Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed Rewards

Anonymous Author(s)
Affiliation
Address
email

In this appendix, we prove Theorem 1,2,3, 4 and Corollary 1 in the main paper.

A Regret Lower Bound for Robust Upper Confidence Bound

In this section, we prove Theorem 1 in Section 3, which derives the lower bound of the expected cumulative regret of robust UCB [4]. First, we recall Assumption 1 in the main paper.
Assumption A.1. Let $\left\{Y_{k}\right\}_{k=1}^{\infty}$ be i.i.d. random variables with the finite p-th moment for $p \in(1,2]$. Let ν_{p} be a bound of the p-th moment and y be the mean of Y_{k}. Assume that, for all $\delta \in(0,1)$ and n number of observations, there exists an estimator $\hat{Y}_{n}\left(\eta, \nu_{p}, \delta\right)$ with a parameter η such that

$$
\mathbb{P}\left(\hat{Y}_{n}>y+\nu_{p}^{1 / p}\left(\frac{\eta \ln (1 / \delta)}{n}\right)^{1-1 / p}\right) \leq \delta, \quad \mathbb{P}\left(y>\hat{Y}_{n}+\nu_{p}^{1 / p}\left(\frac{\eta \ln (1 / \delta)}{n}\right)^{1-1 / p}\right) \leq \delta
$$

Assumption A.1 provides the confidence bound of the estimator \hat{Y}_{n}. Note that $\hat{Y}_{n}=\hat{Y}_{n}\left(\eta, \nu_{p}, \delta\right)$ requires ν_{p} and δ. By using this confidence bound, at round t, robust UCB selects an action based on the following strategy,

$$
\begin{equation*}
a_{t}:=\arg \max _{a \in \mathcal{A}}\left\{\hat{r}_{t-1, a}+\nu_{p}^{1 / p}\left(\eta \ln \left(t^{2}\right) / n_{t-1, a}\right)^{1-1 / p}\right\} \tag{A.1}
\end{equation*}
$$

where $\hat{r}_{t-1, a}$ is an estimator which satisfies Assumption A.1 with $\delta=t^{-2}$ and $n_{t-1, a}$ denotes the number of times $a \in \mathcal{A}$ have been selected. Under the strategy A.1), we prove Theorem 1 in the main paper.
Theorem A.2. Assume that truncated mean, median of mean, and Catoni's M estimator are employed to estimate the rewards. Then, there exists a K-armed stochastic bandit problem for which the regret of the robust $U C B$ has the following lower bound, for $T>\max \left(10,\left[\frac{\nu^{\frac{1}{(p-1)}}}{\eta(K-1)}\right]^{2}\right)$,

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \geq \Omega\left((K \ln (T))^{\frac{p-1}{p}} T^{\frac{1}{p}}\right) \tag{A.2}
\end{equation*}
$$

Proof. The proof is done by constructing a counter example. We construct a K-armed bandit problem with deterministic rewards. Let the optimal arm a^{\star} give the reward of $\Delta=\nu^{\frac{1}{p}}\left(\frac{\eta(K-1) \ln (T)}{T}\right)^{\frac{p-1}{p}}$ whereas the other arms provide zero rewards. Note that $\Delta \leq \nu^{\frac{1}{p}}\left(\frac{\eta(K-1)}{T^{\frac{1}{2}}}\right)^{\frac{p-1}{p}}<1$ and the estimator we used satisfies $\hat{r}_{a} \leq \Delta \mathbb{I}\left[a=a^{\star}\right]$ for all a since rewards are Δ or 0 in this MAB problem. Let E_{t} be the set of events which satisfy

$$
\sum_{a \neq a^{\star}} n_{t-1, a} \leq \frac{\nu^{\frac{1}{p-1}} \eta(K-1)}{2\left(\left(1+5^{\frac{p-1}{p}}\right) \Delta\right)^{\frac{p}{p-1}}} \ln \left(T^{2}\right)=\frac{T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}}
$$

17
If $\mathbb{P}\left(E_{t}\right) \leq 1 / 2$ for some $t \in[1, \cdots, T]$, then, the regret bound is computed as follows,

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] & \geq \frac{1}{2} \mathbb{E}\left[\mathcal{R}_{t} \mid E_{t}^{c}\right] \geq \frac{1}{2} \Delta \mathbb{E}\left[\sum_{a \neq a^{\star}} n_{t, a} \mid E_{t}^{c}\right] \geq \frac{1}{2} \Delta \mathbb{E}\left[\sum_{a \neq a^{\star}} n_{t-1, a} \mid E_{t}^{c}\right] \tag{A.3}\\
& \geq \frac{\Delta}{2} \frac{T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}}=\frac{\nu^{\frac{1}{p}}}{2\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}}(\eta(K-1) \ln (T))^{\frac{p-1}{p}} T^{\frac{1}{p}} \tag{A.4}
\end{align*}
$$

Hence, if $\mathbb{P}\left(E_{t}\right) \leq 1 / 2$ for some $t \in[1, \cdots, T]$, then, the lower bound holds. On the contrary, if $\mathbb{P}\left(E_{t}\right)>1 / 2$ for all $t \in[1, \cdots, T]$, then, the proof is done by showing $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2}$ for $t \geq t_{0}$ where

$$
t_{0}:=\max \left(1+\frac{2 T}{5(K-1)}+\frac{2 T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}}, T^{\frac{1}{2}}\right)
$$ $T>\sqrt{T}$ holds. In other words, $\left\{t \in[1, \ldots, T]: t \geq t_{0}\right\}$ is not empty.

