
Factor Graph Neural Network

Zhen Zhang1 Fan Wu 2 Wee Sun Lee3
1 Australian Institute for Machine Learning & The University of Adelaide, Australia

2 University of Illinois at Urbana-Champaign
3 School of Computing, National University of Singapore

zhen.zhang02@adelaide.edu.au fanw6@illinois.edu leews@comp.nus.edu.sg

Abstract

Most of the successful deep neural network architectures are structured,
often consisting of elements like convolutional neural networks and gated
recurrent neural networks. Recently, graph neural networks (GNNs) have
been successfully applied to graph-structured data such as point cloud and
molecular data. These networks often only consider pairwise dependencies,
as they operate on a graph structure. We generalize the GNN into a
factor graph neural network (FGNN) providing a simple way to incorporate
dependencies among multiple variables. We show that FGNN is able to
represent Max-Product belief propagation, an approximate inference method
on probabilistic graphical models, providing a theoretical understanding on
the capabilities of FGNN and related GNNs. Experiments on synthetic and
real datasets demonstrate the potential of the proposed architecture.

1 Introduction

Deep neural networks are powerful approximators that have been extremely successful in
practice. While fully connected networks are universal approximators, successful networks in
practice tend to be structured, e.g., grid-structured convolutional neural networks and chain-
structured gated recurrent neural networks (e.g., LSTM, GRU). Graph neural networks [7,
34, 35] have recently been successfully used with graph-structured data to capture pairwise
dependencies between variables and to propagate the information to the entire graph.
The dependencies in the real-world are often beyond pairwise connections. E.g., in the LDPC
encoding, the bits of a signal are grouped into several clusters. In each cluster, the sum of all
bits should be equal to zero [36]. Then in the decoding procedure, these constraints should
be respected. In this paper, we show that the GNN can be naturally extended to capture
dependencies over multiple variables by using the factor graph structure. A factor graph is a
bipartite graph with a set of variable nodes connected to a set of factor nodes; each factor
node indicates the presence of dependencies among its connected variables. We call a neural
network formed from the factor graph a factor graph neural network (FGNN).
Factor graphs have been used extensively to specify Probabilistic Graph Models (PGMs)
for modeling dependencies among multiple random variables. In PGMs, the specification or
learning of the model is usually separate from the inference process. Approximate inference
algorithms such as Belief Propagation which is often used, since inference over PGMs are
often NP-hard. Unlike PGMs, graph neural networks usually learn a set of latent variables
and the inference procedure at the same time in an end-to-end manner; the graph structure
only provides information on the dependencies along which information propagates. For
problems where domain knowledge is weak, or where approximate inference algorithms do
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Figure 1: The structure of the Factor Graph Neural Network (FGNN): the Variable-to-Factor (VF)
module is shown on the left while the Factor-to-Variable (FV) module is shown on the right.

poorly, being able to learn an inference algorithm jointly with the latent variables, specifically
for the target data distribution, often produces superior results.
We take the approach of jointly learning the inference algorithm and latent variables in
developing the factor graph neural network (FGNN). The FGNN is defined using two types
of modules, the Variable-to-Factor (VF) module and the Factor-to-Variable (FV) module
(see Figure 1). These modules are combined into a layer, and the layers are stacked together
into an algorithm. We show that the FGNN is able to exactly parameterize the Max-Product
Belief Propagation, which is a widely used approximate maximum a posteriori (MAP)
inference algorithm for PGMs. Theoretically, this shows that FGNN is at least as powerful
as Max-Product and hence can solve problems solvable by Max-Product, e.g., [2, 11].
The simplest representation of PGMs uses a tabular potential for the factors. Unfortunately,
its size grows exponentially with the number of variables in the factors, which makes higher
order tabular factors impractical. We design FGNN to naturally allow approximation of the
factors by parameterizing factors in terms of the maximum of a set of rank-1 tensors. The
parameterization can represent any factor exactly with a large enough set of rank-1 tensors;
the number of rank-1 tensors required can grow exponentially for some problems but may be
small for easier problems. Using this representation, the size of the FGNN that can simulate
Max-Product grows polynomially with the number of rank-1 tensors in approximating the
factors, giving a practical approximation scheme that can be learned from data.
The theoretical relationship with Max-Product provides understanding on the representational
capabilities of GNNs in general, and of FGNN in particular. From the practical perspective,
the factor graph provides a flexible way for specifying dependencies. Furthermore, inference
algorithms for many types of graphs, e.g., graphs with typed edges or nodes, are easily
developed using the factor graph representation. Edges, or more generally factors, can be
typed by tying together parameters of factors of the same type, or can also be conditioned
from input features by making the edge or factor parameters a function of the features; nodes
can similarly have types or features with the use of factors that depend on a node variable.
With typed or conditioned factors, the factor graph can also be assembled dynamically for
each graph instance. FGNN provides a flexible learnable architecture for exploiting these
graphical structures – just as factor graph allows easy specification of different types of PGMs,
FGNN allows easy specification of both typed and conditioned variables and dependencies
as well as a corresponding data-dependent approximate inference algorithm.
To be practically useful, the FGNN architecture needs to be practically learnable without
being trapped in poor local minimums. We performed experiments to explore the practical
potential of FGNN. FGNN performed well on a synthetic PGM inference problem with
constraints on the number of elements that may be present in subsets of variables. We also
experimented with applying FGNN on the LDPC decoding and long term human motion

