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Abstract

In this paper, a Bayesian nonparametric (BNP) model for Baxter permutations
(BPs), termed BP process (BPP) is proposed and applied to relational data analysis.
The BPs are a well-studied class of permutations, and it has been demonstrated that
there is one-to-one correspondence between BPs and several interesting objects
including floorplan partitioning (FP), which constitutes a subset of rectangular
partitioning (RP). Accordingly, the BPP can be used as an FP model. We combine
the BPP with a multi-dimensional extension of the stick-breaking process called the
block-breaking process to fill the gap between FP and RP, and obtain a stochastic
process on arbitrary RPs. Compared with conventional BNP models for arbitrary
RPs, the proposed model is simpler and has a high affinity with Bayesian inference.

1 Introduction

Bayesian nonparametric (BNP) methods can overcome the model complexity problem of machine
learning tasks, as they can be regarded as an analysis of finite subsets of potentially infinite data using
infinite-dimensional probabilistic models, i.e., stochastic processes. Indeed, a variety of stochastic
processes have been proposed and applied to various real-world tasks. However, in general, it is not
easy to define and control new BNP models, because they should satisfy certain stringent conditions,1
such as projectivity [10, 43, 44, 45, 16], exchangeability [6, 7, 31, 32], and conditional projectivity
[44, 45]. In this paper, we develop a BNP model of Baxter permutations (BPs). This model involves
new stochastic processes and is applied to relational data analysis.

Currently, there are a variety of BNP models for relational data analysis. Recent excellent surveys can
be found in [20, 46]. Conventional models are broadly classified into three categories: (a) clustering
through rectangular partitioning (RP), (b) factor analysis (extraction of multiple clusters) [14, 47,
52, 40, 30, 13], and (c) analysis using more flexible structures [5, 21, 24, 37, 38, 26, 19, 23, 22].
This paper focuses on the first category. Its advantage is that all clusters are disjoint rectangles
characterized by products of subsets of each dimension of the relational data, which can be easily
interpreted. For RP models, the infinite relational model (IRM) [33] and the Mondrian process (MP)
[49, 48] have been widely studied and applied to real world applications. However, these models
cannot represent arbitrary RPs. That is, their supports are limited to some subsets of all possible RPs
(Figure 1, second and third). In contrast, the Gilbert tessellation (GT) [27, 39] and the rectangular
tiling process (RTP) [42] have been proposed for arbitrary RPs with no restrictions (Figure 1, fourth).
However, for the GT, it is known that the statistical behavior of it is notoriously difficult to analyze
[12]. For the RTP, it constructs a probabilistic generative model that directly generates a RP of grids
with infinite size. However, it has too complicated procedures for the model construction due to its
projectivity property, and is not well-suited for Bayesian inference.

Contributions - The aim of this paper is to construct a new BNP model for arbitrary RPs, so that
it has a simple description and high affinity with Bayesian inference. We first discuss RPs and

1Plainly, these conditions are fundamental assumptions for dealing with infinity, that is, for BNP models to
analyze finite subsets of potentially infinite data via infinite-dimensional probabilistic models.
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Figure 1: Relational data and three classes of rectangular partitioning discussed in combinatorics
[41]. (From left to right) First: Samples of (binary) relational data. Second: Regular grid - The
rows and columns are partitioned into clusters. Each block is characterized by the product of the
row and column clusters. Third: Hierarchical - Partitionings are expressed as binary trees where
nodes represent a vertical or horizontal separation of a rectangle into two disjoint rectangles. Fourth:
Arbitrary - No restrictions are required. This class is obtained by the proposed method. Fifth:
Example not included in either hierarchical or regular grid.
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Figure 2: Left: Illustration of Aldous-Hoover-Kallenberg representation of exchangeable array.
Right: Illustration of definition of FP. These different RP samples are equivalent in the sense of FP.

floorplan partitioning (FPs) (plainly, FPs constitute a subset of RPs). Surprisingly, there is one-to-one
correspondence between FPs and BPs [18], which are a class of permutations [9]. Based on this fact,
the main contributions of this paper are to propose new stochastic processes shown as follows:

• The BP process (BPP): We construct a generative probabilistic BP model, the projectivity
property of which ensures the existence of its limit, that is, an infinite BP model. By the
one-to-one correspondence between BPs and FPs, the BPP can also be used as an FP model.

