samples,
and right column samples from COT-GAN.

Table 1: Evaluations for video datasets. Lower value indicates better sample quality.

Sprites FVD FID KVD KID
MoCoGAN 1 108.2 280.25 146.8 0.34
min Ŵ mix

c,ε 498.8 81.56 83.2 0.078
COT-GAN 458.0 84.6 66.1 0.081
Human actions
MoCoGAN 1 034.3 151.3 89.0 0.26
min Ŵ mix

c,ε 507.6 120.7 34.3 0.23
COT-GAN 462.8 58.9 43.7 0.13

In Table 1 the evaluation scores are estimated using 10,000 generated samples. For Sprites, COT-GAN
performs better than the other two methods on FVD and KVD. However, minimization of the mixed
Sinkhorn divergence produces slightly better FID and KID scores when compared to COT-GAN. The
results in [40] suggest that FID better captures the frame-level quality, while FVD is better suited for
the temporal coherence in videos. For the human action dataset, COT-GAN is the best performing
method across all metrics except for KVD.

6 Discussion

With the present paper, we introduce the use of causal transport theory in the machine learning
literature. As already proved in other research fields, we believe it may have a wide range of applica-
tions here as well. The performance of COT-GAN already suggests that constraining the transport
plans to be causal is a promising direction for generating sequential data. The approximations we
introduce, such as the mixed Sinkhorn distance (3.8) and truncated sum in (3.5), are sufficient to
produce good experimental results, and provide opportunities for more theoretical analyses in future
studies. Directions of future development include ways to learn from data with flexible lengths,
extensions to conditional COT-GAN, and improved methods to enforce the martingale property for
M and better parameterize the causality constraint.

9



7 Broader impact

The COT-GAN algorithm introduced in this paper is suitable to generate sequential data, when the
real dataset consists of i.i.d. sequences or of stationary time series. It opens up doors to many
applications that can benefit from time series synthesis. For example, researchers often do not have
access to abundant training data due to privacy concerns, high cost, and data scarcity. This hinders
the capability of building accurate predictive models.

Ongoing research is aimed at developing a modified COT-GAN algorithm to generate financial time
series. The high non-stationarity of financial data requires different features and architectures, whilst
causality when measuring distances between sequences remains the crucial tool. The application to
market generation is of main interest for the financial and insurance industry, for example in model-
independent pricing and hedging, portfolio selection, risk management, and stress testing. In broader
scientific research, our approach can be used to estimate from data the parameters of simulation-based
models that describe physical processes. These models can be, for instance, differential equations
describing neural activities, compartmental models in epidemiology, and chemical reactions involving
multiple reagents.
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