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In this appendix, we prove Theorem 1, 2, 3, 4 and Corollary 1 in the main paper.1

A Regret Lower Bound for Robust Upper Confidence Bound2

In this section, we prove Theorem 1 in Section 3, which derives the lower bound of the expected3

cumulative regret of robust UCB [4]. First, we recall Assumption 1 in the main paper.4

Assumption A.1. Let {Yk}∞k=1 be i.i.d. random variables with the finite p-th moment for p ∈ (1, 2].5

Let νp be a bound of the p-th moment and y be the mean of Yk. Assume that, for all δ ∈ (0, 1) and n6

number of observations, there exists an estimator Ŷn(η, νp, δ) with a parameter η such that7

P

(
Ŷn > y + ν1/p

p

(
η ln(1/δ)

n

)1−1/p
)
≤ δ, P

(
y > Ŷn + ν1/p

p

(
η ln(1/δ)

n

)1−1/p
)
≤ δ.

Assumption A.1 provides the confidence bound of the estimator Ŷn. Note that Ŷn = Ŷn(η, νp, δ)8

requires νp and δ. By using this confidence bound, at round t, robust UCB selects an action based on9

the following strategy,10

at := arg max
a∈A

{
r̂t−1,a + ν1/p

p

(
η ln(t2)/nt−1,a

)1−1/p
}

(A.1)

where r̂t−1,a is an estimator which satisfies Assumption A.1 with δ = t−2 and nt−1,a denotes the11

number of times a ∈ A have been selected. Under the strategy (A.1), we prove Theorem 1 in the12

main paper.13

Theorem A.2. Assume that truncated mean, median of mean, and Catoni’sM estimator are employed14

to estimate the rewards. Then, there exists a K-armed stochastic bandit problem for which the regret15

of the robust UCB has the following lower bound, for T > max

(
10,

[
ν

1
(p−1)

η(K−1)

]2
)

,16

E[RT ] ≥ Ω
(

(K ln(T ))
p−1
p T

1
p

)
. (A.2)

Proof. The proof is done by constructing a counter example. We construct aK-armed bandit problem

with deterministic rewards. Let the optimal arm a? give the reward of ∆ = ν
1
p

(
η(K−1) ln(T )

T

) p−1
p

whereas the other arms provide zero rewards. Note that ∆ ≤ ν
1
p

(
η(K−1)

T
1
2

) p−1
p

< 1 and the estimator

we used satisfies r̂a ≤ ∆I[a = a?] for all a since rewards are ∆ or 0 in this MAB problem. Let Et
be the set of events which satisfy∑

a6=a?
nt−1,a ≤

ν
1
p−1 η(K − 1)

2
((

1 + 5
p−1
p

)
∆
) p
p−1

ln(T 2) =
T(

1 + 5
p−1
p

) p
p−1

.
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If P(Et) ≤ 1/2 for some t ∈ [1, · · · , T ], then, the regret bound is computed as follows,17

E [RT ] ≥ 1

2
E [Rt|Ect ] ≥

1

2
∆E

∑
a 6=a?

nt,a

∣∣∣∣∣∣Ect
 ≥ 1

2
∆E

∑
a 6=a?

nt−1,a

∣∣∣∣∣∣Ect
 (A.3)

≥ ∆

2

T(
1 + 5

p−1
p

) p
p−1

=
ν

1
p

2
(

1 + 5
p−1
p

) p
p−1

(η(K − 1) ln(T ))
p−1
p T

1
p . (A.4)

Hence, if P(Et) ≤ 1/2 for some t ∈ [1, · · · , T ], then, the lower bound holds. On the contrary, if
P(Et) > 1/2 for all t ∈ [1, · · · , T ], then, the proof is done by showing P(at 6= a?) ≥ 1

2 for t ≥ t0
where

t0 := max

1 +
2T

5(K − 1)
+

2T(
1 + 5

p−1
p

) p
p−1

, T
1
2

 .

Note that T > t0 holds since T > 4T
5 + 1 > 1 + 2T

5(K−1) + 2T(
1+5

p−1
p

) p
p−1

holds for T > 10 and18

T >
√
T holds. In other words, {t ∈ [1, . . . , T ] : t ≥ t0} is not empty.19

Before showing that P(at 6= a?) ≥ 1
2 holds, we first check the lower bound. When P(Et) > 1/220

holds for all t ∈ [1, · · · , T ], if P(at 6= a?) ≥ 1
2 holds for t ≥ t0, then, the lower bound of the regret21

can be obtained as follows,22

E [RT ] ≥ ∆

T∑
t=t0

P (at 6= a?) ≥ ∆(T − t0)

2
(A.5)

=
∆

2
min


1− 2

5(K − 1)
− 2(

1 + 5
p−1
p

) p
p−1

T − 1, T (1− T− 1
2 )

 (A.6)

≥ ∆

2
min

((
1− 2

5
− 2

5

)
T − 1, T (1− T− 1

2 )

)
(A.7)

where the last inequality holds since K − 1 > 1 and
(

1 + 5
p−1
p

) p
p−1

> 5. Then, by T > 10,23

∆

2
min

((
1− 2

5
− 2

5

)
T − 1, T (1− T− 1

2 )

)
(A.8)

≥ ∆T

2
min

(
1

5
− T−1, 1− T− 1

2

)
(A.9)

= ν
1
p (η(K − 1) ln(T ))

p−1
p T

1
p min

(
1

5
− T−1, 1− T− 1

2

)
(A.10)

=
1

10
ν

1
p (η(K − 1) ln(T ))

p−1
p T

1
p . (A.11)

Note that 1
10 < 1 − 1√

10
. Thus, we obtain E [RT ] ≥ Ω

(
(K ln(T ))

p−1
p T

1
p

)
, if P(at 6= a?) ≥ 1

224

holds for t ≥ t0.25

The remaining part is to prove that P(at 6= a?) ≥ 1
2 holds for t > t0 when P(Et) ≥ 1/2 for all26

t > 0. We mainly prove that, if Et occurs, at = a? never occurs since the confidence bound cannot27

overcome the estimation error between sub-optimal arms and optimal arm under the condition of Et.28

In other words, P (at 6= a?|Et) = 1. If P (at 6= a?|Et) = 1 holds, then, we can simply show that29

P(at 6= a?) ≥ 1

2
P (at 6= a?|Et) =

1

2
. (A.12)

Now, we analyze the set of event, {at 6= a?}, as follows,30

{at 6= a?} =
⋃
a 6=a?

{
r̂a? + ν

1
p

(
η ln(t2)

nt−1,a?

) p−1
p

≤ r̂a + ν
1
p

(
η ln(t2)

nt−1,a

) p−1
p

}
(A.13)
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⊃
⋃
a 6=a?

{
∆ + ν

1
p

(
η ln(t2)

nt−1,a?

) p−1
p

≤ ν
1
p

(
η ln(t2)

nt−1,a

) p−1
p

}
(A.14)

∵ r̂a? ≤ ∆ and r̂a6=a? = 0 (A.15)

⊃
⋃
a 6=a?

{
∆ + ν

1
p

(
η ln(t2)

nt−1,a?

) p−1
p

≤
(

1 + 5
p−1
p

)
∆ ≤ ν

1
p

(
η ln(t2)

nt−1,a

) p−1
p

}
(A.16)

=

{
ν

1
p

(
η ln(t2)

nt−1,a?

) p−1
p

≤ 5
p−1
p ∆

}⋂ ⋃
a6=a?

{(
1 + 5

p−1
p

)
∆ ≤ ν

1
p

(
η ln(t2)

nt−1,a

) p−1
p

}
(A.17)

=

{
2ν

1
p−1

5∆
p
p−1

η ln(t) ≤ nt−1,a?

}⋂ ⋃
a6=a?

nt−1,a ≤
2ν

1
p−1((

1 + 5
p−1
p

)
∆
) p
p−1

η ln(t)


(A.18)

⊃

{
2ν

1
p−1

5∆
p
p−1

η ln(T ) ≤ nt−1,a?

}⋂ ⋃
a6=a?

nt−1,a ≤
2ν

1
p−1((

1 + 5
p−1
p

)
∆
) p
p−1

η ln(t0)


(A.19)

∵ T > t > t0 (A.20)

⊃
{

2T

5(K − 1)
≤ nt−1,a?