Before showing that $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2}$ holds, we first check the lower bound. When $\mathbb{P}\left(E_{t}\right)>1 / 2$ holds for all $t \in[1, \cdots, T]$, if $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2}$ holds for $t \geq t_{0}$, then, the lower bound of the regret can be obtained as follows,

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] & \geq \Delta \sum_{t=t_{0}}^{T} \mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{\Delta\left(T-t_{0}\right)}{2} \tag{A.5}\\
& =\frac{\Delta}{2} \min \left(\left(1-\frac{2}{5(K-1)}-\frac{2}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}}\right) T-1, T\left(1-T^{-\frac{1}{2}}\right)\right) \tag{A.6}\\
& \geq \frac{\Delta}{2} \min \left(\left(1-\frac{2}{5}-\frac{2}{5}\right) T-1, T\left(1-T^{-\frac{1}{2}}\right)\right) \tag{A.7}
\end{align*}
$$

where the last inequality holds since $K-1>1$ and $\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}>5$. Then, by $T>10$,

$$
\begin{align*}
& \frac{\Delta}{2} \min \left(\left(1-\frac{2}{5}-\frac{2}{5}\right) T-1, T\left(1-T^{-\frac{1}{2}}\right)\right) \tag{A.8}\\
& \geq \frac{\Delta T}{2} \min \left(\frac{1}{5}-T^{-1}, 1-T^{-\frac{1}{2}}\right) \tag{A.9}\\
& =\nu^{\frac{1}{p}}(\eta(K-1) \ln (T))^{\frac{p-1}{p}} T^{\frac{1}{p}} \min \left(\frac{1}{5}-T^{-1}, 1-T^{-\frac{1}{2}}\right) \tag{A.10}\\
& =\frac{1}{10} \nu^{\frac{1}{p}}(\eta(K-1) \ln (T))^{\frac{p-1}{p}} T^{\frac{1}{p}} \tag{A.11}
\end{align*}
$$

Note that $\frac{1}{10}<1-\frac{1}{\sqrt{10}}$. Thus, we obtain $\mathbb{E}\left[\mathcal{R}_{T}\right] \geq \Omega\left((K \ln (T))^{\frac{p-1}{p}} T^{\frac{1}{p}}\right)$, if $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2}$ holds for $t \geq t_{0}$.
The remaining part is to prove that $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2}$ holds for $t>t_{0}$ when $\mathbb{P}\left(E_{t}\right) \geq 1 / 2$ for all $t>0$. We mainly prove that, if E_{t} occurs, $a_{t}=a^{\star}$ never occurs since the confidence bound cannot overcome the estimation error between sub-optimal arms and optimal arm under the condition of E_{t}. In other words, $\mathbb{P}\left(a_{t} \neq a^{\star} \mid E_{t}\right)=1$. If $\mathbb{P}\left(a_{t} \neq a^{\star} \mid E_{t}\right)=1$ holds, then, we can simply show that

$$
\begin{equation*}
\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2} \mathbb{P}\left(a_{t} \neq a^{\star} \mid E_{t}\right)=\frac{1}{2} \tag{A.12}
\end{equation*}
$$

30
Now, we analyze the set of event, $\left\{a_{t} \neq a^{\star}\right\}$, as follows,

$$
\begin{equation*}
\left\{a_{t} \neq a^{\star}\right\}=\bigcup_{a \neq a^{\star}}\left\{\hat{r}_{a^{\star}}+\nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a^{\star}}}\right)^{\frac{p-1}{p}} \leq \hat{r}_{a}+\nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a}}\right)^{\frac{p-1}{p}}\right\} \tag{A.13}
\end{equation*}
$$