• The block-breaking process (BBP): We combine the BPP with block-breaking process, a
multi-dimensional extension of the stick-breaking process [51], to fill the gap between FP
and RP. We apply the BBP to the Aldous-Hoover-Kallenberg representation [6, 29, 32] to
obtain a BNP model for arbitrary RPs of relational data.

2 Preliminaries

2.1 Relational models, Rectangular partitioning (RP), and Floorplan partitioning (FP)

In this paper, RP can be regarded as partitions of [0, 1] × [0, 1] such that all blocks form disjoint
rectangle clusters of [0, 1]× [0, 1]. By the Aldous-Hoover-Kallenberg (AHK) representation theorem
[6, 29, 32] for exchangeable arrays, the RP has high affinity with the BNP model. Figure 2 (left)
shows an illustration of the AHK representation. We assume that an observation of relational data
consists of rows indexed by {1, . . . , N} and columns indexed by {1, . . . ,M}. Given some BNP
models for RP, a generative probabilistic model of the relational data can be easily constructed as
follows. First, we draw an RP sample based on some BNP models. Then we draw independent and
identically distributed (i.i.d.) uniform random variables:

U row
i ∼ Uniform([0, 1]) (i = 1, 2, . . . , N), U column

j ∼ Uniform([0, 1]) (j = 1, 2, . . . ,M). (1)

Finally, the cluster assignment of each element, with row and column indexed by i and j, respectively,
is specified by the block on [0, 1]× [0, 1] to which the point (U column

i , U column
j ) belongs. According

to the AHK representation, we can focus on constructing BNP models for RP.

In addition, we introduce another important concept, namely FP. In an FP, the size of each rectangle
block of the room partition is irrelevant. We follow the definition in [50] regarding the notion of
equivalence for two FP samples. Figure 2 (right) shows an example. Given an FP sample f , a segment
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Figure 3: Illustration of Algorithm 1. Left: The top-left room is labeled as 1, and deleted by the top-
left room deletion operator. Likewise, the top-left room is labeled as 2, . . . , and delete it hereinafter.
As a result, all rooms are labeled by 1, 2, . . . . Right: The BP is obtained by repeatedly extracting the
label of the bottom-left room and deleting it using the bottom-left room deletion.

(cut) s supports a room (block) r in f if s contains one of the edges of r. We say that s and r have a
top-, left-, right-, or bottom-seg-room relation if s supports r from the respective direction. Two FP
samples are equivalent if there is a labeling of their rooms and segments such that they hold the same
seg-room relations under the labeling. Thus, three FP samples in Figure 2 (right) are equivalent.

2.2 Baxter permutations

In 1964, Glen Baxter introduced a class of permutations in the context of fixed points for the
composition of commuting functions, which now bear his name [9]. A Baxter permutation (BP)
on {1, 2, . . . , n} (n ∈ N) is a permutation π = (σ1σ2 . . . σn) for which there are no quadruples of
indices i < j < j + 1 < k such that

σj < σk < σi < σj+1 or σj+1 < σi < σk < σj . (2)

For example, a permutation π = (σ1σ2 . . . σ8) = 61832547 is not Baxter, since it contains a
quadruple 1 < 3 < 4 < 8 such that σ4 = 3 < σ1 = 6 < σ8 = 7 < σ3 = 8. For more intuitions,
consider the case of n = 4. All permutations of {1, 2, 3, 4} are listed as follows:

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341,2413, 2431,

3124,3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321. (3)

A BP avoids the patterns, 3142 and 2413. Such patterns with prescribed adjacencies are often
termed vincular patterns.

The BPs are a well-studied class of permutations, which have a number of nice properties associated
to them. We briefly review the most relevant two properties of the BPs in this paper. First, there is a
one-to-one correspondence between BPs and several combinatorial objects, such as twin binary trees,
plane bipolar orientations and some type of three non-intersecting paths on a grid [18, 25]. Especially,
in this paper, we focus on its application to the FP. We show a direct bijection between FP and BP,
introduced by [55, 50]. Second, we introduce some useful properties related to the enumeration of
the BPs, and describe the enumeration algorithm proposed in [15].