}⋂ ⋃
a 6=a?

nt−1,a ≤
2T(

1 + 5
p−1
p

) p
p−1

(K − 1)

ln(t0)

ln(T )


(A.21)

⊃
{

2T

5(K − 1)
≤ nt−1,a?

}⋂
∑
a6=a?

nt−1,a ≤
2T(

1 + 5
p−1
p

) p
p−1

ln(t0)

ln(T )

 . (A.22)

Let A :=
{

2T
5(K−1) ≤ nt−1,a?

}
and B :=

∑a 6=a? nt−1,a ≤ 2T(
1+5

p−1
p

) p
p−1

ln(t0)
ln(T )

. Now, we31

check that A ∩B contains Et for t ≥ t0 := max

1 + 2T
5(K−1) + 2T(

1+5
p−1
p

) p
p−1

, T
1
2

.32

For the set A, if ω ∈ Et, then,33

nt−1,a? = t− 1−
∑
a6=a?

nt−1,a ≥ t− 1− T(
1 + 5

p−1
p

) p
p−1

∵ ω ∈ Et (A.23)

≥ t0 − 1− T(
1 + 5

p−1
p

) p
p−1

≥ 2T

5(K − 1)
+

T(
1 + 5

p−1
p

) p
p−1

(A.24)

≥ 2T

5(K − 1)
, (A.25)

which implies ω ∈ A.34

For the set B, we have,

ln(t0)

ln(T )
≥ ln(T

1
2 )

ln(T )
=

1

2
.
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By using this fact, we get35

2T(
1 + 5

p−1
p

) p
p−1

ln(t0)

ln(T )
≥ T(

1 + 5
p−1
p

) p
p−1

≥
∑
a 6=a?

nt−1,a ∵ ω ∈ Et, (A.26)

which implies ω ∈ B. In summary, ω ∈ Et implies ω ∈ A ∩B. Consequently, we have,36

P(at 6= a?) ≥ 1

2
P (at 6= a?|Et) (A.27)

≥ 1

2
P (A ∩B|Et) =

1

2
. (A.28)

Thus,
E [RT ] ≥ Ω

(
(K ln(T ))

p−1
p T

1
p

)
.

37

B Adaptively Perturbed Exploration with A New Robust Estimator38

B.1 Bounds on Tail Probability of A New Robust Estimator39

Before deriving the bound of tail probability of a new estimator, we first analyze the property of the40

influence function ψ(x). Then, using the property of ψ(x), we show that the tail probability has an41

exponential upper bound.42

Lemma B.1. For p ∈ (1, 2], assume that a positive constant bp satisfies the following inequality,43

b
2
p
p

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

]
≥ 1.

Then, the following inequality holds, for all x ∈ R,

ln (1 + x+ bp|x|p) ≥ − ln (1− x+ bp|x|p) .

Proof. Let f(x) := 1 + x+ bp|x|p. Then, the inequality is represented as ln(f(x)) ≥ − ln(f(−x)).
Before starting the proof, first, we show that f(x) > 0 by checking minx f(x) > 0. For x ≥ 0,

f ′(x) = 1 + bp · pxp−1 > 0.

which is non-zero for all x ≥ 0. Thus, the minimum of f(x) will appear at x < 0. For x < 0, its
derivative is

f ′(x) = 1− bp · p(−x)p−1.

Then, f ′(x) become zero at x = − (pbp)
− 1
p−1 . Thus, the minimum of f(x) is44

f
(
− (pbp)

− 1
p−1

)
= 1− (pbp)

− 1
p−1 + bp (pbp)

− p
p−1 = 1−

(
p−

1
p−1 − p−

p
p−1

)
b
− 1
p−1

p (B.1)

≥ 1−
(
p−

1
p−1 − p−

p
p−1

)[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

] p
2(p−1)

(B.2)

∵

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

] p
2(p−1)

≥ b−
1
p−1

p (B.3)

= 1− p−
p
p−1

[
2 (p− 1) (2− p)1− 2

p + (2− p)2− 2
p

] p
2(p−1)

(B.4)

= 1− p−
p
p−1 [2 (p− 1) + (2− p)]

p
2(p−1) (2− p)

p−2
2(p−1) (B.5)

= 1− p−
p

2(p−1) (2− p)
p−2

2(p−1) > 0. (B.6)

Note that 1
2 ≤ p

− p
2(p−1) (2− p)

p−2
2(p−1) < 1 holds for p ∈ (1, 2]. Since f(−x) and f(x) are symmetric45

to the y-axis, f(−x) is also positive for all x ∈ R.46
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By noticing that ln(f(x)) ≥ − ln(f(−x)) is equivalent to f(x)f(−x) > 1, We show that the47

following inequality holds,48

(1 + x+ bp|x|p)(1− x+ bp|x|p) ≥ 1 (B.7)

b2p|x|2p + 2bp|x|p + 1− x2 ≥ 1 (B.8)

b2p|x|2p−2 + 2bp|x|p−2 − 1 ≥ 0 (∵ x2 ≥ 0). (B.9)

Let us define g(z) := b2pz
2p−2 + 2bpz

p−2 for z > 0. Now, we show that g(z) > 1 holds for z > 0.
First, we analyze the derivative of g(z) computed as follows,

g′(z) = 2bpz
p−3 (bp(p− 1)zp + (p− 2)) .

Since bp > 0 and zp−3 > 0, the sign of g′(z) is determined by the term (bp(p− 1)zp + (p− 2)),

which is an increasing function and, hence, has a unique root at z0 :=
(

(2−p)
(p−1)

) 1
p

b
− 1
p

p . In other words,
since (bp(p− 1)zp + (p− 2)) has the unique root at z0 for z > 0, g′(z) also has a unique root at z0

which is the minimum point. Finally,

g (z0)− 1 = b
2
p
p

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

]
− 1 ≥ 0.

where the last inequality holds by the assumption. Consequently, g(z)− 1 ≥ g (z0)− 1 ≥ 0 holds49

and, hence, f(x)f(−x) ≥ 1 holds. The lemma is proved.50

Corollary B.2. Let bp :=

[
2
(

2−p
p−1

)1− 2
p

+
(

2−p
p−1

)2− 2
p

]− p2
. For all x ∈ R, the following inequality

holds
ln (1 + x+ bp|x|p) ≥ − ln (1− x+ bp|x|p) .

Proof. The proof is done by directly applying the Lemma B.1 with

bp =

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

]− p2
.

51

Theorem B.3. Let {Yk}∞k=1 be i.i.d. random variable sampled from a heavy-tailed distribution with52

a finite p-th moment. Define y := E [Yk] and an estimator as53

Ŷn :=
c

n1− 1
p

n∑
k=1

ψ

(
Yk

cn
1
p

)
(B.10)

where c > 0 is a constant, and ψ is an influence function which is defined by:54

ψ(x) :=

{
ln (bp|x|p + x+ 1) : x ≥ 0

ln (bp|x|p − x+ 1)
−1

: x < 0.

where bp :=

[
2
(

2−p
p−1

)1− 2
p

+
(

2−p
p−1

)2− 2
p

]− p2
. Then, for all δ > 0,55

P
(
Ŷn − y > δ

)
≤ exp

(
−n

1− 1
p

c
δ +

bpνp
cp

)
and56

P
(
y − Ŷn > δ

)
≤ exp

(
−n

1− 1
p

c
δ +

bpνp
cp

)
where νp := E [|Yk|p].57
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Proof. From the Markov’s inequality,58

P

(
n1− 1

p

c
Ŷn >

n1− 1
p

c
(y + δ)

)
≤ exp

(
−n

1− 1
p

c
(y + δ)

)
E

[
exp

(
n1− 1

p

c
Ŷn

)]
(B.11)

Since ψ(x) ≤ ln (bp|x|p + x+ 1) holds by its definition, we have59

E

[
exp

(
n1− 1

p

c
Ŷn

)]
≤ E

[
n∏
k=1

(
1 +

Yk

cn
1
p

+ bp
Y pk

2(cn
1
p )p

)]
(B.12)

=

n∏
k=1

E
[
1 +

Yk

cn
1
p

+ bp
Y pk

2cpn

]
(B.13)

=

(
1 +

y

cn
1
p

+ bp
vp

2cpn

)n
(B.14)

≤ exp

(
n1− 1

p

c
y + bp

vp
2cp

)
(B.15)

Combining (B.11) and (B.15), we have60

P
(
Ŷn − y > δ

)
≤ exp

(
−n

1− 1
p

c
(y + δ)