$$
\begin{align*}
& \supset \bigcup_{a \neq a^{\star}}\left\{\Delta+\nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a^{\star}}}\right)^{\frac{p-1}{p}} \leq \nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a}}\right)^{\frac{p-1}{p}}\right\} \tag{A.14}\\
& \because \hat{r}_{a^{\star}} \leq \Delta \text { and } \hat{r}_{a \neq a^{*}}=0 \tag{A.15}\\
& \supset \bigcup_{a \neq a^{\star}}\left\{\Delta+\nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a^{\star}}}\right)^{\frac{p-1}{p}} \leq\left(1+5^{\frac{p-1}{p}}\right) \Delta \leq \nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a}}\right)^{\frac{p-1}{p}}\right\} \tag{A.16}\\
& =\left\{\nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a^{\star}}}\right)^{\frac{p-1}{p}} \leq 5^{\frac{p-1}{p}} \Delta\right\} \bigcap \bigcup_{a \neq a^{\star}}\left\{\left(1+5^{\frac{p-1}{p}}\right) \Delta \leq \nu^{\frac{1}{p}}\left(\frac{\eta \ln \left(t^{2}\right)}{n_{t-1, a}}\right)^{\frac{p-1}{p}}\right\} \\
& =\left\{\frac{2 \nu^{\frac{1}{p-1}}}{5 \Delta^{\frac{p}{p-1}}} \eta \ln (t) \leq n_{t-1, a^{\star}}\right\} \bigcap \bigcup_{a \neq a^{\star}}\left\{n_{t-1, a} \leq \frac{2 \nu^{\frac{1}{p-1}}}{\left(\left(1+5^{\frac{p-1}{p}}\right) \Delta\right)^{\frac{p}{p-1}} \eta \ln (t)}\right\} \tag{A.17}\\
& \supset\left\{\frac{2 \nu^{\frac{1}{p-1}}}{5 \Delta^{\frac{p}{p-1}}} \eta \ln (T) \leq n_{t-1, a^{\star}}\right\} \bigcap \bigcup_{a \neq a^{\star}}\left\{n_{t-1, a} \leq \frac{2 \nu^{\frac{1}{p-1}}}{\left.\left(\left(1+5^{\frac{p-1}{p}}\right) \Delta\right)^{\frac{p}{p-1}} \eta \ln \left(t_{0}\right)\right\}}\right. \tag{A.19}\\
& \because T>t>t_{0} \tag{A.20}\\
& \supset\left\{\frac{2 T}{5(K-1)} \leq n_{t-1, a^{\star}}\right\} \bigcap \bigcup_{a \neq a^{\star}}\left\{n_{t-1, a} \leq \frac{2 T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}(K-1)} \frac{\ln \left(t_{0}\right)}{\ln (T)}\right\} \tag{A.21}\\
& \supset\left\{\frac{2 T}{5(K-1)} \leq n_{t-1, a^{\star}}\right\} \bigcap\left\{\sum_{a \neq a^{\star}} n_{t-1, a} \leq \frac{2 T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \frac{\ln \left(t_{0}\right)}{\ln (T)}\right\} . \tag{A.22}
\end{align*}
$$

Let $A:=\left\{\frac{2 T}{5(K-1)} \leq n_{t-1, a^{\star}}\right\}$ and $B:=\left\{\sum_{a \neq a^{\star}} n_{t-1, a} \leq \frac{2 T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \frac{\ln \left(t_{0}\right)}{\ln (T)}\right\}$.
Now, we
32 check that $A \cap B$ contains E_{t} for $t \geq t_{0}:=\max \left(1+\frac{2 T}{5(K-1)}+\frac{2 T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}}, T^{\frac{1}{2}}\right)$.
${ }_{33}$ For the set A, if $\omega \in E_{t}$, then,

$$
\begin{align*}
n_{t-1, a^{\star}} & =t-1-\sum_{a \neq a^{\star}} n_{t-1, a} \geq t-1-\frac{T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \because \omega \in E_{t} \tag{A.23}\\
& \geq t_{0}-1-\frac{T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \geq \frac{2 T}{5(K-1)}+\frac{T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \tag{A.24}\\
& \geq \frac{2 T}{5(K-1)}, \tag{A.25}
\end{align*}
$$

34 which implies $\omega \in A$.
For the set B, we have,

$$
\frac{\ln \left(t_{0}\right)}{\ln (T)} \geq \frac{\ln \left(T^{\frac{1}{2}}\right)}{\ln (T)}=\frac{1}{2} .
$$

By using this fact, we get

$$
\begin{equation*}
\frac{2 T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \frac{\ln \left(t_{0}\right)}{\ln (T)} \geq \frac{T}{\left(1+5^{\frac{p-1}{p}}\right)^{\frac{p}{p-1}}} \geq \sum_{a \neq a^{\star}} n_{t-1, a} \quad \because \omega \in E_{t}, \tag{A.26}
\end{equation*}
$$

Thus,

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \geq \Omega\left((K \ln (T))^{\frac{p-1}{p}} T^{\frac{1}{p}}\right)
$$

B Adaptively Perturbed Exploration with A New Robust Estimator

B. 1 Bounds on Tail Probability of A New Robust Estimator

Before deriving the bound of tail probability of a new estimator, we first analyze the property of the influence function $\psi(x)$. Then, using the property of $\psi(x)$, we show that the tail probability has an exponential upper bound.
Lemma B.1. For $p \in(1,2]$, assume that a positive constant b_{p} satisfies the following inequality,

$$
b_{p}^{\frac{2}{p}}\left[2\left(\frac{2-p}{p-1}\right)^{1-\frac{2}{p}}+\left(\frac{2-p}{p-1}\right)^{2-\frac{2}{p}}\right] \geq 1
$$