2



prediction. We outperform the standard LDPC decoding method under some noise conditions
and achieve state-of-the-art results on human motion prediction, demonstrating the potential
of the architecture.

2 Background

Probabilistic Graph Models (PGMs) use graphs to model dependencies among random
variables. These dependencies are conveniently represented using a factor graph, which is
a bipartite graph G = (V, C, E) where each vertex i ∈ V in the graph is associated with a
random variable xi ∈ X, each vertex c ∈ C is associated with a function fc and an edge
connects a variable vertex i to factor vertex c if fc depends on xi.

Figure 2: A factor graph where f1 depends
on x1, x2, and x3 while f2 depends on x3.

Let x be the set of all variables and let xc be the
subset of variables that fc depends on. Denote
the set of indices of variables in xc by s(c). We
consider discrete PGM as follows

p(x) = 1
Z

exp
[∑
c∈C

θc(xc) +
∑
i∈V

θi(xi)
]
, (1)

where exp(θc(·)), exp(θi(·)) are positive functions
called potentials (with θc(·), θi(·) as the corre-
sponding log-potentials) and Z is a normalizing
constant. The goal of maximum a posteriori (MAP) inference [16] is to find the assignment
which maximizes p(x), that is

x∗ = argmax
x

∑
c∈C

θc(xc) +
∑
i∈V

θi(xi). (2)

As Eq. (2) is NP-hard in general [29], approximation are often required. One common
method is Max-Product Belief Propagation, which is an iterative method formulated as

bi(xi) = θi(xi) +
∑

c:i∈s(c)

mc→i(xi); mc→i(xi) = max
x̂c:x̂i=xi

[
θc(x̂c) +

∑
i′∈s(c),i′ 6=i

bi′(x̂i′)
]
. (3)

Max-product type algorithms are fairly effective in practice, achieving moderate accuracy in
various problems [6, 8, 32].
Related Works Various graph neural network models have been proposed for graph
structured data, including methods based on the graph Laplacian [3, 4, 13], gated networks
[18], and various other neural networks structures for updating the information [1, 5, 9, 28].
Gilmer et al. [7] show that these methods can be viewed as applying message passing on
pairwise graphs and are special cases of Message Passing Neural Networks (MPNNs).
In this work, we seek to go beyond pairwise interactions by using message passing on factor
graphs. Recent works on the expressive power of graph neural networks have also consider
using higher order networks, e.g. Morris et al. [25] and Maron et al. [21] consider networks
based on higher order Weisfeiler-Lehman tests that can be used for testing graph isomorphism.
In contrast to graph isomorphism, FGNN builds on probabilistic graphical models, which
provide a rich language allowing the designer to specify prior knowledge in the form of
pairwise as well as higher order dependencies in a factor graph.