)
exp

(
n1− 1

p

c
y +

bpνp
2cp

)

= exp

(
−n

1− 1
p

c
δ +

bpνp
2cp

)

The upper bound of P
(
y − Ŷn > δ

)
can be obtained by the similar way. Hence we obtain the desired61

result. The theorem is proved.62

C Regret Analysis Scheme for General Perturbation63

In this section, we prove Theorem 3 and 4 in the main paper under Assumption 2.64

C.1 Regret Upper Bounds65

To analyze the regret RT in the view of expectation, we borrow the notion of filtration {Ht : t =66

1, . . . , T} from [2] and [6] where the filtration Ht is defined as the history of plays until time t as67

follows68

Ht := {a`,Ra` : ` = 1, . . . , t}
By definition,H1 ⊂ H2 ⊂ · · · ⊂ HT−1 holds. Finally, we separates the event {at = a} into three69

groups based on the threshold xa := ra + ∆a/3 and ya := ra? −∆a/3. Finally, for a given reward70

estimator r̂t,a, let us define the following sets which will be used to partition the event {at = a}:71

Et,a := {at = a}, Êt,a := {r̂t,a ≤ xa}, Ẽt,a := {r̂t−1,a + βt−1,aGt,a ≤ ya}

We separate Et,a into three subsets:72

Et,a = E
(1)
t,a ∪ E

(2)
t,a ∪ E

(3)
t,a (C.1)

where73

E
(1)
t,a = Et,a ∩ Êct,a

E
(2)
t,a = Et,a ∩ Êt,a ∩ Ẽt,a

E
(3)
t,a = Et,a ∩ Êt,a ∩ Ẽct,a

In the following sections, we estimate the upper bound of the probability of the event Et,a based on74

the decomposition (C.1).75
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Lemma C.1. Assume that the p-th moment of rewards is bounded by a constant νp <∞, r̂t,a is a76

p-robust estimator of (B.10) and F (x) satisfies Assumption 2. Then for any action a ∈ A, it holds77

T∑
t=1

P
(
E

(1)
t,a

)
≤ 1 + exp

(
bpνp
2cp

)(
3c

∆a

) p
p−1

Γ

(
2p− 1

p− 1

)
.

Proof. Fix arm a ∈ A. Let τk denotes the smallest round when the arm a is sampled for the k-th78

time i.e. k =
∑τk
t=1 I[Et,a]. We let τ0 := 0 and τk = T for k > na(T ). Then it is easy to see that for79

τk < t ≤ τk+180

I[Et,a] =

{
1 : t = τk+1

0 : t 6= τk+1
(C.2)

Therefore,81

T∑
t=1

P
(
E

(1)
t,a

)
=

T∑
t=1

E
[
I[E(1)

t,a ]
]

=

T−1∑
k=0

E

[
τk+1∑

t=1+τk

I[E(1)
t,a ]

]

= E

[
τ1∑
t=1

I
(
Et,a ∩ Êct,a

)]
+

T−1∑
k=1

E

[
τk+1∑

t=1+τk

I[Et,a ∩ Êct,a]

]

≤ 1 +

T−1∑
k=1

P
(
Êcτk+1,a

)
where the last inequality holds by (C.2). Also, by the definition of Êt,a and Theorem B.3,82

T−1∑
k=1

P
(
Êcτk+1,a

)
≤
T−1∑
k=1

exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)
≤ exp

(
bpνp
2cp

)ˆ ∞
0

exp

(
−∆ax

1− 1
p

3c

)
dx

≤ exp

(
bpνp
2cp

)(
3c

∆a

) p
p−1 p

p− 1

ˆ ∞
0

exp (−t) t
1
p−1 dt ∵ t =

∆ax
1− 1

p

3c

= exp

(
bpνp
2cp

)(
3c

∆a

) p
p−1 p

p− 1
Γ

(
p

p− 1

)
= exp

(
bpνp
2cp

)(
3c

∆a

) p
p−1

Γ

(
2p− 1

p− 1

)
.

where the last equality holds by Γ(x+ 1) = xΓ(x). The lemma is proved.83

Next we estimate E(2)
t,a . From now on, we let ρ stand for the following ratio

ρ(g) :=
F (g)

1− F (g)
=

P(G < g)

P(G ≥ g)

where F is a cumulative density function of perturbation G.84

Lemma C.2. Assume that the p-th moment of rewards is bounded by a constant νp <∞, r̂t,a is a85

p-robust estimator of (B.10) and F (x) satisfies Assumption 2. For any action a ∈ A, it holds86

T∑
t=1

P
(
E

(2)
t,a

)
≤ exp

(
bpνp
2cp

){
C1 +

F (0)

1− F (0)
+ 2

2p−1
p−1

}
Γ

(
2p− 1

p− 1

)(
3c

∆a

) p
p−1

+ 2

(
6c

∆a

) p
p−1

{
−F−1

(
1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 2

(
c

∆a

) p
p−1

Proof. If a = a?, then ∆a = 0 so the desired result trivially holds. Threfore, we take a ∈ A \ {a?}.87

For the convenience of the notation, we write r̃t,a := r̂t−1,a + βt−1,aGt,a. Due to the decision rule88

of the perturbation method, at = a implies r̃t,a′ ≤ r̃t,a for a′ ∈ A. Therefore, it holds89

Et,a ∩ Ẽt,a ⊂
⋂
a′∈A
{r̃t,a′ ≤ ya} = {r̃t,a? ≤ ya} ∩ {r̃t,a′ ≤ ya,∀a′ 6= a?}. (C.3)

7



This fact implies90

P
(
Et,a ∩ Ẽt,a|Ht−1

)
≤ P

( ⋂
a′∈A
{r̃t,a′ ≤ ya}|Ht−1

)
(C.4)

Note that events {r̃t,a? ≤ ya} and {r̃t,a′ ≤ ya,∀a′ 6= a?} are independent if Ht−1 is given. From91

this fact, (C.4) is equivalent to92

P

( ⋂
a′∈A
{r̃t,a′ ≤ ya}|Ht−1

)
= P (r̃t,a? ≤ ya|Ht−1)P (r̃t,a′ ≤ ya,∀a′ 6= a?|Ht−1)

=
P (r̃t,a? ≤ ya|Ht−1)

P (r̃t,a? > ya|Ht−1)
P ({r̃t,a? > ya} ∩ {r̃t,a′ ≤ ya,∀a′ 6= a?}|Ht−1)

Since r̂t−1,a? , βt−1,a? are already determined under the conditionHt−1, we get93

P (r̃t,a? ≤ ya|Ht−1) = F

(
ra? − r̂t−1,a? − ∆a

3

βt−1,a?

)
Similarly to (C.3), we can observe that94

{r̃t,a? > ya} ∩ {r̃t,a′ ≤ ya,∀a′ 6= a?} ⊂ Et,a? ∩ Ẽt,a (C.5)

and this implies95

P ({r̃t,a? > ya} ∩ {r̃t,a′ ≤ ya,∀a′ 6= a?}|Ht−1) ≤ P
(
Et,a? ∩ Ẽt,a|Ht−1

)
(C.6)

Therefore,96

P
(
Et,a ∩ Ẽt,a|Ht−1

)
≤ Qt,a?

1−Qt,a?
P
(
Et,a? ∩ Ẽt,a|Ht−1

)
, (C.7)

where Qt,a? := F
(
ra?−r̂t−1,a?−∆a

3

βt−1,a?

)
. By taking an expectation on both sides, we have,97

P
(
E

(2)
t,a

)
= P

(
Et,a ∩ Êt,a ∩ Ẽt,a

)
≤ E

[
Qt,a?

1−Qt,a?
I[Et,a? ∩ Êt,a ∩ Ẽt,a]

]
. (C.8)

Now, we set τk to denote the smallest round when the optimal arm a? is sampled for the k-th time.98

Then, the summation of the right-hand side of C.8 over t = 1, . . . , T is bounded as follows,99

T∑
t=1

E
[

Qt,a?

1−Qt,a?
I[Et,a? ∩ Êt,a ∩ Ẽt,a]

]
=

T−1∑
k=0

E

[
τk+1∑

t=τk+1

Qt,a?

1−Qt,a?
I[Et,a? ∩ Êt,a ∩ Ẽt,a]

]

=

T−1∑
k=0

E
[

Qτk+1,a?

1−Qτk+1,a?
I[Êτk+1,a ∩ Ẽτk+1,a]

]

≤
T∑
k=1

E
[

Qτk,a?