2.2.1 Mapping from floorplan partitioning to Baxter permutation

We first define the following operator on FP. Given an FP sample with n rooms in [0, 1]× [0, 1] as
its bounding rectangle, we can obtain a FP sample with (n− 1) rooms by using the following room
deletion operator, introduced by [28]. The top-left room deletion is defined as follows:

Definition (Top-left room deletion). Let f be an FP sample with n > 1 rooms and let r be the
top-left room in f . (1) If the bottom-right corner of r has a “a” junction, then we delete r from f by
shifting the bottom edge upwards while keeping all “>” junctions on the bottom edge attached, until
the edge reaches the bounding rectangle. (2) If the bottom-right corner of r has a “⊥” junction, then
we delete r from f by shifting the right edge leftwards while keeping all “`” junctions on the right
edge attached, until the edge reaches the bounding rectangle.

Similarly, we can define the bottom-left room deletion operator. Then, according to the top-left and
bottom-left room deletion operators, we can obtain the mapping from the FP into the BP.

Figure 3 shows an illustration of Algorithm 1. The output of Algorithm 1 is always a BP, as shown in
[17] (Lemma 3.6). Moreover, the mapping corresponding to Algorithm 1 is injective [17] (Lemma
3.7). Next we move on to the mapping from the BP to the FP.
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Algorithm 1 MAPPING FLOORPLAN PARTITIONING TO BAXTER PERMUTATION

Input: Floorplan partitioning f with n rooms.
· Assign labels 1, 2, . . . , n in ascending order into n rooms by repeatedly labeling the top-left room
and applying top-left room deletion operator to it (Figure 3, left).
Output: Return the permutation of labels obtained by repeatedly extracting the label of the
bottom-left room and applying the bottom-left room deletion operator into it (Figure 3, right).

Figure 4: Illustration of Algorithm 2. A BP sample π = (σ1σ2 . . . σn) = 25314 is transformed to a
FP sample. First, we draw a block labeled as σ1 = 2, and construct a 5× 5 grid. Second, since we
have σ2 = 5 > σ1 = 2, we bisect the top-right block by a vertical segment at the second grid. Third,
since we have σ3 = 3 < σ2 = 5, we bisect the top-right block by a horizontal segment at the third
grid. Fourth, we bisect the top-right block by a horizontal segment, and then extend the block σ4 = 1
leftward at the expense of σ1 = 2, since the block σ1 = 2 to the left of σ4 = 1 has a label greater
than σi. Finally, Algorithm 2 obtains the corresponding FP sample to 25314.

2.2.2 Mapping from Baxter permutation to floorplan partitioning

Given a BP on {1, . . . , n}, Algorithm 2 constructs a FP sample with n rooms [17]. As is shown in
Figure 4, the algorithm iteratively inserts rooms one by one into the top-right corner of the FP. The
i-th room is generated by bisecting the previous room, and is labeled according to the i-th element
in the BP. If the (i− 1)-th element is smaller (resp., greater) than the current element, the room is
bisected vertically (resp., horizontally). The resulting horizontal (resp., vertical) segment is extended
leftward (resp., downward) if the room to the left (resp., below) has a greater (resp., smaller) label
than that of the current room.

Algorithm 2 MAPPING BAXTER PERMUTATION TO FLOORPLAN PARTITIONING

Input: Baxter permutation π = (σ1σ2 . . . σn).
· Draw a block and label it as σ1.
· Construct an n× n grid within the block.
for i=2 to n do

if σi < σi−1 then
· Bisect the top-right block by a horizontal segment at the i-th grid.
· Label the new top-right block as σi.
while t do

he block σ′ to the left of σi has a label greater than σi,· Extend the block σi leftward at the
expense of σ′.

end while
else
· Bisect the top-right block by a vertical segment at the i-th grid.
· Label the new top-right block as σi.
while t do

he block σ′ below σi has a label smaller than σi,· Extend the block σi downward at the
expense of σ′.

end while
end if

end for
Output: Floorplan partitioning with n blocks.

2.2.3 Enumeration of Baxter permutations

In order to construct a generative BP model, the enumeration algorithm proposed in [15] is quite
useful. Here, we briefly review the enumeration process for BPs.