3 Factor Graph Neural Network

Previous works on graph neural networks focus on learning pairwise information exchanges.
The Message Passing Neural Network (MPNN) [7] provides a framework for deriving different
graph neural network algorithms by modifying the message passing operations. We aim at
enabling the network to efficiently encode higher order features and to propagate information
between higher order factors and the nodes by performing message passing on a factor graph.
We describe the FGNN network and show that for specific settings of the network parameters
we obtain the Max-Product Belief Propagation algorithm for the corresponding factor graph.
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3.1 Factor Graph Neural Network

First we give a brief introduction to the Message Passing Neural Network (MPNN), and then
we propose one MPNN architecture which can be easily extended to a factor graph version.
Given a graph G = (V,N ), where V is the node set and N is the adjacency list, assume that
each node is associated with a feature f i and each edge (i, j) : i ∈ V, j ∈ N (i) is associated
with an edge feature eij . Then a message passing neural network layer is defined in [7] as

mi =
∑

j∈N (i)

M(f i, f j , eij), f̃ i = U t(f i,mi), (4)

where M and U are usually parameterized by neural networks. The summation in (4)
can be replaced with other aggregator, e.g., maximization [31]. The main reason to use
maximization is that summation may be corrupted by a single outlier, while maximization
is more robust. Thus in our paper we also use the maximization as aggregator. There are
also multiple choices of the architecture ofM and U . We propose an MPNN architecture as
follows

f̃ i = max
j∈N (i)

Q(eij)M(f i, f j), (5)

whereM maps feature vectors to a length-n feature vector, and Q(eij) maps eij to a m× n
matrix. Then by matrix multiplication and aggregation a new length-m feature is generated.

Algorithm 1 The FGNN layer
Input: G=(V, C, E), [f i]i∈V , [gc]c∈C , [tci](c,i)∈E

Output: [f̃ i]i∈V , [g̃c]c∈C

1: Variable-to-Factor:

2: g̃c= max
i:(c,i)∈E

Q(tci |ΦVF) M([gc, fi]|ΘVF)

3: Factor-to-Variable:

4: f̃i = max
c:(c,i)∈E

Q(tci |ΦFV) M([ gc, fi]|ΘFV)

MLPMLP

tci

m × n

Matrix ×

n
×

1
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Figure 3: Left: The pseudo code for the FGNN layer. Here the Variable-to-Factor (VF)
module and the Factor-to-Variable (FV) modules are MPNN layers with similar structure
but different parameters. Right: The detailed architecture for our VF or FV module.

The MPNN encodes unary and pairwise edge features, but higher order features are not
directly encoded. Thus we extend the MPNN by introducing extra factor nodes. Given a
factor graph G = (V, C, E), unary features [f i]i∈V and factor features [gc]c∈C , assume that for
each edge (c, i) ∈ E , with c ∈ C, i ∈ V, there is an associated edge feature vector [tci]. Then,
the Factor Graph Neural Network layer on G can be extended from (5) as shown in Figure 3
and Algorithm 1, where [ΦVF,ΘVF] are parameters for the Variable-to-Factor module, and
[ΦFV,ΘFV] are parameters for the Factor-to-Variable module.
We use the same architecture for sending the messages from variables to factors as well as
for the messages from factors to variables. If the aim is only to simulate the Max-Product
algorithm, it would be more direct to have different architectures for the two types of
messages. However, having the same architecture is simpler to implement. In addition,
it is also possible to have a variant where messages from variables and factors are sent
simultaneously instead of alternately; in this case we simply have a MPNN on a bipartite
(factor) graph with the same structure for the variable and factor nodes.

3.2 FGNN for Max-Product Belief Propagation

In this section, we prove that a widely used approximate inference algorithm, Max-Product
Belief Propagation can be exactly parameterized by the FGNN. The sketch of the proof is as
follows. First we show that any higher order potentials can be decomposed as maximization
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over a set of rank-1 tensors, and that the decomposition can be represented by a FGNN layer.
After the decomposition, a single Max-Product iteration only requires two operations: (1)
maximization over rows or columns of a matrix, and (2) summation over a group of features.
We show that the two operations can be exactly parameterized by the FGNN and that k
Max-Product iterations can be simulated using O(k) FGNN layers.
In general, the size of a potential grows exponentially with the number of variables that
it depends on. In that case the size of FGNN may explode. However, if the potential can
be well approximated as a moderate number of rank-1 tensors, the corresponding FGNN
will also be of moderate size. In practice, the potential functions may be unknown and only
features of the of the factor nodes are provided; FGNN can learn the approximation from
data, potentially exploiting regularities such as low rank approximations if they exist.
Tensor Decomposition For discrete variables x1, . . . , xn, a rank-1 tensor is a product
of univariate functions of the variables