Then, the following inequality holds, for all $x \in \mathbb{R}$,

$$
\ln \left(1+x+b_{p}|x|^{p}\right) \geq-\ln \left(1-x+b_{p}|x|^{p}\right)
$$

Proof. Let $f(x):=1+x+b_{p}|x|^{p}$. Then, the inequality is represented as $\ln (f(x)) \geq-\ln (f(-x))$. Before starting the proof, first, we show that $f(x)>0$ by checking $\min _{x} f(x)>0$. For $x \geq 0$,

$$
f^{\prime}(x)=1+b_{p} \cdot p x^{p-1}>0
$$

which is non-zero for all $x \geq 0$. Thus, the minimum of $f(x)$ will appear at $x<0$. For $x<0$, its derivative is

$$
f^{\prime}(x)=1-b_{p} \cdot p(-x)^{p-1}
$$

Then, $f^{\prime}(x)$ become zero at $x=-\left(p b_{p}\right)^{-\frac{1}{p-1}}$. Thus, the minimum of $f(x)$ is

$$
\begin{align*}
& f\left(-\left(p b_{p}\right)^{-\frac{1}{p-1}}\right)=1-\left(p b_{p}\right)^{-\frac{1}{p-1}}+b_{p}\left(p b_{p}\right)^{-\frac{p}{p-1}}=1-\left(p^{-\frac{1}{p-1}}-p^{-\frac{p}{p-1}}\right) b_{p}^{-\frac{1}{p-1}} \tag{B.1}\\
& \quad \geq 1-\left(p^{-\frac{1}{p-1}}-p^{-\frac{p}{p-1}}\right)\left[2\left(\frac{2-p}{p-1}\right)^{1-\frac{2}{p}}+\left(\frac{2-p}{p-1}\right)^{2-\frac{2}{p}}\right]^{\frac{p}{2(p-1)}} \tag{B.2}\\
& \quad \because\left[2\left(\frac{2-p}{p-1}\right)^{1-\frac{2}{p}}+\left(\frac{2-p}{p-1}\right)^{2-\frac{2}{p}}\right]^{\frac{p}{2(p-1)}} \geq b_{p}^{-\frac{1}{p-1}} \tag{B.3}\\
& \quad=1-p^{-\frac{p}{p-1}}\left[2(p-1)(2-p)^{1-\frac{2}{p}}+(2-p)^{2-\frac{2}{p}}\right]^{\frac{p}{2(p-1)}} \tag{B.4}\\
& \quad=1-p^{-\frac{p}{p-1}}[2(p-1)+(2-p)]^{\frac{p}{2(p-1)}}(2-p)^{\frac{p-2}{2(p-1)}} \tag{B.5}\\
& \quad=1-p^{-\frac{p}{2(p-1)}}(2-p)^{\frac{p-2}{2(p-1)}}>0 . \tag{B.6}
\end{align*}
$$

Note that $\frac{1}{2} \leq p^{-\frac{p}{2(p-1)}}(2-p)^{\frac{p-2}{2(p-1)}}<1$ holds for $p \in(1,2]$. Since $f(-x)$ and $f(x)$ are symmetric to the y-axis, $f(-x)$ is also positive for all $x \in \mathbb{R}$.

47 By noticing that $\ln (f(x)) \geq-\ln (f(-x))$ is equivalent to $f(x) f(-x)>1$, We show that the following inequality holds,

$$
\begin{align*}
\left(1+x+b_{p}|x|^{p}\right)\left(1-x+b_{p}|x|^{p}\right) & \geq 1 \tag{B.7}\\
b_{p}^{2}|x|^{2 p}+2 b_{p}|x|^{p}+1-x^{2} & \geq 1 \tag{B.8}\\
b_{p}^{2}|x|^{2 p-2}+2 b_{p}|x|^{p-2}-1 & \geq 0 \quad\left(\because x^{2} \geq 0\right) \tag{B.9}
\end{align*}
$$

Let us define $g(z):=b_{p}^{2} z^{2 p-2}+2 b_{p} z^{p-2}$ for $z>0$. Now, we show that $g(z)>1$ holds for $z>0$. First, we analyze the derivative of $g(z)$ computed as follows,

$$
g^{\prime}(z)=2 b_{p} z^{p-3}\left(b_{p}(p-1) z^{p}+(p-2)\right) .
$$

Since $b_{p}>0$ and $z^{p-3}>0$, the sign of $g^{\prime}(z)$ is determined by the term $\left(b_{p}(p-1) z^{p}+(p-2)\right)$, which is an increasing function and, hence, has a unique root at $z_{0}:=\left(\frac{(2-p)}{(p-1)}\right)^{\frac{1}{p}} b_{p}^{-\frac{1}{p}}$. In other words, since $\left(b_{p}(p-1) z^{p}+(p-2)\right)$ has the unique root at z_{0} for $z>0, g^{\prime}(z)$ also has a unique root at z_{0} which is the minimum point. Finally,