4



3  1  2  5  6  4  7 3  1  2  8  5  6  4  7 3  1  2  8  9  5  6  4  7 10   3   1   2   8   9   5   6   4   73  1  2  5  6  4

3  1  2  7  5  6  4 3  1  2  8  7  5  6  4 3  1  2  8  7  9  5  6  4 3   1   2   8   7   9   5   6  10   43  1  2  5  6  4

Figure 5: Left: Illustration of BPP. Consider a BP 312564 ∈ Z6 and its latent parametersU1, . . . , U6.
This BP has left-to-right maxima x1 = 3 < x2 = 5 < x3 = 6 and right-to-left maxima 6 = y2 >
4 = y1. If U7 is drawn from the interval [U3, U5], then 7 is inserted to the immediate left of 5 of
312564, and the resulting BP on {1, . . . , 7} is 3127564. We emphasize that the BP is not equivalent
to the order of U1, . . . , U7. Right: Illustration of FP evolution according to underlying BPP. Two FP
samples are growing according to the BPP. Instead of direct transformations from a FP with n blocks
to a FP with n+ 1 blocks, the evolution of a FP is obtained only through the underlying evolution
of a BP by using Algorithm 2. For example, we consider an evolution of a BP from 312564 to
3127564. We apply Algorithm 2 to both 312564 and 3127564, and obtain the corresponding FPs
to 312564 and 3127564, respectively.

The first property is that BPs are closed under removing the largest label, leading to the projectivity
property of the BPP for Kolmogorov’s extenstion theorem (discussed later in Section 3, Proposition
3.2). We note that this is not immediately obvious, as BPs are given by a vincular pattern, that
involves adjacency issues. However, the following was positively proved in [15] ([17], Lemma 3.1):

Proposition 2.1 If π = (σ1σ2 . . . σn) is a BP on {1, . . . , n}, and we remove its largest label σi = n,
then the result is also a BP.

The second issue is a method for generating a BP on {1, . . . , n} from a BP on {1, . . . , n − 1}.
Proposition 2.1 means that every BP on {1, . . . , n} arises from a BP on {1, . . . , n− 1} by inserting n
into an admissible position. Fortunately such admissible positions were explicitly determined in [15]:

Proposition 2.2 Given a BP on {1, . . . , n − 1}, we consider the BP on {1, . . . , n} by inserting n.
The admissible positions where n can be inserted are limited to each of the immediate left of the
left-to-right2 maxima, and to each of the immediate right of the right-to-left maxima.

The third property is whether we can enumerate all possible BPs by the procedure shown in Proposi-
tion 2.2, which specifies the support of the BPP (discussed later in Section 3, Proposition 3.1):

Corollary 2.3 Consider the generating tree for BP that every node on the n-th level corresponds
to a BP on {1, . . . , n}, and has the children nodes obtained by inserting (n+ 1) into all admissible
positions of the corresponding BP of the parent node, described in Proposition 2.2. For any n ∈ N,
the set of the BPs corresponding to the nodes on the n-th level of this generating tree is equivalent to
all BPs on {1, . . . , n}.

3 Baxter permutation process (BPP)

The first contribution of this study is a BNP model for BPs. Let Zn be the set of all BPs on {1, . . . , n}.
The BPP is a discrete-time Markov process on BPs and generates an object that, on the n-th time,
corresponds to a BP sample on Zn. We present an illustrative example of the proposed model. Given
the BP sample 312564 ∈ Z6, we consider the possible BPs obtained by inserting 7 into admissible
positions. According to Proposition 2.2, these positions are immediately left of the left-to-right
maxima 3,5,6 and immediately right of the right-to-left maxima 4,6, that is,

︸︷︷︸3 1 2 ︸︷︷︸5 ︸︷︷︸6 ︸︷︷︸4 ︸︷︷︸ . (4)

As shown in this example, the evolution of the BPP depends on the left-to-right and the right-to-left
maxima, as well as the choice of the admissible positions. For notational convenience, we use

2Let σ1 . . . σn be a permutation on {1, . . . , n}. We call σi a left-to-right maximum if σi > σj for all j < i.
Similarly, we call σi a right-to-left maximum if σi > σj for all j > i.

5



Figure 6: Evolution of FP according to BPP. The left FP corresponds to 25314. The right four
patterns are all possible FPs corresponding to the BPs in Z6 whose projection onto Z5 is 25314. We
note again that we do not have direct transformations from the FP corresponding to 25314 to the
FPs with 6 block. We apply Algorithm 2 to 625314, 265314, 256314 and 253146 independently
to obtain the corresponding FPs.

x1, x2, . . . , xi and y1, y2, . . . , yj to indicate the left-to-right maxima and the right-to-left maxima of
a BP, respectively. In order to describe the evolution of the BPP, we introduce auxiliary variables,
consisting of a sequence of independent and identically distributed (i.i.d.) uniform random variables
U1, U2, . . . on [0, 1]. The resulting BPP sample on the n-th time is obtained from U1, . . . , Un. Figure
5 provides an illustration. In the following, we will provide a more precise description.