∏n
i=1 φi(xi). A tensor can always be decomposed

as a finite sum of rank-1 tensors [15]. This has been used to represent potential functions,
e.g. in [33], in conjunction with sum-product type inference algorithms. For max-product
type algorithms, a decomposition as a maximum of a finite number of rank-1 tensors is more
appropriate. It has been shown that there is always a finite decomposition of this type [14].
Lemma 1 ([14]). Given an arbitrary potential function φc(xc), there exists a variable
zc ∈ Zc with | Zc | <∞ and a set of univariate potentials {φic(xi, zc)|i ∈ c}, s.t.

log φc(xc) = log max
zc

∏
i∈s(c)

φic(xi, zc) = max
zc

∑
i∈s(c)

ϕic(xi, zc), (6)

where ϕic(xi, zc) = log φic(xi, zc).

Using ideas from [14], we show that a PGM can be converted into single layer FGNN with
the non-unary potentials represented as a finite number of rank-1 tensors.
Proposition 2. A factor graph G = (V, C, E) with variable log potentials θi(xi) and factor
log potentials ϕc(xc) can be converted to a factor graph G′ with the same variable potentials
and the decomposed log-potentials ϕic(xi, zc) using a one-layer FGNN.

The proof of Proposition 2 and the following propositions can be found in the supplementary
material. With the decomposed higher order potential, one iteration of the Max-Product (3)
can be rewritten using the following two equations:

bc→i(zc) =
∑

i′∈s(c),i′ 6=i

max
x′

i

[
ϕi′c(xi′ , zc) + bi′(xi′)

]
, (7a)

bi(xi) =θi(xi) +
∑

c:i∈s(c)

max
z

[ϕic(xi, zc) + bc→i(zc)]. (7b)

Given the log potentials represented as a set of rank-1 tensors at each factor node, we show
that each iteration of the Max-Product message passing update can be represented by a
Variable-to-Factor (VF) layer and a Factor-to-Variable (FV) layer, forming a FGNN layer,
followed by a linear layer (that can be absorbed into the VF layer for the next iteration).
With decomposed log-potentials, belief propagation mainly requires two operations: (1)
maximization over rows or columns of a matrix; (2) summation over a group of features. We
first show that the maximization operation in (7a) (producing max-marginals) can be done
using neural networks that can be implemented by theM units in the VF layer.
Proposition 3. For arbitrary feature matrix X ∈ Rm×n with xij as its entry in the ith row
and jth column, the feature mapping operation x̂ = [maxj xij ]mi=1 can be exactly parameterized
with a 2log2 n-layer neural network with at most O(n2 log2 n) parameters.

Following the maximization operations, Eq. (7a) requires summation of a group of features.
However, the VF layer uses max instead of sum operators to aggregate features. Assuming
that theM operator has performed the maximization component of equation (7a) producing
max-marginals, Proposition 4 shows how the Q layer can be used to produce a matrix
W that converts the max-marginals into an intermediate form to be used with the max
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aggregators. The output of the max aggregators can then be transformed with a linear layer
(Q in Proposition 4) to complete the computation of the summation operation required in
equation (7a). Hence, equation (7a) can be implemented using the VF layer together with a
linear layer that can be absorbed in theM operator of the following FV layer.
Proposition 4. For arbitrary non-negative valued feature matrix X ∈ Rm×n>0 with xij as
its entry in the ith row and jth column, there exists a constant tensor W ∈ Rm×n×mn that
can be used to transform X into an intermediate representation yik =

∑
ij xijwijk, such that

after maximization operations are done to obtain ŷk = maxi yik, we can use another constant
matrix Q ∈ Rn×mn to obtain [

∑
i xij ]nj=1 = Q[ŷk]mnk=1.

Eq. (7b) can be implemented in the same way as (7a) by the FV layer. First the max
operations are done by theM units to obtain max-marginals. The max-marginals are then
transformed into an intermediate form using the Q units which are further transformed by
the max aggregators. An additional linear layer is then sufficient to complete the summation
operation required in (7b). The final linear layer can be absorbed into the next FGNN layer,
or as an additional linear layer in the network in the case of the final Max-Product iteration.
Using the above two proposition, we can implement all important operations (7). Firstly, by
Proposition 3, we can construct the Variable-to-Factor module using the following proposition.
Proposition 5. The operation in (7a) can be parameterized by one MPNN layer with
O(|X|maxc∈C | Zc | parameters followed by a O(log2 |X|)-layer neural network with at most
O(|X|2 log2 |X|) hidden units.