$$
g\left(z_{0}\right)-1=b_{p}^{\frac{2}{p}}\left[2\left(\frac{2-p}{p-1}\right)^{1-\frac{2}{p}}+\left(\frac{2-p}{p-1}\right)^{2-\frac{2}{p}}\right]-1 \geq 0
$$

where the last inequality holds by the assumption. Consequently, $g(z)-1 \geq g\left(z_{0}\right)-1 \geq 0$ holds and, hence, $f(x) f(-x) \geq 1$ holds. The lemma is proved.

Corollary B.2. Let $b_{p}:=\left[2\left(\frac{2-p}{p-1}\right)^{1-\frac{2}{p}}+\left(\frac{2-p}{p-1}\right)^{2-\frac{2}{p}}\right]^{-\frac{p}{2}}$. For all $x \in \mathbb{R}$, the following inequality holds

$$
\ln \left(1+x+b_{p}|x|^{p}\right) \geq-\ln \left(1-x+b_{p}|x|^{p}\right)
$$

Proof. The proof is done by directly applying the LemmaB. 1 with

$$
b_{p}=\left[2\left(\frac{2-p}{p-1}\right)^{1-\frac{2}{p}}+\left(\frac{2-p}{p-1}\right)^{2-\frac{2}{p}}\right]^{-\frac{p}{2}}
$$

and

$$
\mathbb{P}\left(y-\hat{Y}_{n}>\delta\right) \leq \exp \left(-\frac{n^{1-\frac{1}{p}}}{c} \delta+\frac{b_{p} \nu_{p}}{c^{p}}\right)
$$

${ }^{7}$ where $\nu_{p}:=\mathbb{E}\left[\left|Y_{k}\right|^{p}\right]$.

Proof. From the Markov's inequality,

$$
\begin{equation*}
\mathbb{P}\left(\frac{n^{1-\frac{1}{p}}}{c} \hat{Y}_{n}>\frac{n^{1-\frac{1}{p}}}{c}(y+\delta)\right) \leq \exp \left(-\frac{n^{1-\frac{1}{p}}}{c}(y+\delta)\right) \mathbb{E}\left[\exp \left(\frac{n^{1-\frac{1}{p}}}{c} \hat{Y}_{n}\right)\right] \tag{B.11}
\end{equation*}
$$

Since $\psi(x) \leq \ln \left(b_{p}|x|^{p}+x+1\right)$ holds by its definition, we have

$$
\begin{align*}
\mathbb{E}\left[\exp \left(\frac{n^{1-\frac{1}{p}}}{c} \hat{Y}_{n}\right)\right] & \leq \mathbb{E}\left[\prod_{k=1}^{n}\left(1+\frac{Y_{k}}{c n^{\frac{1}{p}}}+b_{p} \frac{Y_{k}^{p}}{2\left(c n^{\frac{1}{p}}\right)^{p}}\right)\right] \tag{B.12}\\
& =\prod_{k=1}^{n} \mathbb{E}\left[1+\frac{Y_{k}}{c n^{\frac{1}{p}}}+b_{p} \frac{Y_{k}^{p}}{2 c^{p} n}\right] \tag{B.13}\\
& =\left(1+\frac{y}{c n^{\frac{1}{p}}}+b_{p} \frac{v_{p}}{2 c^{p} n}\right)^{n} \tag{B.14}\\
& \leq \exp \left(\frac{n^{1-\frac{1}{p}}}{c} y+b_{p} \frac{v_{p}}{2 c^{p}}\right) \tag{B.15}
\end{align*}
$$

Combining B.11) and B.15), we have

$$
\begin{aligned}
\mathbb{P}\left(\hat{Y}_{n}-y>\delta\right) & \leq \exp \left(-\frac{n^{1-\frac{1}{p}}}{c}(y+\delta)\right) \exp \left(\frac{n^{1-\frac{1}{p}}}{c} y+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \\
& =\exp \left(-\frac{n^{1-\frac{1}{p}}}{c} \delta+\frac{b_{p} \nu_{p}}{2 c^{p}}\right)
\end{aligned}
$$

The upper bound of $\mathbb{P}\left(y-\hat{Y}_{n}>\delta\right)$ can be obtained by the similar way. Hence we obtain the desired result. The theorem is proved.

C Regret Analysis Scheme for General Perturbation

In this section, we prove Theorem 3 and 4 in the main paper under Assumption 2.