Model description - The BPP is a discrete-time Markov process π := (π(tn), n ∈ N) over time
t1, t2, . . . where each π(tn) is a BP sample on Zn. The BPP π(tn) on tn has a collection of latent
parameters, consisting of i.i.d. uniform random variables U1, . . . , Un on [0, 1]. Given a sample
π(tn) = (σ1σ2 . . . σn) generated from U1, . . . , Un, a sample π(tn+1) is drawn as follows. Without
loss of generality, we can assume that π(tn) has left-to-right maxima x1 < · · · < xi = n and
right-to-left maxima n = yj > · · · > y1. We additionally assume that U1, . . . , Un satisfies

Ux1 < Ux2 < · · · < Uxi = Un = Uyj < Uyj−1 < · · · < Uy1 . (5)

We note that this assumption is not obvious, and therefore it will be proved by mathematical induction.
For convenience, we let Ux0

= 0 and Uy0
= 1. The above inequality implies that the real line [0, 1]

is divided into intervals [Ux0
, Ux1

], [Ux1
, Ux2

], . . . [Uxi−1
, Uxi

], [Uyj
, Uyj−1

],. . . , [Uy1
, Uy0

]. Then,
the latent parameter Un+1 is independently drawn from the uniform distribution on [0, 1]. If Un+1

is located on the interval [Uxk−1
, Uxk

] (k = 1, . . . , i), then (n+ 1) is inserted to the immediate left
of xk. If Un+1 is located on the interval [Uyl

, Uyl−1
] (l = 1, . . . , j), then (n+ 1) is inserted to the

immediate right of yl. By construction, Equation (5) also holds for U1, . . . , Un+1. Therefore, by
induction, Equation (5) holds for all n ∈ N.

For example, we consider the BP π(t6) = 312564 ∈ Z6, as shown in Figure 5. We assume that
U1 . . . , U6 is drawn as the top of Figure 5 (left). This BP has left-to-right maxima x1 = 3 < x2 =
5 < x3 = 6 and right-to-left maxima 6 = y2 > 4 = y1, as shown in the middle. If U7 is drawn on
the interval [U3, U5], then 7 is inserted to the immediate left of 5 of 312564, and the resulting BP
π(t7) ∈ Z7 corresponds to 3127564. We note that the BP is not equivalent to the order of U1, . . . , U7.

Properties - The BPP π(tn) can define the probability measures µn on (Zn,2
Zn). In the following,

we study some properties of µn. All proofs are provided in the supplementary material. First, we
study the support of µn. It has positive probabilities for any possible BPs.

Theorem 3.1 (Support). For any n ∈ N and zn ∈ Zn, we have µn(zn) > 0.

Subsequently, we prove that by Kolmogorov’s extension theorem, the projective limit µ∞ of proba-
bility measures µn (n→∞) exists:

Theorem 3.2 (Projectivity). Let 〈µn〉n∈N be the family of probability measures, derived from the
BPP. The projector Qm,n : Zm → Zn (n < m ∈ N) is defined as follows: For a BP on {1, . . . ,m},
the projector Qm,n removes the largest (m − n) labels of the permutation and generates a new
BP on {1, . . . , n}. Then, for any n < m ∈ N and An ∈ 2Zn , we have the projectivity3 property:
µn(An) = µm(Q−1m,nAn). Accordingly, by Kolmogorov’s extension theorem, the family of probability
measures 〈µn, Qm,n〉n≤m∈N is uniquely extended to the projective limit probability measure µ∞ of
the BP on {1, 2, . . . }.

3In this area of research, projective or self-similar RP is a very popular notion. Therefore, one might
think that this projectivity property of the BPP is carried over into self-similarity of the corresponding FP
(Fig.5, right). However, it is not true. For example, the FP corresponding to 3127564 is not self-similar to
that of Q7,63127564 = 312564. The projectivity property of the BPP is entirely considered in the Baxter
permutation domain, whose main purpose is the existence of a model of BPs on {1, . . . ,∞}.
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Figure 7: Left: Illustration of BBP. The BBP sequentially adds a new bottom-right block into the
current rectangular partitioning. For visibility, C2, C

min
2 , C3, C

min
3 are omitted.