1−Qτk,a?

]
.

We first compute the upper bound of the conditional expectation E
[

Qτk,a?

1−Qτk,a?

∣∣∣Hτk]. From the100

definition of τk, we have nτk,a = k and βτk,a = c

k
1− 1

p
. By using this fact, we get,101

E
[

Qτk,a?

1−Qτk,a?

∣∣∣Hτk] = E

[
ρ

(
k1− 1

p

c

{
ra? − r̂τk,a? −

∆a

3

}) ∣∣∣∣∣Hτk
]

=

ˆ
R
ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx) (C.9)

We decompose R = I1∪I2∪I3 into three intervals where I1 := {x ≤ ra?−∆a

3 }, I2 := {ra?−∆a

3 <102

x ≤ ra? − ∆a

6 }, and I3 := {ra? − ∆a

6 < x}. We derive the upper bound of (C.9) on the each interval.103

8



By using the change of variable formula,104 ˆ
I1

ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx)

=

ˆ ra?−∆a
3

−∞
ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
fr̂(x)dx

=
c

k1− 1
p

ˆ ∞
0

ρ(g)fr̂

(
ra? −

c

k1− 1
p

g − ∆a

3

)
dg

where fr̂ is the density function of the measure P(r̂ ∈ dx). Note that the following equality holds by105

the fundamental theorem of calculus106

ρ(g) =
F (g)

1− F (g)
=

ˆ g

0

h(u)

1− F (u)
du+

F (0)

1− F (0)
Therefore,107

c

k1− 1
p

ˆ ∞
0

F (g)

1− F (g)
fr̂

(
ra? −

c

k1− 1
p

g − ∆a

3

)
dg

=
c

k1− 1
p

ˆ ∞
0

(ˆ g

0

h(u)

1− F (u)
du+

F (0)

1− F (0)

)
fr̂

(
ra? −

c

k1− 1
p

g − ∆a

3

)
dg

=
F (0)

1− F (0)
P
(

∆a

3
≤ ra? − r̂τk,a?

)
+

c

k1− 1
p

ˆ ∞
0

(ˆ g

0

h(u)

1− F (u)
du
)
fr̂

(
ra? −

c

k1− 1
p

g − ∆a

3

)
dg. (C.10)

From the tail bound of the proposed estimator, we have,108

P
(

∆a

3
≤ ra? − r̂τk,a?

)
≤ exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)
(C.11)

Hence we can get the upper bound of the first term in (C.10). Also, by Fubini-Tonelli theorem, we109

can transform the second term of (C.10) as follows110

c

k1− 1
p

ˆ ∞
0

(ˆ g

0

h(u)

1− F (u)
du
)
fr̂

(
ra? −

c

k1− 1
p

g − ∆a

3

)
dg

=

ˆ ∞
0

(ˆ ∞
u

fr̂

(
ra? −

c

k1− 1
p

g − ∆a

3

)
c

k1− 1
p

dg
)

h(u)

1− F (u)
du

=

ˆ ∞
0

(ˆ ra?− c

k
1− 1

p

u−∆a
3

−∞
fr̂ (g) dg

)
h(u)

1− F (u)
du

=

ˆ ∞
0

P
(
ra? − r̂τk,a? ≥

c

k1− 1
p

u+
∆a

3

)
h(u)

1− F (u)
du (C.12)

Similar to (C.11), we have111

P
(
ra? − r̂τk,a? ≥

c

k1− 1
p

u+
∆a

3

)
≤ exp

(
−u− ∆ak

1− 1
p

3c
+
bpνp
2cp

)
Thus, we obtain the upper bound of (C.12) as follows112 ˆ ∞

0

P
(
ra? − r̂τk,a? ≥

c

k1− 1
p

u+
∆a

3

)
h(u)

1− F (u)
du

≤
ˆ ∞

0

exp

(
−u− ∆ak

1− 1
p

3c
+
bpνp
2cp

)
h(u)

1− F (u)
du

≤ exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

) ˆ ∞
0

exp (−u)h(u)

1− F (u)
du

≤ C exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)
,

9



where the last inequality holds due to the assumption on F (x). Therefore,113

ˆ
I1

ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx) ≤ C exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)
(C.13)

+
F (0)

1− F (0)
exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)
(C.14)

Now we derive the upper bound of the second interval I2 = {ra? − ∆a

3 < x ≤ ra? − ∆a

6 }. Since114

F (0) ≤ 1/2, it is easy to see that115

ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
≤ 2F

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
(C.15)

for x ∈ I2 ∪ I3. Hence, for x ∈ I2,116

ˆ
I2

ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx)

≤
ˆ ra?−∆a

6

ra?−∆a
3

2F

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx)

≤ 2P
(

∆a

6
≤ ra? − r̂τk,a?

)
.

Similar to (C.11), we have117

2P
(

∆a

6
≤ ra? − r̂τk,a?

)
≤ 2 exp

(
−∆ak

1− 1
p

6c
+
bpνp
2cp

)
. (C.16)

Hence, we get the upper bound of the integral on I2 as follows,118

T∑
k=1

2 exp

(
−∆ak

1− 1
p

6c
+
bpνp
2cp

)
≤ 2 exp

(
bpνp
2cp

)
Γ

(
2p− 1

p− 1

)
.

Finally, due to (C.15) again,119

ˆ
I3

ρ

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx)

≤ 2

ˆ ∞
ra?−∆a

6

F

(
k1− 1

p

c

{
ra? − x−

∆a

3

})
P(r̂ ∈ dx) ≤ 2F

(
−∆ak

1− 1
p

6c

)
. (C.17)

By combining (C.14), (C.16), and (C.17),120

T∑
k=1

E
[

Qτk,a?

1−Qτk,a?

∣∣∣Hτk] ≤ T∑
k=1

{
C exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)

+
F (0)

1− F (0)
exp

(
−∆ak

1− 1
p

3c
+
bpνp
2cp

)}

+

T∑
k=1

2 exp

(
−∆ak

1− 1
p

6c
+
bpνp
2cp

)
+

T∑
k=1

2F

(
−k

1− 1
p∆a

6c

)

≤ exp

(
bpνp
2cp

){
C +

F (0)

1− F (0)

}
Γ

(
2p− 1

p− 1

)(
3c

∆a

) p
p−1

+ 2 exp

(
bpνp
2cp

)
Γ

(
2p− 1

p− 1

)(
6c

∆a

) p
p−1

+

T∑
k=1

2F

(
−k

1− 1
p∆a

6c

)
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≤ exp

(
bpνp
2cp

){
C +

F (0)

1− F (0)
+ 2

2p−1
p−1

}
Γ

(
2p− 1

p− 1

)(
3c

∆a

) p
p−1

+

T∑
k=1

2F

(
−k

1− 1
p∆a

6c

)
.

The remaining part is to derive the upper bound of the last term. For T > 2
(

c
∆a

) p
p−1

, let `− be the
maximal time such that

F

−`1− 1
p

− ∆a

6c

 ≥ 1

T

(
c

∆a

) p
p−1

.

Then, we have `− as follows,

`− =

(
6c

∆a

) p
p−1

{
−F−1

(
1

T

(
c

∆a

) p
p−1

)} p
p−1

.

For k > `−, the following inequality holds,

F

−`1− 1
p

− ∆a

6c

 <
1

T

(
c

∆a

) p
p−1

.

Note that 1
T

(
c

∆a

) p
p−1 ≤ 1

2 for T >
(

c
∆a

) p
p−1

and F−1

(
1

2T

(
c

∆a

) p
p−1

)
< 0 from the assumption121

F (0) < 1
2 .122

Therefore,123

T∑
k=1

2F

(
−k

1− 1
p∆a

6c

)
≤ 2`− +

T∑
k=`−+1

2F

(
−k

1− 1
p∆a

6c

)

≤ 2`− +

T∑
k=`−+1

2

T

(
c

∆a

) p
p−1

≤ 2

(
6c

∆a

) p
p−1

{
−F−1

(
1

2T

(
c

∆a

) p
p−1

)} p
p−1

+ 2

(
c

∆a

) p
p−1

≤ 2

(
6c

∆a

) p
p−1

{
−F−1

(
1

2T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 2

(
c

∆a

) p
p−1

.