Meanwhile, by Proposition 3 and Proposition 4 the Factor-to-Variable module can be
constructed using the following proposition.
Proposition 6. The operation in (7b) can be parameterized by one MPNN layer, where the
Q network is identity mapping and theM network consists of a O(maxc∈C log2 | Zc |)-layer
neural network with at most O(maxc∈C | Zc |2 log2 | Zc |) parameters and a linear layer with
O(maxc∈C |c|2|X|2) parameters.

Using the above two proposition, we achieves the main theory result in this paper as follows.
Corollary 7. The max-product algorithm in (3) can be exactly parameterized by the FGNN,
where the number of parameters are polynomial w.r.t |X|, maxc∈C | Zc | and maxc∈C |c|.

4 Experiments

In this section, we evaluate the models constructed using FGNN for three types of tasks:
MAP inference over higher order PGMs, LDPC decoding and human motion prediction.

4.1 MAP Inference over PGMs

Data We construct four synthetic datasets (D1, D2, D3 and D4) for this experiment. All
models start with a length-30 chain structure with binary-states nodes with node potentials
randomly sampled from U [0, 1], and the pairwise potentials encourage two adjacent nodes to
take state 1, i.e., it gives high value to configuration (1, 1) and low value to others. In D1,
the pairwise potentials are fixed, while in the others, they are randomly generated. For D1,
D2 and D3, a budget higher order potential [23] is added at every node; these potentials
allow at most k of the 8 variables within their scope to take the state 1; specifically, we set
k = 5 in D1 and D2 and set randomly in D3. In D4, there is no higher order potential at all.
In this paper, we use the simplest, but possibly most flexible method of defining factors
in FGNN: we condition the factors on the input features. Specifically, for the problems in
this section, all parameters that are not fixed are provided as input factor features. We test
the ability of the proposed model to find the MAP solutions, and compare the results with
MPNN [7] as well as several MAP inference solver, namely AD3 [23] which solves a linear
programming relaxation using subgradient methods, Max-Product Belief Propagation [32],
implemented by [24], and a convergent version of Max-Product – MPLP [8], also based on
a linear programming relaxation. The approximate inference algorithms are run with the
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Table 1: Results (percentage agreement with MAP and standard error) on synthetic datasets with
runtime in microseconds in bracket (exact followed by approximate inference runtime for AD3).

AD3 Max-Product MPLP MPNN Ours

D1 80.7±0.0014 (5 / 5) 57.3±0.0020 (6) 65.8±0.0071 (57) 71.9±0.0009 (131) 92.5±0.0012 (144)
D2 83.8±0.0014 (532 / 325) 50.5±0.0053 (1228) 68.5±0.0074 (55) 74.3±0.0009 (131) 89.1±0.0010 (341)
D3 88.1±0.0006 (91092 / 1059) 53.5±0.0081 (4041) 64.2±0.0056 (55) 82.1±0.0008 (121) 93.2±0.0006 (382)
D4 100 (6 / 5) 100 (6) 99.9±0.0005 (0.04) 91.2±0.0005 (137) 98.0±0.0003 (216)

correct models while the graph neural network models use learned models, trained with exact
MAP solutions generated by a branch-and-bound solver that uses AD3 for bounding [23].
Architecture and training details In this task, we use a factor graph neural network
consisting of 8 FGNN layers (the details is provided in the supplementary file). The model
is implemented using pytorch [27], trained with Adam optimizer [12] with initial learning
rate lr = 3× 10−3 and after each epoch, lr is decreased by a factor of 0.98. All the models in
Table 1, were trained for 50 epoches after which all models achieve convergence.
Results The percentage of agreement with MAP solutions is shown in Table 1. Our model
achieves far better result on D1, D2 and D3 than all others. D4 consists of chain models,
where Max-Product works optimally 1. The linear programming relaxations also perform
well. In this case, our method is able to learn a near-optimal inference algorithm.
Traditional method including Max-Product, MPLP perform poorly on D1, D2 and D3.
In these even though FGNN can emulate traditional Max-Product, it is better to learn a
different inference algorithm. AD3 have better performance than others, but worse than our
FGNN. The accuracy of FGNN is noticeably higher than that of MPNN as MPNN does not
use the higher order structural priors that are captured by FGNN.
We also did a small ablation study on the size of the FGNN high order potentials (HOPs)
using D1 and D2. On D1, the accuracies are 81.7 and 89.9 when 4 and 6 variables are used
in place of the correct 8 variables; on D2, the accuracies are 50.7 and 88.9 respectively. In
both cases, the highest accuracies are achieved when the size of the HOPs are set correctly.