4 Block-breaking process (BBP)

The BPP can also be used for FP, according to Algorithm 2. However, we have to fill the gap between
FP and RP to construct a BNP model based on the AHK theorem. Our strategy is to introduce
size adjusting parameters to generate sized blocks of RP from corresponding size-less rooms of FP,
which are generated by the BPP. As shown in Figure 6, the evolution of the BPP corresponds to
adding a new bottom-right room to the FP. We additionally introduce a sequence of i.i.d beta random
variables into the BPP to control the size of the rooms of the FP drawn from the BPP. As in the
“stick-breaking process (SBP) of [0, 1]” [51], the new process is termed block-breaking process (BBP)
of [0, 1]× [0, 1].

High-level sketch - The BBP can be broadly interpreted as a multi-dimensional extension of the
SBP. We recall that the SBP generates infinite number of sticks of a line [0, 1] by recursively drawing
a beta random variable β and breaking the remaining stick at a ratio of β : (1 − β). Plainly, the
BBP replaces the line [0, 1] and the sticks of the SBP with the bounding rectangle [0, 1]× [0, 1] and
rectangle blocks, respectively. The central difficulty of the construction of the BBP unlike the SBP is
to have to additionally care about to which directions a new partition should be added recursively.
Therefore, we employ the BPP to navigate the evolution of the underlying FP. Following this intuition,
we now provide a more precise description.

Model description - The BBP is a discrete-time Markov process b := (b(tn), n ∈ N) over time
t1, t2, . . . where each b(tn) is an RP sample with n blocks. The BBP b(tn) on tn has a collection of
latent parameters, consisting of i.i.d. uniform random variables U1, . . . , Un on [0, 1], and i.i.d. beta
random variables β1, . . . , βn−1. Figure 7 shows an illustration of the generative BBP model. We
consider an RP sample r(tn−1) obtained from U1, . . . , Un−1 and β1, . . . , βn−2, and an FP sample
f(tn−1) with (n− 1) rooms, also obtained from U1, . . . , Un−1 according to the BPP. Given b(tn−1)
and f(tn−1), a sample b(tn) at the next time tn is drawn as follows. We first draw Un and βn−1 from
the uniform and the beta distributions, respectively. If the right-bottom corner of the (n− 1)-th room
of f(tn) is on the left (or top) side of the right-bottom corner of the n-th room of f(tn), then let Cn

be the set of all blocks (light gray and dark gray in Figure 7) of b(tn) such that the corresponding
rooms of f(tn) are adjacent to the left (or top) of the n-th room of f(tn) . Let Cmin

n be a block
(dark gray in Figure 7) in Cn with the minimum width (or height) ln. The n-th block of the RP is
generated by cutting blocks in Cn so that the n-th block has a width (or height) (1− βn−1)ln.

Properties - As is well known, the SBP-based mixture model (for sequence partitioning) has the
following two useful properties. (a) It can express arbitrary partitions of any finite observations.
(b) For sufficiently small ε > 0, the infinitely many sticks on [1− ε, 1] do not contribute the finite
observation data, and the active partitions are concentrated on [0, 1 − ε]. These properties are
carried over into the BBP b = (b(t1), b(t2), . . . ). By construction, the top-left corner locations of
all blocks of b(tn) are invariant on t ≥ tn. This leads to the two useful properties of the BPP-based
relational model which is obtained by applying the limit b(t∞) to the intermediate random function
on [0, 1]× [0, 1] of the AHK representation (described in Section 2.1). (a) One is the support of the
BPP. The BBP covers arbitrary RPs: this can be easily deduced from the aforementioned property of
the BBP constructively. (b) The other is concerning the number of active blocks of b(t∞) for finite
observations. We consider a finite observation matrix consisting of rows indexed by {1, . . . , N}
and columns indexed by {1, . . . ,M}. Let U row

max and U column
max be max{U row

i | i = 1, . . . , N} and
max{U column

j | j = 1, . . . ,M}, respectively. By construction of the BBP, there exists a natural
number k < ∞ such that the top-left corner of the k-th block of b(t∞) is located in the region
[U row

max, 1]× [U column
max , 1] with probability 1. As a result, all elements of the observation matrix must

be assigned to the 1, . . . , (k − 1)-th blocks. Therefore, typical Bayesian inference methods, such as
Markov chain Monte Carlo (MCMC), can naturally avoid handling an infinite number of blocks.
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5 Application to relational data analysis

Relational model - The BBP-based relational model is applied to the input matrixX := (Xi,j)N×M .
We assume that X consists of categorical elements, that is, Xi,j ∈ {1, 2, . . . ,H}, where H ∈ N.
The generative model can be constructed as follows. The BBP consists of i.i.d. uniform random
variables U := (U1, U2 . . . ) on [0, 1], and i.i.d. beta random variables β := (β1, β2, . . . ):