C. 1 Regret Upper Bounds

To analyze the regret \mathcal{R}_{T} in the view of expectation, we borrow the notion of filtration $\left\{\mathcal{H}_{t}: t=\right.$ $1, \ldots, T$ \} from [2] and [6] where the filtration \mathcal{H}_{t} is defined as the history of plays until time t as follows

$$
\mathcal{H}_{t}:=\left\{a_{\ell}, \mathbf{R}_{a_{\ell}}: \ell=1, \ldots, t\right\}
$$

By definition, $\mathcal{H}_{1} \subset \mathcal{H}_{2} \subset \cdots \subset \mathcal{H}_{T-1}$ holds. Finally, we separates the event $\left\{a_{t}=a\right\}$ into three groups based on the threshold $x_{a}:=r_{a}+\Delta_{a} / 3$ and $y_{a}:=r_{a^{\star}}-\Delta_{a} / 3$. Finally, for a given reward estimator $\hat{r}_{t, a}$, let us define the following sets which will be used to partition the event $\left\{a_{t}=a\right\}$:

$$
E_{t, a}:=\left\{a_{t}=a\right\}, \quad \hat{E}_{t, a}:=\left\{\hat{r}_{t, a} \leq x_{a}\right\}, \quad \tilde{E}_{t, a}:=\left\{\hat{r}_{t-1, a}+\beta_{t-1, a} G_{t, a} \leq y_{a}\right\}
$$

We separate $E_{t, a}$ into three subsets:

$$
\begin{equation*}
E_{t, a}=E_{t, a}^{(1)} \cup E_{t, a}^{(2)} \cup E_{t, a}^{(3)} \tag{C.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{t, a}^{(1)}=E_{t, a} \cap \hat{E}_{t, a}^{c} \\
& E_{t, a}^{(2)}=E_{t, a} \cap \hat{E}_{t, a} \cap \tilde{E}_{t, a} \\
& E_{t, a}^{(3)}=E_{t, a} \cap \hat{E}_{t, a} \cap \tilde{E}_{t, a}^{c}
\end{aligned}
$$

In the following sections, we estimate the upper bound of the probability of the event $E_{t, a}$ based on the decomposition (C.1).

Lemma C.1. Assume that the p-th moment of rewards is bounded by a constant $\nu_{p}<\infty, \hat{r}_{t, a}$ is a p-robust estimator of $\overline{\mathrm{B} .10}$ and $F(x)$ satisfies Assumption 2. Then for any action $a \in \mathcal{A}$, it holds

$$
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(1)}\right) \leq 1+\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \Gamma\left(\frac{2 p-1}{p-1}\right)
$$

where the last equality holds by $\Gamma(x+1)=x \Gamma(x)$. The lemma is proved.
Next we estimate $E_{t, a}^{(2)}$. From now on, we let ρ stand for the following ratio

$$
\rho(g):=\frac{F(g)}{1-F(g)}=\frac{\mathbb{P}(G<g)}{\mathbb{P}(G \geq g)}
$$

Proof. Fix arm $a \in \mathcal{A}$. Let τ_{k} denotes the smallest round when the arm a is sampled for the k-th time i.e. $k=\sum_{t=1}^{\tau_{k}} \mathbb{I}\left[E_{t, a}\right]$. We let $\tau_{0}:=0$ and $\tau_{k}=T$ for $k>n_{a}(T)$. Then it is easy to see that for $\tau_{k}<t \leq \tau_{k+1}$

$$
\mathbb{I}\left[E_{t, a}\right]= \begin{cases}1 & : t=\tau_{k+1} \\ 0 & : t \neq \tau_{k+1}\end{cases}
$$

Therefore,

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(1)}\right)=\sum_{t=1}^{T} \mathbb{E}\left[\mathbb{I}\left[E_{t, a}^{(1)}\right]\right] & =\sum_{k=0}^{T-1} \mathbb{E}\left[\sum_{t=1+\tau_{k}}^{\tau_{k+1}} \mathbb{I}\left[E_{t, a}^{(1)}\right]\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{\tau_{1}} \mathbb{I}\left(E_{t, a} \cap \hat{E}_{t, a}^{c}\right)\right]+\sum_{k=1}^{T-1} \mathbb{E}\left[\sum_{t=1+\tau_{k}}^{\tau_{k+1}} \mathbb{I}\left[E_{t, a} \cap \hat{E}_{t, a}^{c}\right]\right] \\
& \leq 1+\sum_{k=1}^{T-1} \mathbb{P}\left(\hat{E}_{\tau_{k+1}, a}^{c}\right)
\end{aligned}
$$

where the last inequality holds by (C.2). Also, by the definition of $\hat{E}_{t, a}$ and Theorem B. 3 .