For T ≤ 2
(

c
∆a

) p
p−1

,

T∑
t=1

P
(
E

(2)
t,a

)
≤ T ≤ 2

(
c

∆a

) p
p−1

+ 2

(
6c

∆a

) p
p−1

{
−F−1

(
1

T

(
c

∆a

) p
p−1

)} p
p−1

+

.

Thus, the upper bound also holds. By combining this upper bound, the Lemma is proved.124

Lastly, we estimate the upper bound of E(3)
t,a .125

Lemma C.3. Assume that the p-th moment of rewards is bounded by a constant νp <∞, r̂t,a is a126

p-robust estimator of (B.10) and F (x) satisfies Assumption 2. For any action a ∈ A, it holds127

T∑
t=1

P
(
E

(3)
t,a

)
≤
(

3c

∆a

) p
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 2

(
c

∆a

) p
p−1

11



Proof. Recall τk from Lemma (C.1). Obviously,128

T∑
t=1

P
(
E

(3)
t,a

)
≤

T∑
k=1

P
(
Êτk,a ∩ Ẽcτk,a

)
Due to the decision rule of the perturbation method and the definition of τk, observe that nτk,a = k129

and βτk,a = c

k
1− 1

p
. By the conditioning onHτk ,130

P
(
Êτk,a ∩ Ẽcτk,a

∣∣∣Hτk) ≤ P
(
r̂τk ≤ xa, Gτk,a >

ya − r̂τk,a
βτk,a

∣∣∣Hτk)
≤ P

(
Gτk,a >

ya − xa
βτk,a

∣∣∣Hτk)
= P

(
Gτk,a >

∆ak
1− 1

p

3c

∣∣∣Hτk
)

= 1− F

(
∆ak

1− 1
p

3c

)
. (C.18)

We first show that the bound holds for T >
(

c
∆a

) p
p−1

and check the case of T ≤
(

c
∆a

) p
p−1

.131

For T > 2
(

c
∆a

) p
p−1

, let `+ be the maximal time such as132

F

(
∆a`

1− 1
p

3c

)
≤ 1− 1

T

(
c

∆a

) p
p−1

.

There exists a positive `+ since 1− 1
T

(
c

∆a

) p
p−1

> 1
2 and the assumption F (0) < 1

2 . Note that133

`+ ≤
(

3c

∆a

) p
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

. (C.19)

and for k > `+134

1− F

(
∆ak

1− 1
p

3c

)
≤ 1

T

(
c

∆a

) p
p−1

. (C.20)

Therefore, by (C.18), (C.19), and (C.20),135

T∑
k=1

P
(
Êτk,a ∩ Ẽcτk,a

)
≤

T∑
k=1

(
1− F

(
∆ak

1− 1
p

3c

))

≤ `+ +

T∑
k=`++1

(
1− F

(
∆ak

1− 1
p

3c

))

≤
(

3c

∆a

) p
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

+

T∑
k=`+1

1

T

(
c

∆a

) p
p−1

≤
(

3c

∆a

) p
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 2

(
c

∆a

) p
p−1

.

For T ≤ 2
(

c
∆a

) p
p−1

,136

T∑
t=1

P
(
E

(3)
t,a

)
≤ T ≤ 2

(
c

∆a

) p
p−1

+

(
3c

∆a

) p
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

+

.

Thus, the bound also holds. Consequently, the lemma is proved.137
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Finally, we prove Theorem 3 in the main paper.138

Theorem C.4. Assume that pth moment of rewards is νp <∞. Consider r̂t,a is the proposed robust
estimator and the perturbation method with a CDF F (g). Then, cumulative regret is bounded as

O

( ∑
a6=a?

Cc,p,νp,F

∆
1
p−1
a

+
(6c)

p
p−1

∆
1
p−1
a

[
−F−1

(
c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

+
(3c)

p
p−1

∆
1
p−1
a

[
F−1

(
1 − c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

+∆a

)

where Cc,p,νp,F > 0 is a constant dependent on c, p, νp, F and independent on T .139

Proof. Recall the definition of regret RT , and the fact P(at = a) = P(Et,a) =
∑3
i=1 P(E

(i)
t,a).140

Hence141

E[RT ] :=
∑
a∈A

T∑
t=1

∆aP (at = a) =
∑
a6=a?

3∑
i=1

T∑
t=1

∆aP
(
E

(i)
t,a

)
(C.21)

By Lemmas C.1, C.2, and C.3,142

T∑
t=1

∆aP
(
E

(1)
t,a

)
≤ ∆a + exp

(
bpνp
2cp

)(
(3c)p

∆a

) 1
p−1

Γ

(
2p− 1

p− 1

)
.

143

T∑
t=1

∆aP
(
E

(2)
t,a

)
≤ exp

(
bpνp
2cp

){
C +

F (0)

1− F (0)
+ 2

2p−1
p−1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

+ 2

(
(6c)p

∆a

) 1
p−1

{
−F−1

(
1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 2

(
cp

∆a

) 1
p−1

144

T∑
t=1

∆aP
(
E

(3)
t,a

)
≤
(

(3c)p

∆a

) 1
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 2

(
cp

∆a

) 1
p−1

Therefore, we can estimate the upper bound of (C.21) by combining the above results as follows145

E[RT ] ≤
∑
a6=a?

[
exp

(
bpνp
2cp

){
C +

F (0)

1− F (0)
+ 2

2p−1
p−1 + 1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

+ 2

(
(6c)p

∆a

) 1
p−1

{
−F−1

(
1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+

(
(3c)p

∆a

) 1
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

+

+ 4

(
cp

∆a

) 1
p−1

+ ∆a

]

≤O

( ∑
a6=a?

Cc,p,νp,F

∆
1
p−1
a

+
(6c)

p
p−1

∆
1
p−1
a

[
−F−1

(
c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

+
(3c)

p
p−1

∆
1
p−1
a

[
F−1

(
1− c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

+ ∆a

)

The theorem is proved.146
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C.2 Regret Lower Bounds147

Theorem C.5. For 0 < c < K−1

K−1+2
p
p−1

and T ≥ c
1
p−1 (K−1)

2
p
p−1

∣∣F−1
(
1− 1

K

)∣∣ p
p−1 , there exists a148

K-armed stochastic bandit problem for which the regret of APE-RE has the following lower bound:149

E[RT ] ≥ Ω

(
K1− 1

pT
1
pF−1

(
1− 1

K

))
(C.22)

Proof. We construct a K-armed multi-armed bandit problem with deterministic rewards of which150

the regret analysis presents the regret bound (C.22). Let the optimal arm a? give the reward of151

∆ = 1
2c

1
p

(
(K−1)
T

)1− 1
p

F−1
(
1− 1

K

)
whereas the other arms provide zero rewards. Note that152

∆ ∈ [0, 1] for T ≥ c
1
p−1 (K−1)

2
p
p−1

∣∣F−1
(
1− 1

K

)∣∣ p
p−1 and the estimator becomes r̂a = ∆I[a = a?]153

since there is no noise. Let Et be the set of events which satisfy154 ∑
a 6=a?

nt,a ≤ cT

If P(Et) ≤ 1/2 holds for some t ∈ [1, · · · , T ], then the regret bound is computed as follows155

E[RT ] ≥ 1

2
E[Rt|Ect ] ≥

cT

2
∆ =

c1+ 1
p

4
(K − 1)1− 1

pT
1
pF−1

(
1− 1

K

)
hence it satisfies (C.22). Otherwise, if P(Et) > 1/2 holds for all t ∈ [1, · · · , T ], it is sufficient to156

prove P(at 6= a?) ≥ 1/8. Then, it holds157

E[RT ] =

T∑
t=1

∆P(at = a?) ≥ T

8
∆ =

c
1
p

16
(K − 1)1− 1

pT
1
pF−1

(
1− 1

K

)
and we get the desired result since 0 < c < K−1

K−1+2
p
p−1

.158

Now, the remaining part is to prove that P(at 6= a?) ≥ 1/8 holds. First, we observe that159

P(at 6= a?) = P

 ⋃
a6=a?

{r̂a? + βt,a?Gt,a? ≤ r̂a + βt,aGt,a}


≥ P (Et−1)P

 ⋃
a 6=a?

{r̂a? + βt,a?Gt,a? ≤ 2∆ ≤ r̂a + βt,aGt,a}
∣∣∣Et−1


≥ 1

2
E

P(Gt,a? ≤ ∆

βt,a?

∣∣∣Ht−1, Et−1

)
P

 ⋃
a6=a?