Uk ∼ Uniform([0, 1]), βk ∼ Beta(1, α) (k = 1, 2, . . . ), (6)

where α is a non-negative hyper-parameter. For notational convenience, we also use Uk =
(U1, U2 . . . , Uk) and βk = (β1, β2, . . . , βk). They correspond to a sample of rectangular parti-
tioning on [0, 1]× [0, 1]. The k-th block has a latent Dirichlet random variable φk:

φk ∼ Dirichlet(α0) (k = 1, 2, . . . ), (7)

where α0 = (α0, . . . , α0) is a H-dimensional non-negative hyper-parameter. According to the AHK
representation [6, 29, 32], each row and column of the input matrix is mapped into [0, 1]:

U row
i ∼ Uniform([0, 1]) (i = 1, 2, . . . , N), U column

j ∼ Uniform([0, 1]) (j = 1, 2, . . . ,M). (8)

Finally, given the row locations U row := (U row
1 , . . . , U row

N ), the column locations U column :=
(U column

1 , . . . , U column
M ), the BBP parameters consisting of U = (U1, U2 . . . ) and β = (β1, β2, . . . ),

and (φ1,φ2, . . . ), each elementXi,j of the input matrix is drawn from theH-dimensional categorical
distribution:

Xi,j | U row,U column,U ,β,φk(i,j) ∼ Categorical(φk(i,j)), (9)

where k(i, j) indicates the block index to which the point (U column
i , U column

j ) belongs.

We compare the BBP-based relational model with the BNP stochastic block models based on RP:
(1) The IRM [33]: the intermediate random function of the AHK representation is drawn from the
product of the SBPs, and the concentration parameter is drawn from the Gamma(1, 1) prior, as in
[23]. (2) The MP [49]: the intermediate random function of the AHK representation is drawn from
the MP, the budget parameter of which is set to 3, as in [23]. (3) The RTP [42]: we combine the
product of the SBPs (also used in the aforementioned IRM) and the RTP is combined to construct the
AHK representation.

Bayesian inference - For all models, we used an MCMC method that iterates over (1) drawing U row

and U column (i.e., the corresponding locations on [0, 1] of the rows and columns of the input matrix
for the AHK representation), (2) updates of the current intermediate random function of the AHK
representation (i.e., the current RP in the MCMC iterations), and (3) changing the complexity of the
RP based on reversible jump schemes. To change the RP complexity of the MP and the RTP, we
employ the methods in [53] and [42], respectively. For the reversible jump proposal of the BBP, a new
block can be added, or the block with the largest label can be removed in the evolution of the BBP.
The full description of our Bayesian inference method is provided in the supplementary material. The
source code is available at https://github.com/nttcslab/baxter-permutation-process.

Datasets - We synthetically generated three relational matrices, with ground-truth partitions cor-
responding to regular grid, hierarchical, and arbitrary RP samples, respectively. Each matrix
consists of 300× 300 binary elements drawn from the beta-Bernoulli likelihood model. We also used
four social network datasets [54, 35] (corresponding to Figure 1):

• Wiki (top-left) [1], consisting of 7115 nodes and 103689 edges with diameter 7.
• Facebook (top-right) [2], consisting of 4039 nodes and 88234 edges with diameter 8.
• Twitter (bottom-left) [3], consisting of 81306 nodes and 1768149 edges with diameter 7.
• Epinion (bottom-right) [4], consisting of 75879 nodes and 508837 edges with diameter 14.

For each data, we selected the top 1000 active nodes based on their interactions with others; sub-
sequently we randomly sampled 500 × 500 matrix to construct the relational data, as in [23]. For
model comparison, we held out 20% cells of the input data for testing, and each model was trained
by the MCMC using the remaining 80% of the cells. We evaluated the models using perplexity as
a criterion: perp(X̂) = exp(−(log p(X̂))/N), where N is the number of non-missing cells in the
partitioned matrix X̂ .
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Figure 8: Experimental results of perplexity comparison. Each column corresponds to each real world
data (The results for synthetic data are reported in the supplementary material). Top: Relationship
between test perplexity (mean±std) evolution and wall-clock time. Bottom: Relationship between
test perplexity evolution and 2000 MCMC iterations for 10 trials.