$$
\begin{aligned}
\sum_{k=1}^{T-1} \mathbb{P}\left(\hat{E}_{\tau_{k+1}, a}^{c}\right) & \leq \sum_{k=1}^{T-1} \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \leq \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \int_{0}^{\infty} \exp \left(-\frac{\Delta_{a} x^{1-\frac{1}{p}}}{3 c}\right) d x \\
& \leq \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \frac{p}{p-1} \int_{0}^{\infty} \exp (-t) t^{\frac{1}{p-1}} d t \because t=\frac{\Delta_{a} x^{1-\frac{1}{p}}}{3 c} \\
& =\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \frac{p}{p-1} \Gamma\left(\frac{p}{p-1}\right) \\
& =\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \Gamma\left(\frac{2 p-1}{p-1}\right)
\end{aligned}
$$

where F is a cumulative density function of perturbation G.
Lemma C.2. Assume that the p-th moment of rewards is bounded by a constant $\nu_{p}<\infty, \hat{r}_{t, a}$ is a p-robust estimator of (B.10) and $F(x)$ satisfies Assumption 2. For any action $a \in \mathcal{A}$, it holds

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(2)}\right) & \leq \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C_{1}+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \\
& +2\left(\frac{6 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{-F^{-1}\left(\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}+2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}
\end{aligned}
$$

Proof. If $a=a^{\star}$, then $\Delta_{a}=0$ so the desired result trivially holds. Threfore, we take $a \in \mathcal{A} \backslash\left\{a^{\star}\right\}$. For the convenience of the notation, we write $\tilde{r}_{t, a}:=\hat{r}_{t-1, a}+\beta_{t-1, a} G_{t, a}$. Due to the decision rule of the perturbation method, $a_{t}=a$ implies $\tilde{r}_{t, a^{\prime}} \leq \tilde{r}_{t, a}$ for $a^{\prime} \in \mathcal{A}$. Therefore, it holds

$$
\begin{equation*}
E_{t, a} \cap \tilde{E}_{t, a} \subset \bigcap_{a^{\prime} \in \mathcal{A}}\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}\right\}=\left\{\tilde{r}_{t, a^{\star}} \leq y_{a}\right\} \cap\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}, \forall a^{\prime} \neq a_{\star}\right\} \tag{C.3}
\end{equation*}
$$

This fact implies

$$
\begin{equation*}
\mathbb{P}\left(E_{t, a} \cap \tilde{E}_{t, a} \mid \mathcal{H}_{t-1}\right) \leq \mathbb{P}\left(\bigcap_{a^{\prime} \in \mathcal{A}}\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}\right\} \mid \mathcal{H}_{t-1}\right) \tag{C.4}
\end{equation*}
$$

Note that events $\left\{\tilde{r}_{t, a^{\star}} \leq y_{a}\right\}$ and $\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}, \forall a^{\prime} \neq a_{\star}\right\}$ are independent if \mathcal{H}_{t-1} is given. From this fact, (C.4) is equivalent to

$$
\begin{aligned}
\mathbb{P}\left(\bigcap_{a^{\prime} \in \mathcal{A}}\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}\right\} \mid \mathcal{H}_{t-1}\right) & =\mathbb{P}\left(\tilde{r}_{t, a^{\star}} \leq y_{a} \mid \mathcal{H}_{t-1}\right) \mathbb{P}\left(\tilde{r}_{t, a^{\prime}} \leq y_{a}, \forall a^{\prime} \neq a_{\star} \mid \mathcal{H}_{t-1}\right) \\
& =\frac{\mathbb{P}\left(\tilde{r}_{t, a^{\star}} \leq y_{a} \mid \mathcal{H}_{t-1}\right)}{\mathbb{P}\left(\tilde{r}_{t, a^{\star}}>y_{a} \mid \mathcal{H}_{t-1}\right)} \mathbb{P}\left(\left\{\tilde{r}_{t, a^{\star}}>y_{a}\right\} \cap\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}, \forall a^{\prime} \neq a_{\star}\right\} \mid \mathcal{H}_{t-1}\right)
\end{aligned}
$$

Since $\hat{r}_{t-1, a^{\star}}, \beta_{t-1, a^{\star}}$ are already determined under the condition \mathcal{H}_{t-1}, we get

$$
\mathbb{P}\left(\tilde{r}_{t, a^{\star}} \leq y_{a} \mid \mathcal{H}_{t-1}\right)=F\left(\frac{r_{a^{\star}}-\hat{r}_{t-1, a^{\star}}-\frac{\Delta_{a}}{3}}{\beta_{t-1, a^{\star}}}\right)
$$

Similarly to C.3), we can observe that

$$
\begin{equation*}
\left\{\tilde{r}_{t, a^{\star}}>y_{a}\right\} \cap\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}, \forall a^{\prime} \neq a_{\star}\right\} \subset E_{t, a^{\star}} \cap \tilde{E}_{t, a} \tag{C.5}
\end{equation*}
$$

and this implies

$$
\begin{equation*}
\mathbb{P}\left(\left\{\tilde{r}_{t, a^{\star}}>y_{a}\right\} \cap\left\{\tilde{r}_{t, a^{\prime}} \leq y_{a}, \forall a^{\prime} \neq a_{\star}\right\} \mid \mathcal{H}_{t-1}\right) \leq \mathbb{P}\left(E_{t, a^{\star}} \cap \tilde{E}_{t, a} \mid \mathcal{H}_{t-1}\right) \tag{C.6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathbb{P}\left(E_{t, a} \cap \tilde{E}_{t, a} \mid \mathcal{H}_{t-1}\right) \leq \frac{Q_{t, a^{\star}}}{1-Q_{t, a^{\star}}} \mathbb{P}\left(E_{t, a^{\star}} \cap \tilde{E}_{t, a} \mid \mathcal{H}_{t-1}\right) \tag{C.7}
\end{equation*}
$$