{2∆ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

∣∣∣∣∣Et−1


≥ 1

2
E

[
P

(
Gt,a? ≤

∆ ((1− c)T )
1− 1

p

c

∣∣∣Ht−1, Et−1

)

× P

 ⋃
a 6=a?

{2∆ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

∣∣∣∣∣Et−1

]

where the last inequality holds due to nt−1,a? ≥ (1 − c)T provided Et−1. Since c < K−1

K−1+2
p
p−1

,160

we have,161

∆ ((1− c)T )
1− 1

p

c
=

(
(1− c)(K − 1)

2
p
p−1 c

)1− 1
p

F−1

(
1− 1

K

)
> F−1

(
1− 1

K

)
.
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Hence, P
(
Gt,a? ≤ ∆((1−c)T )

1− 1
p

c

∣∣∣Ht−1, Et−1

)
≥ 1− 1

K so that162

P(at 6= a?) ≥ 1

2

(
1− 1

K

)
E

P
 ⋃
a6=a?

{2∆ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

∣∣∣∣∣Et−1

 .
Observe that163

P

 ⋃
a6=a?

{2∆ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1


≥ 1− P

 ⋂
a 6=a?

{
Gt,a ≤

2∆

βt,a

} ∣∣∣Ht−1, Et−1


≥ 1−

∏
a 6=a?

F

(
2∆ (nt−1,a)

1− 1
p

c

)

≥ 1−

∣∣∣∣∣∣F
2∆

∑
a 6=a? (nt−1,a)

1− 1
p

c(K − 1)

∣∣∣∣∣∣
K−1

,

where the last inequality holds by the log-concavity of F . Under Et−1, note that164

∑
a6=a?

(nt−1,a)
1− 1

p ≤

∑
a 6=a?

1p

 1
p
∑
a6=a?

nt−1,a

1− 1
p

≤ (K − 1)
1
p (cT )

1− 1
p

which implies165

F

2∆

∑
a6=a? (nt−1,a)

1− 1
p

c(K − 1)

 ≤ F (2∆c−
1
p

(
T

(K − 1)

)1− 1
p

)
= 1− 1

K

Therefore, we get166

P(at 6= a?) ≥ 1

2

(
1− 1

K

)(
1−

(
1− 1

K

)K−1
)
≥ 1

8

since 1− 1
K ≥

1
2 and 1−

(
1− 1

K

)K−1 ≥ 1
2 hold for K ≥ 2 and the theorem is proved.167

D Regret Bounds of Specific Perturbations168

Corollary D.1. Suppose G follows a Weibull distribution with a parameter k ≤ 1 with λ > 1 with
c > 0. Then, the problem dependent regret bound is

E [RT ] ≤ O

∑
a6=a?

Cc,p,νp,F

∆
1
p−1
a

+

(
(3cλ)p

∆a

) 1
p−1

[
ln

(
T∆

p
p−1
a

c
p
p−1

)] p
k(p−1)

+ ∆a

 .

The problem independent regret bound is, E [RT ] = Θ
(
λ

p
p−1K1− 1

pT
1
p ln (K)

1
k

)
.169

The minimum rate is achieved at k = 1, E [RT ] = Θ
(
K1− 1

pT
1
p ln (K)

)
.170

Proof. The CDF of a Weibull distribution with k ≤ 1 is given as

F (x) = 1− exp

(
−
(x
λ

)k)
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Then, its inverse is

F−1(y) = λ

[
ln

(
1

1− y

)] 1
k

,

Then,

F−1

(
1− c

p
p−1

T∆
p
p−1
a

) p
p−1

= λ
p
p−1

[
ln

(
T∆

p
p−1
a

c
p
p−1

)] p
k(p−1)

.

Thus, we compute C as follows,171

ˆ ∞
0

h(z) exp (−z)
1− F (z)

dz =

ˆ ∞
0

k

λ

( z
λ

)k−1 exp
(
−
(
z
λ

)k)
exp (−z)

exp
(
−2
(
z
λ

)k) dz

=

ˆ ∞
0

k

λ

( z
λ

)k−1

exp

(
−z +

( z
λ

)k)
dz

≤
ˆ ∞

0

k

λ

( z
λ

)k−1

exp

(
−λ− 1

λ
z

)
dz

=
k

(λ− 1)k

ˆ ∞
0

zk−1 exp (−z) dz =
kΓ (k)

(λ− 1)k
=

Γ (k + 1)

(λ− 1)k

≤ Γ (2)

(λ− 1)k
= (λ− 1)−k.

For (6c)
p
p−1

∆
1
p−1
a

[
−F−1

(
c
p
p−1

T∆
p
p−1
a

)] p
p−1

+

, we have,

(6c)
p
p−1

∆
1
p−1
a

[
−F−1

(
c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

= 0

since the support of x is (0,∞). Then, the problem dependent regret bound becomes,172

E [RT ] ≤
∑
a 6=a?

[
exp

(
bpνp
2cp

){
C1 +

F (0)

1− F (0)
+ 2

2p−1
p−1 + 1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

(D.1)

+
(6c)

p
p−1

∆
1
p−1
a

[
−F−1

(
c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

(D.2)

+

(
(3c)p

∆a

) 1
p−1

{
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)} p
p−1

(D.3)

+

(
cp

∆a

) 1
p−1

+ ∆a

]
(D.4)

≤
∑
a 6=a?

[
exp

(
bpνp
2cp

)[
(λ− 1)−k + 2

2p−1
p−1 + 1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

(D.5)

+

(
(3cλ)p

∆a

) 1
p−1

[
ln

(
T∆

p
p−1
a

c
p
p−1

)] p
k(p−1)

+

(
cp

∆a

) 1
p−1

+ ∆a

]
(D.6)

≤O

∑
a6=a?

Cc,p,νp,F

∆
1
p−1
a

+

(
(3cλ)p

∆a

) 1
p−1

[
ln

(
T∆

p
p−1
a

c
p
p−1

)] p
k(p−1)

+ ∆a

 . (D.7)
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The problem independent regret bound can be obtained by choosing the threshold of the minimum173

gap as ∆ = c (K/T )
1− 1

p ln(K)
1
k .174

E [RT ] ≤
∑

a6=a?,∆a>∆

Cc,p,νp,F

∆
1
p−1
a

+

(
(3cλ)p

∆a

) 1
p−1

[
ln

(
T∆

p
p−1
a

c
p
p−1

)] p
k(p−1)

+ ∆T (D.8)

≤K

Cc,p,νp,F
∆

1
p−1

+

(
(3cλ)p

∆

) 1
p−1

[
ln

(
T∆

p
p−1

c
p
p−1

)] p
k(p−1)

+ ∆T (D.9)

≤K
Cc,p,νp,F · T

1
p

K
1
p ln (K)

1
k(p−1)

+K

(
(3λ)

p
p−1 cT

1
p

K
1
p ln(K)

1
k(p−1)

)[
ln
(
K ln (K)

p
k(p−1)

)] p
k(p−1)

(D.10)

+ cK1− 1
pT

1
p ln(K)

1
k (D.11)

≤
Cc,p,νp,F ·K

1− 1
pT

1
p

ln (K)
1

k(p−1)

+ c(3λ)
p
p−1K1− 1

pT
1
p


[(

1 + p
k(p−1)

)
ln (K)

] p
k(p−1)

ln(K)
1

k(p−1)

 (D.12)

+ cK1− 1
pT

1
p ln(K)

1
k (D.13)

≤O

(
(cλ)

p
p−1K1− 1

pT
1
p

(
ln (K)

p
k(p−1)

ln(K)
1

k(p−1)

))
= O

(
(cλ)

p
p−1K1− 1

pT
1
p ln (K)

1
k

)
. (D.14)

Consequently, the lower bound is simply obtained by Theorem C.5, so we can conclude that regret175

bound is tight. The corollary is proved.176

Corollary D.2. Suppose G follows a generalized extreme value distribution with a parameter with
0 ≤ ζ < 1 and λ > 1. Then, the problem dependent regret bound is

E [RT ] ≤ O

∑
a 6=a?

Cc,p,νp,F

∆
1
p−1
a

+ 2

(
(6cλ)p

∆a

) 1
p−1

lnζ

(
T∆

p
p−1
a

c
p
p−1

) p
p−1

+ ∆a

 .