4.2 LDPC Decoding

The low-density parity check (LDPC) codes is widely used in wired and wireless communica-
tion, where the decoding can be done by sum/max-product belief propagation [36].
Data Let x be the 48-bit original signal, and y be the 96-bit LDPC encoded signal
by encoding scheme “96.3.963”[19]. Then a noisy signal ỹ is obtained by transferring y
through a channel with Gaussian and burst noise, that is, for each bit i, ỹi = yi + ni + pizi,
where ni ∼ N (0, σ2) , zi ∼ N (0, σ2

b ), and pi is a bernoulli random variable s.t. P (pi =
1) = η; P (pi = 0) = 1 − η. In the experiment, we set η = 0.05 as [10] to simulate
unexpected burst noise during transmission. By tuning σ, we can get different signal with
SNRdB = 20 log10(1/σ).
In the experiment, for all learning based methods, we generate ỹ from randomly sampled
x on the fly with SNRdB ∈ {0, 1, 2, 3, 4} and σb ∈ {0, 1, 2, 3, 4, 5}. For each learning based
method, 108 samples are generated for training. Meanwhile, for each different SNRdB and
σb, 1000 samples are generated for validating the performance of trained model.
In LDPC decoding, the SNRdB is usually assumed to be known and fixed, and the burst
noise is often unexpected and its parameters are unknown to the decoder. Thus for learning
based methods and traditional LDPC decoding method, the noisy signal ỹ and the SNRdB
are provided as input. In our experiments, the baselines includes bits decoding, sum-product
based LDPC decoding and the Message Passing Neural Networks (MPNN).
Architecture and training details In this task, we use a factor graph neural network
consisting of 8 FGNN layers (the details are provided in the supplementary file). The model
is implemented using pytorch [27], trained with Adam optimizer [12] with initial learning

1Additional experiment on tree can be found in Appendix B.3 along with details on all experiments.
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Table 2: Long-term prediction error (the smaller the better) of joint angles (top) and 3D
joint positions (bottom) on H3.6M

Walk Eating Smoking Discussion Average
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000

convSeq2Seq[17] N/A 0.92 N/A 1.24 N/A 1.62 N/A 1.86 N/A 1.41
GNN[20] 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70 0.90 1.27
Ours 0.67 0.70 0.76 1.12 0.88 1.57 1.35 1.70 0.91 1.27

convSeq2Seq[17] 69.2 81.5 71.8 91.4 50.3 85.2 101.0 143.0 73.1 100.3
GNN[20] 55.0 60.8 68.1 79.5 42.2 70.6 93.8 119.7 64.8 82.6
Ours 44.1 53.5 59.5 73.0 33.0 61.9 86.9 113.5 55.9 75.5
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Figure 4: Experimental results on LDPC decoding.

rate lr = 1× 10−2 and after every 10000 samples, lr is decreased by a factor of 0.98. After
training over 108 samples, the training loss converges. For MPNN, we use a 8 layer MPNN,
and the same training protocol is used.
Results We compare FGNN with two public available LDPC decoder MacKay-Sum-
Product [19] and Commpy-Sum-Product [30]. Both the two decoder are using Sum-Product
belief propagation to propagate information between higher order factors and nodes, but
with different belief clipping strategy and different belief propagation scheduler. Meanwhile,
our FGNN uses a learned factor-variable information propagation scheme, and the other
learning based method, MPNN ignores the higher order dependencies. The decoding
accuracy is provided in Figure 4. The MacKay-Sum-Product [19] is known to be near
optimal for Gaussian noise and thus its performance is the best for lower burst noise level.
The Commpy-Sum-Product have better performance than MacKay for high burst noise,
but worse performance for low burst noise. Our FGNN always perform better than the
Commpy-Sum-Product and MPNN, it achieves comparable but lower performance than the
MacKay-Sum-Product for low burst noise level(0-2dB), and outperforms all other methods
for high burst noise level(3-5dB).