Experimental results - Table 1 and Figure 8 summarize the test perplexity comparison results.
We recall that the arbitrary RP (covered by the BBP and the RTP) includes the hierarchical RP
(corresponding to the MP) and the regular grid RP (corresponding to the IRM). Therefore, we
can expect that the BBP (and the RTP) essentially does not degrade the predictive performance for
any ground-truth partitions. However, in practice, there may be certain issues related to Bayesian
inference, such as local optima and slow mixing. Fortunately, as shown in Table 1, the BBP exhibits
better (at least comparable) performance than the other three models. It can also be seen that the RTP
achieves a predictive performance similar to that of the BBP (Figure 8, bottom). However, as shown
in Figure 8 (top), the RTP has high computational cost. We also observe that the IRM performs faster
mixing of the MCMC iterations than the BBP. This implies that the BBP may be improved by using
more sophisticated inference methods, including sequential Monte Carlo methods [34, 26], particle
Markov chain Monte Carlo samplers [23, 8], and Bayesian combinatorial optimization methods
[36, 11]; this is a further research direction.

Table 1: Perplexity comparison for real-world relational data analysis (mean±std)

IRM [33] MP [49] RTP [42] BBP (proposed)
Synth (regular grid) 1.1791 ±0.0031 1.3690 ±0.0951 1.2709 ±0.0820 1.2136 ±0.0292
Synth (hierarchical) 1.2163 ±0.0145 1.2956 ±0.0913 1.2262 ±0.0314 1.2014 ±0.0105
Synth (arbitrary) 1.1299 ±0.0070 1.1983 ±0.0711 1.1406 ±0.0271 1.1161 ±0.0151
Wiki 1.2898 ±0.0045 1.2838 ±0.0094 1.2762 ±0.0085 1.2712 ±0.0056
Facebook 1.2012 ±0.0058 1.1944 ±0.0217 1.1895 ±0.0221 1.1818 ±0.0197
Twitter 1.2265 ±0.0038 1.2316 ±0.0209 1.2243 ±0.0067 1.2146 ±0.0058
Epinion 1.4088 ±0.0030 1.4098 ±0.0064 1.4078 ±0.0064 1.4006 ±0.0044

6 Conclusion

This paper has proposed new stochastic processes. Our main contributions are as follows: (1) We
have presented the BNP model of the BP as a Markov process consisting of a sequence of i.i.d.
uniform random variables on [0, 1]. Owing to the one-to-one correspondence between BP and FP,
the model can also be used as a probabilistic model on the set of all possible FPs. (2) We combined
the BPP with the BBP to obtain a stochastic process for arbitrary RPs. As in conventional methods,
we applied this process to the AHK representation to construct a BNP stochastic block model for
relational data, and compared its predictive performance with that of the IRM, MP, and RTP.
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Broader Impact

Clustering is one of the most fundamental machine learning tools for data analysis. The block-
breaking process (BBP) can be regarded as a multi-dimensional extension of clustering and it has a
potential to give a new perspective to relational data analysis, for it would reveal latent structures in
relational data (or network data) in much more flexible manner than other existing clustering methods,
without tuning the model complexity.

In fact, the BBP can extract latent clusters of relational data through rectangular partitioning (RP).
While conventional models can express only limited classes of all possible RPs, the BBP can po-
tentially capture arbitrary rectangular partitioning, keeping the central advantage of the Bayesian
nonparametic (BNP) machine learning, and the BBP does not have to tune the model complex-
ity regardless of the size of the input data. Therefore, the BBP will have a wide range of po-
tential applications, including market research, pattern recognition, image processing, pre- and
post- processing of data, and structure learning of network models. For example, the BBP can
be combined with deep neural network (DNN) models as a prior on the network, which simul-
taneously learns the DNN parameters and the network structure. It may also be used to expose
and identify biases in data. The source code of the BBP-based relational model is available at
https://github.com/nttcslab/baxter-permutation-process, with which you can try and
examine the BBP-based relational data analysis by yourself.

Our work is not facilitating any unethical aspects of machine learning technologies, by genuinely
pursuing the development of Bayesian methods in many applications settings. However, as is often
the case with any clustering methods (or more generally any predictive algorithms), our proposal
can be misused in a variety of context. Since the BPP may reveal hidden clusters from any input
relational matrices, unethical applications may lead to unexpected results due to unexpected cues.
This problem is highly dependent on the choice of input data. Therefore, what is suitable as input
data needs to be carefully considered from an ethical perspective.
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