Let lnζ(x) := xζ−1
ζ , then, the problem independent regret bound is

Ω
(
K1− 1

pT
1
p lnζ (K)

)
≤ E [RT ] ≤ O

K1− 1
pT

1
p

lnζ

(
K

2p−1
p−1

) p
p−1

lnζ(K)
1
p−1

 .

The minimum rate is achieved at ζ = 0, E [RT ] = Θ
(
K1− 1

pT
1
p ln (K)

)
.177

Proof. The CDF of a generalized extreme value distribution with 0 ≤ ζ < 1 is given as

F (x) = exp

(
−
(

1 + ζ
x

λ

)−1/ζ
)
.

Then, its inverse is

F−1(y) = λ
[ln(1/y)]

−ζ − 1

ζ
≤ λ [1− y]

−ζ − 1

ζ
,

and

λ
[ln(1/y)]

−ζ − 1

ζ
≥ λ

[
y

1−y

]ζ
− 1

ζ

where ln(x) ≤ x− 1 is used. Then,

[
F−1

(
1− c

p
p−1

T∆
p
p−1
a

)] p
p−1

≤ λ
p
p−1


(
T∆

p
p−1
a /c

p
p−1

)ζ
− 1

ζ


p
p−1

.
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We compute the suph can be obtained as follows,178

suph = sup
x∈[0,∞]

(
1 + ζ xλ

)−1/ζ−1
exp

(
−
(
1 + ζ xλ

)−1/ζ
)

λ
(

1− exp
(
−
(
1 + ζ xλ

)−1/ζ
))

= sup
t∈[0,1]

tζ+1 exp(−t)
λ(1− exp(−t))

≤ sup
t∈[0,1]

t exp(−t)
λ(1− exp(−t))

=
1

λ
.

M can be obtained as,179

ˆ ∞
0

exp (−z)
1− F (z)

dz =

ˆ ∞
0

exp (−z)

1− exp
(
−
(
1 + ζ zλ

)−1/ζ
)dz

≤
ˆ ∞

0

(
1 +

(
1 + ζ

z

λ

)1/ζ
)

exp (−z) dz

=1 +

ˆ ∞
0

(
1 + ζ

z

λ

)1/ζ

exp (−z) dz

≤1 +

ˆ ∞
0

exp

(
−z +

ln(1 + ζ zλ )

ζ

)
dz

≤1 +

ˆ ∞
0

exp
(
−z +

z

λ

)
dz

=1 +
λ

λ− 1
∵ λ > 1

=
2λ− 1

λ− 1
=: M1.

Hence, suph ·M1 ≤ 2λ−1
λ(λ−1) ≤

2
λ−1 .180

For (6c)
p
p−1

∆
1
p−1
a

[
−F−1

(
c
p
p−1

T∆
p
p−1
a

)] p
p−1

+

, we have,181

(6c)
p
p−1

∆
1
p−1
a

[
−F−1

(
c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

=
(6cλ)

p
p−1

∆
1
p−1
a


1− ln

(
T∆

p
p−1
a

c
p
p−1

)−ζ
ζ


p
p−1

≤ (6cλ)
p
p−1

∆
1
p−1
a


ln

(
T∆

p
p−1
a

c
p
p−1

)ζ
− 1

ζ


p
p−1

≤ (6cλ)
p
p−1

∆
1
p−1
a


(
T∆

p
p−1
a

c
p
p−1

)ζ
− 1

ζ


p
p−1

≤ (6cλ)
p
p−1

∆
1
p−1
a

lnζ

(
T∆

p
p−1
a

c
p
p−1

) p
p−1

,

where − lnζ(1/ ln(x)) ≤ lnζ(ln(x)) ≤ lnζ(x) is used.182
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Then, the problem dependent regret bound becomes,183

E [RT ] ≤
∑
a 6=a?

[
exp

(
bpνp
2cp

){
‖h‖∞M +

F (0)

1− F (0)
+ 2

2p−1
p−1 + 1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

(D.15)

+
(6c)

p
p−1

∆
1
p−1
a

[
−F−1

(
c

p
p−1

T∆
p
p−1
a

)] p
p−1

+

(D.16)

+

(
(3c)p

∆a

) 1
p−1

[
F−1

(
1− 1

T

(
c

∆a

) p
p−1

)] p
p−1

+

(D.17)

+

(
cp

∆a

) 1
p−1

+ ∆a

]
(D.18)

≤
∑
a 6=a?

[
exp

(
bpνp
2cp

)[
2

λ− 1
+

e

e− 1
+ 2

2p−1
p−1 + 1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

(D.19)

+
(6cλ)

p
p−1

∆
1
p−1
a

lnζ

(
T∆

p
p−1
a

c
p
p−1

) p
p−1

+

(
(3cλ)p

∆a

) 1
p−1

lnζ

(
T∆

p
p−1
a

c
p
p−1

) p
p−1

(D.20)

+

(
cp

∆a

) 1
p−1

+ ∆a

]
(D.21)

≤O

∑
a6=a?

Cc,p,νp,F

∆
1
p−1
a

+ 2

(
(6cλ)p

∆a

) 1
p−1

lnζ

(
T∆

p
p−1
a

c
p
p−1

) p
p−1

+ ∆a

 , (D.22)

where lnζ(x) := xζ−1
ζ .184

The problem independent regret bound can be obtained by choosing the threshold of the minimum185

gap as ∆ = c
(
K
T

)1− 1
p lnζ(K) Note that limζ→0

xζ−1
ζ = ln(x)186

E [RT ] ≤
∑

∆a>∆

[
exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

∆a

) 1
p−1

(D.23)

+ 2

(
(6cλ)p

∆a

) 1
p−1

lnζ

(
T∆

p
p−1
a

c
p
p−1

) p
p−1

(D.24)

+

(
cp

∆a

) 1
p−1

]
+ ∆T (D.25)

≤K

[
exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

∆

) 1
p−1

(D.26)

+ 2

(
(6cλ)p

∆

) 1
p−1

lnζ

(
T∆

p
p−1

c
p
p−1

) p
p−1

(D.27)

+

(
cp

∆

) 1
p−1

]
+ ∆T (D.28)

≤ exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)
(3λ)

p
p−1

cK1− 1
pT

1
p

lnζ(K)
1
p−1

(D.29)
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+ 2(6λ)
p
p−1 cK1− 1

pT
1
p

 lnζ

(
K lnζ(K)

p
p−1

) p
p−1

lnζ(K)
1
p−1

 (D.30)

+ c
K1− 1

pT
1
p

lnζ(K)
1
p−1

+ cK1− 1
pT

1
p lnζ(K) (D.31)

≤ exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)
(3λ)

p
p−1

cK1− 1
pT

1
p

lnζ(K)
1
p−1

(D.32)

+ 2(6λ)
p
p−1 cK1− 1

pT
1
p


lnζ

(
K

2p−1
p−1

) p
p−1

lnζ(K)
1
p−1

 (D.33)

+ c
K1− 1

pT
1
p

lnζ(K)
1
p−1

+ cK1− 1
pT

1
p lnζ(K) (D.34)

∵ lnζ(x lnζ(x)
p
p−1 ) ≤ lnζ

(
x1+ p

p−1

)
for x > 2 (D.35)

≤O

K1− 1
pT

1
p

lnζ

(
K

2p−1
p−1

) p
p−1

lnζ(K)
1
p−1

 . (D.36)

For the lower bound,

λ

[
ln
(

1
1− 1

K

)]−ζ
− 1

ζ
≥ λ [K − 1]

ζ − 1

ζ
= λ lnζ (K − 1) .

Consequently, the lower bound is simply obtained by Theorem C.5. The corollary is proved.187

Corollary D.3. Suppose G follows a Gamma distribution with a parameter α ≥ 1 and λ ≥ 1. Then,188

the problem dependent regret bound is189

E [RT ] ≤ O

∑
a 6=a?

Cc,p,νp,F

∆
1
p−1
a

+

(
(3λαc)p

∆a

) 1
p−1

ln

(
αT∆

p
p−1
a

c
p
p−1

) p
p−1

+ ∆a

 . (D.37)

The problem independent regret bound is190

Ω
(
λK1− 1

pT
1
p ln(K)

)
≤ E [RT ] ≤O

(λα)
1
p−1 cK1− 1

pT
1
p

ln
(
αK1+ p

p−1

) p
p−1

ln(K)
1
p−1

 . (D.38)

The minimum rate is achieved at α = 1, E [RT ] = Θ
(
K1− 1

pT
1
p ln(K)

)
.191

Proof. The CDF of a Gamma distribution is given as

F (x) =
γ(x;α, λ)

Γ(α)
,

where Γ(α) is a (complete) Gamma function and γ(x;α, λ) is an incomplete Gamma function defined
as

γ(x;α, λ) :=

ˆ x

0

zα−1 exp
(
− z
λ

)
λα

dz.