4.3 Human Motion Prediction

The human motion prediction aims at predicting future motion of a human given a history
motion sequence. As there are obviously higher order dependencies between joints, the factor
graph neural network may help to improve the performance of the predictor. In this section,
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we consider human motion prediction problem for the skeleton data, where the angle and 3d
position of each joints are predicted. We build a factor graph neural network model for the
skeleton data and compare the FGNN model with the state-of-the-art model based on GNN.
Architecture and training details We train our model on the Human3.6M dataset
using the standard training-val-test split as previous works [17, 20, 22], and we train and
evaluate our model using the same protocol as [20] (For details, see the supplementary file).
Results The results is provided in Table 2. For angle error, our FGNN model achieves
similar results compared to the previous state-of-the-art GNN-based method [20], while for
3D position error, our model achieves superior performance. This is because compared to
pairwise GNN, our model captures better higher order structural prior.

5 Conclusion

We extend graph neural networks to factor graph neural networks, enabling the network to
capture higher order dependencies among the variables. The factor graph neural networks
can represent the execution of the Max-Product algorithm on probabilistic graphical models,
providing theoretical understanding on the representation power of graph neural networks.
The factor graph provides a convenient method of capturing arbitrary dependencies in graphs
and hypergraphs, including those with typed or conditioned nodes and edges, opening up
new opportunities for adding structural bias into learning and inference problems.

Broader Impact

Our work on the factor graph neural networks aims to make it easier to effectively specify
structural inductive biases in the form of dependencies among sets of variables. This will
impact on learning algorithms on structured data, particularly graph structured data. On the
positive side, with well specified inductive biases, more effective learning would be possible
on applications that require structured data. These include data with physical constraints
such as human motion data, as well as data with abstract relationships such as social network
data. On the negative side, in applications on some types of data such as social network
data, better inference could mean less privacy. Research, guidelines, and possibly regulations
on privacy can help to mitigate the negative effects.

Acknowledgements

This work was supported by the National Research Foundation Singapore under its AI
Singapore Program (Award Number: AISGRP- 2018-006). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Singapore. Zhen Zhang’s participation
was partially supported by the Australian Research Council Grant DP160100703.

References
[1] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interac-

tion networks for learning about objects, relations and physics. In Advances in neural
information processing systems, pages 4502–4510, 2016.

[2] Mohsen Bayati, Devavrat Shah, and Mayank Sharma. Max-product for maximum weight
matching: Convergence, correctness, and lp duality. IEEE Transactions on Information
Theory, 54(3):1241–1251, 2008.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In Advances in neural
information processing systems, pages 3844–3852, 2016.

9



[5] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in neural information processing systems,
pages 2224–2232, 2015.

[6] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient belief propagation for early
vision. International journal of computer vision, 70(1):41–54, 2006.

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[8] Amir Globerson and Tommi S Jaakkola. Fixing max-product: Convergent message
passing algorithms for map lp-relaxations. In Advances in neural information processing
systems, pages 553–560, 2008.

[9] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley.
Molecular graph convolutions: moving beyond fingerprints. Journal of computer-aided
molecular design, 30(8):595–608, 2016.

[10] Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod
Viswanath. Communication algorithms via deep learning. In 6th International Confer-
ence on Learning Representations, ICLR 2018, 2018.

[11] JinHyung Kim and Judea Pearl. A computational model for causal and diagnostic rea-
soning in inference systems. In International Joint Conference on Artificial Intelligence,
pages 0–0, 1983.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[13] Thomas N Kipf and MaxWelling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[14] Pushmeet Kohli and M Pawan Kumar. Energy minimization for linear envelope mrfs. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 1863–1870. IEEE, 2010.

[15] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[16] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[17] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Convolutional sequence to
sequence model for human dynamics. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5226–5234, 2018.

[18] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493, 2015.

[19] David MacKay. David mackay’s gallager code resources. Dostupnỳ z URL: http:
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