
We thank the reviewers for the detailed feedback. R1 and R2 ask for a comparison to a prior method.1

R3’s main comments are about the theoretical results. We’ve addressed all of this below.2

(R1 & R2) Comparison to Kearns et al. in Appendix D.1: We provide a comparison to the prior3

method by Kearns et al. (2018) [3] in Appendix D.1, and will move it to the main text. We’ll also4

expand the discussion we have about this method in the related work section. Kearns et al. consider5

an intersectional fairness problem similar to ours, but assume that the subgroups are defined by a6

class of functions with finite capacity. In contrast, we make no assumption on the given groups, but7

instead limit the flexibility of the Lagrange multiplier model we use to enforce constraints on them.8

We are thus able to handle a more general set of constraints, including those for ranking fairness.9

More importantly, Kearns et al. assume access to an oracle to find the maximally-violated constraint10

at each step of their optimization. This assumption can be unrealistic, e.g. with the ranking fairness11

problems we consider, where we have one constraint for each incoming query, and the oracle would12

need to solve a maximization problem over all queries seen so far, or worse, over all realizable queries13

(this may be impractical without additional strong assumptions). Our optimization strategy is more14

practical and computes a simple gradient update on the Lagrangian model for each sampled query.15

Table 4 in the appendix contains an empirical comparison to Kearns et al. on the intersectional fairness16

task (Sec 6.1). With a 3-layer multiplier model, we were able to achieve a similar test error and 95-th17

percentile constraint violation as their method, which we implemented with a brute-force search to18

find the max-violated constraint (Proposed: 0.22 [0.03], Kearns et al: 0.22 [0.04]). We aren’t aware19

of a straight-forward way to implement Kearns et al. for the ranking fairness experiments.20

(R1 & R3) Guarantees are on aggregated constraints: When there are a small number of con-21

straints, it only makes sense that we should require that they all hold simultaneously. However, in the22

heavily-contrained setting that we consider, in which there can even be a potentially infinite number23

of constraints, expecting a model to satisfy all the constraints may not be reasonable, and therefore24

an alternate approach must be taken. This is the role of the Φ function: it tells us how we should25

measure the magnitudes of the constraint violations. The reviewers’ main concern, we believe, is that26

there is a close correspondence between the function class chosen for the Lagrange multiplier model,27

and the (potentially unknown) Φ. It might be helpful to think of it this way: for every Lagrange28

multiplier model function class, there exist many possible choices of Φ (needed only by the theory,29

not the algorithm), each of which describes the sort of infeasibility and generalization guarantees that30

we can achieve. For some simple function classes, a convenient Φ is known (Table 1), while for more31

complicated function classes, it is not, but can still be reasoned about formally.32

We also emphasize that we do not make a strong assumption about the constraints. While this allows33

us to handle general constraint sets, it restricts our ability to provide stronger theoretical guarantees.34

(R3) Stochastic classifiers: In theory, stochastic classifiers are difficult to avoid for non-convex35

Lagrangian optimization, since the minimax theorem doesn’t hold, so one must seek a mixed36

equilibrium (see e.g. ref. [11, 12] for prior use of stochastic classifiers for constrained problems). In37

practice, however, deterministically taking the last iterate usually (but not always) works, and if it38

doesn’t, one can convert the stochastic classifier to a deterministic one (Cotter et al., 2019).1 We’ll39

add a brief discussion and citation of Cotter et al. to the paper.40

(R2) Run-times: All experiments were run with TensorFlow. For the intersectional fairness experi-41

ment (Sec 6.1), our method took 31.7 mins with a linear multiplier model, and 33 mins with a 3-layer42

multiplier model. For the ranking fairness experiment on the larger MSLR-WEB10K data (Sec 6.3),43

our method took on average 6.8 hrs to train, the baseline constrained method took 6.2 hrs, and the44

method with no constraints took 4.3 hrs. We’ll report these numbers, and also include the run-times45

for the experiments in Sec 6.2, along with details about the CPU configurations used.46

(R3) Complexity of multiplier model: We expect that on a real-world problem, as one adds47

constraints, they will tend to become increasingly redundant. Our intuition is that the Lagrange48

multiplier model can learn these redundancies, and therefore cope with much larger constraint sets49

than one might expect based on its complexity alone. For example, in our robust fairness experiment50

in Sec 6.2, the number of constraints is exponential in the data size (one for each grouping of the51

data), but the multiplier model we used needed far fewer parameters.52

(R3) Title: Thank you for the suggestion—we’ll definitely consider other titles.53

1A. Cotter, H. Narasimhan, and M. Gupta. On making stochastic classifiers deterministic. In NeurIPS, 2019.

1