Before finding a lower and upper bound of F−1, we introduce a lower and upper bound of a Gamma
distribution. In [3], the bounds of F (x) is provided as follows, for α > 1(

1− exp

(
− x

λΓ(1 + α)
1
α

))α
≤ F (x) ≤

(
1− exp

(
−x
λ

))α
.
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From these bounds, we have,

λ ln

(
1

1− y 1
α

)
≤ F−1(y) ≤ λΓ(1 + α)

1
α ln

(
1

1− y 1
α

)
.

Note that the following inequality holds: for α > 1,

Γ(α+ 1) = α(α− 1) · · · (α− bαc+ 1)Γ (α− bαc+ 1) ≤ αbαcΓ (1) ≤ αα.
We have a simpler upper bound as

F−1(y) ≤ λΓ(1 + α)
1
α ln

(
1

1− y 1
α

)
≤ λα ln

(
α

1− y

)
.

Then, [
F−1

(
1− 1

T

(
c
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) p
p−1

)] p
p−1

≤ λ
p
p−1α

p
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αT∆

p
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c
p
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) p
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.

C can be obtained as,192 ˆ ∞
0

h(z) exp (−z)
1− F (z)

dz =

ˆ ∞
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)
λαΓ(α) exp

(
−2 zλ

) dz
=

ˆ ∞
0

zα−1 exp
(
−z + z

λ
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=
1
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For (6c)
p
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∆
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+

= 0.

since x ∈ (0,∞). Then, the problem dependent regret bound becomes,193
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The problem independent regret bound can be obtained by choosing the threshold of the minimum194

gap as ∆ = c (K/T )
1− 1

p ln(K).195
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For the lower bound, we use,

F−1(y) ≥ λ ln

(
1

1− y 1
α

)
≥ λ ln

(
y

1− y

)
.

Thus, the lower bound becomes
Ω
(
λK1− 1

pT
1
p ln(K)

)
.
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Corollary D.4. Suppose G follows a Pareto distribution with a parameter α > p2

p−1 and λ ≥ α.197

Then, the problem dependent regret bound is198
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For λ = α, the problem independent regret bound is199
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For K > exp
(
p2

p−1

)
, the minimum rate is achieved at α = ln(K), E [RT ] = Θ

(
K1− 1

pT
1
p ln(K)

)
.200
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Proof. The CDF of a Pareto distribution is given as

F (x) = 1− 1

(x/λ)α

Then, its inverse is
F−1(y) = λ (1− y)

− 1
α ,

Then, [
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c
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] p
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.

C can be obtained as,201 ˆ ∞
0

h(z) exp (−z)
1− F (z)
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where −F−1(y) is always negative since the support of x is (λ,∞). Then, the problem dependent202

regret bound becomes,203
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The problem independent regret bound can be obtained by choosing the threshold of the minimum204

gap as ∆ = c (K/T )
1− 1

p α.205
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∵ λ = α (D.73)
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For the minimum rate, we set α = ln(K), then,
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The corollary is proved.206

Corollary D.5. SupposeG follows a Fréchet distribution with a parameter with α > p2

p−1 and λ ≥ α.207

Then, the problem dependent regret bound is208

E [RT ] ≤ O

∑
a 6=a?

Cc,p,νp,F

∆
1
p−1
a

+

(
(3cλ)p

∆a

) 1
p−1

[
T∆

p
p−1
a

c
p
p−1

] p
α(p−1)

+ ∆a

 . (D.75)

For λ = α, the problem independent regret bound is209
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For K > exp
(
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p−1

)
, the minimum rate is achieved at α = ln(K), E [RT ] = Θ
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)
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Proof. The CDF of a Fréchet distribution is given as

F (x) = exp

(
−
(x
λ

)−α)
Then, its inverse is

F−1(y) = λ ln(1/y)−1/α ≤ (1− y)
−1/α
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and

λ ln(1/y)−1/α ≥ λ
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where ln(x) ≤ x− 1 is used. Then,[
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since its support is (0,∞). Then, the problem dependent regret bound becomes,212
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The problem independent regret bound can be obtained by choosing the threshold of the minimum213

gap as ∆ = c (K/T )
1− 1

p α.214
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The optimal rate is obtained by setting α = ln(K),
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Consequently, the lower bound is simply obtained by Theorem C.5. The corollary is proved.215

E Experimental Settings216

Convergence of Estimator We compare the p-robust estimator with other estimators including
truncated mean, median of mean, and sample mean. To make a heavy-tailed noise, we employ a
Pareto distribution as follows,

zt ∼ Pareto(αε, λε)

where αε is a shape parameter and λε is a scale parameter. Then, a noise is defined as εt := zt−E[zt]217

to make the mean of the noise zero. In simulation, we set a true mean y = 1 and Yt = y + εt is218

observed. The p-th moment of Yt is computed as follows,219

E|Yt|p = E|y + zt − E [zt] |p ≤
(
|y − E [zt] |+ (E|zt|p)1/p

)p
(E.1)

where the triangular inequality is used. Since zt is a Pareto random variable with αε and λε, we have,
for αε > p,

E [zt] =
αελε
αε − 1

and
E|zt|p =

αελ
p
ε

αε − p
.
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Hence, the upper bound of the p-th moment is given as

νp :=

(∣∣∣∣1− αελε
αε − 1

∣∣∣∣+
α

1/p
ε λε

(αε − p)1/p

)p
.

While the proposed method does not require νp, truncated mean or median of mean estimator requires220

νp.221

Multi-Armed Bandits with Heavy-Tailed Rewards Entire experimental results are shown in
Figure E.1. For robust UCB [4], we modify the confidence bound as

cν1/p
p

(
η ln(1/δ)

n

)1−1/p

,

where c > 0. Since the original confidence bound makes convergence slow, we scale down the222

confidence bound. This modification shows much better performance than the original robust UCB223

and we optimize c by using the grid search over [0.001, 5.0]. We make the grid by dividing [0.1, 5.0]224

into 50 parts, [0.01, 0.1] into 10 parts. Furthermore, 0.005 and 0.001 are also tested. Total 62 trials are225

conducted for the grid search and the best parameter is selected. For the proposed method and DSEE226

[7], the best parameter is chosen by the same way. Unlikely to other methods, the hyperpamrameter227

q of GSR [5] is within [0.0, 1.0]. Thus, we make the grid by dividing [0.02, 1.0] into 50 parts,228

(0.002, 0.02] into 10 parts and finally, 0.005 and 0.0001 are searched. Total 62 trials are conducted229

for the grid search and the best parameter is selected.230

From a practical perspective, reducing the number of tuning parameters makes the algorithm more231

robust. In particular, the perturbations do not depend on both bound and moment. So, the exploration232

tendency is not much sensitive to the mismatch of the moment parameter. To verify this, we add233

simple simulations by mismatching the moment parameter where all other settings are the same as234

the experiments in the manuscript. As shown in the above Rt/t plot in Figure E.2, (a) APE2 with235

Frechet perturbation shows a robust performance while (b) the robust UCB is sensitive depending on236

the choice of q, the moment parameter for the algorithm (here p = 1.5 is the true moment).237
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(a) p = 1.5,∆ = 0.8 (b) p = 1.5,∆ = 0.3

(c) p = 1.5,∆ = 0.1 (d) p = 1.1,∆ = 0.8

(e) p = 1.1,∆ = 0.3 (f) p = 1.1,∆ = 0.1

Figure E.1: Time-Averaged Cumulative Regret. p is the maximum order of the bounded moment
of noises. ∆ is the gap between the maximum and second best reward. For p = 1.5, λε = 1.0 and
for p = 1.1, λε = 0.1. The solid line is an averaged error over 40 runs and a shaded region shows a
quarter standard deviation.

(a) APE2 with Frechet (b) Robust UCB

Figure E.2: Rt/t plot with p = 1.5,∆ = 0.1. (a) APE2 with Frechet perturbation shows a robust
performance while (b) the robust UCB is sensitive depending on the choice of q, the moment
parameter for the algorithm. Other perturbations show similar tendency.
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