where $Q_{t, a^{\star}}:=F\left(\frac{r_{a^{\star}}-\hat{r}_{t-1, a^{\star}}-\frac{\Delta_{a}}{3}}{\beta_{t-1, a^{\star}}}\right)$. By taking an expectation on both sides, we have,

$$
\begin{equation*}
\mathbb{P}\left(E_{t, a}^{(2)}\right)=\mathbb{P}\left(E_{t, a} \cap \hat{E}_{t, a} \cap \tilde{E}_{t, a}\right) \leq \mathbb{E}\left[\frac{Q_{t, a^{\star}}}{1-Q_{t, a^{\star}}} \mathbb{I}\left[E_{t, a^{\star}} \cap \hat{E}_{t, a} \cap \tilde{E}_{t, a}\right]\right] \tag{C.8}
\end{equation*}
$$

Now, we set τ_{k} to denote the smallest round when the optimal arm a^{\star} is sampled for the k-th time. Then, the summation of the right-hand side of C. 8 over $t=1, \ldots, T$ is bounded as follows,

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[\frac{Q_{t, a^{\star}}}{1-Q_{t, a^{\star}}} \mathbb{I}\left[E_{t, a^{\star}} \cap \hat{E}_{t, a} \cap \tilde{E}_{t, a}\right]\right] & =\sum_{k=0}^{T-1} \mathbb{E}\left[\sum_{t=\tau_{k}+1}^{\tau_{k+1}} \frac{Q_{t, a^{\star}}}{1-Q_{t, a^{\star}}} \mathbb{I}\left[E_{t, a^{\star}} \cap \hat{E}_{t, a} \cap \tilde{E}_{t, a}\right]\right] \\
& \left.=\sum_{k=0}^{T-1} \mathbb{E}\left[\frac{Q_{\tau_{k+1}, a^{\star}}}{1-Q_{\tau_{k+1}, a^{\star}}} \mathbb{[} \hat{E}_{\tau_{k+1}, a} \cap \tilde{E}_{\tau_{k+1}, a}\right]\right] \\
& \leq \sum_{k=1}^{T} \mathbb{E}\left[\frac{Q_{\tau_{k}, a^{\star}}}{1-Q_{\tau_{k}, a^{\star}}}\right]
\end{aligned}
$$

We first compute the upper bound of the conditional expectation $\mathbb{E}\left[\left.\frac{Q_{\tau_{k}, a^{\star}}}{1-Q_{\tau_{k}, a^{\star}}} \right\rvert\, \mathcal{H}_{\tau_{k}}\right]$. From the definition of τ_{k}, we have $n_{\tau_{k}, a}=k$ and $\beta_{\tau_{k}, a}=\frac{c}{k^{1-\frac{1}{p}}}$. By using this fact, we get,

$$
\begin{align*}
\mathbb{E}\left[\left.\frac{Q_{\tau_{k}, a^{\star}}}{1-Q_{\tau_{k}, a^{\star}}} \right\rvert\, \mathcal{H}_{\tau_{k}}\right] & =\mathbb{E}\left[\left.\rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}}-\frac{\Delta_{a}}{3}\right\}\right) \right\rvert\, \mathcal{H}_{\tau_{k}}\right] \\
& =\int_{\mathbb{R}} \rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) \tag{C.9}
\end{align*}
$$

We decompose $\mathbb{R}=I_{1} \cup I_{2} \cup I_{3}$ into three intervals where $I_{1}:=\left\{x \leq r_{a^{\star}}-\frac{\Delta_{a}}{3}\right\}, I_{2}:=\left\{r_{a^{\star}}-\frac{\Delta_{a}}{3}<\right.$ $\left.x \leq r_{a^{\star}}-\frac{\Delta_{a}}{6}\right\}$, and $I_{3}:=\left\{r_{a^{\star}}-\frac{\Delta_{a}}{6}<x\right\}$. We derive the upper bound of (C.9) on the each interval.

From the tail bound of the proposed estimator, we have,

$$
\begin{equation*}
\mathbb{P}\left(\frac{\Delta_{a}}{3} \leq r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}}\right) \leq \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \tag{C.11}
\end{equation*}
$$

Hence we can get the upper bound of the first term in C.10. Also, by Fubini-Tonelli theorem, we can transform the second term of (C.10) as follows

$$
\begin{align*}
& \frac{c}{k^{1-\frac{1}{p}}} \int_{0}^{\infty}\left(\int_{0}^{g} \frac{h(u)}{1-F(u)} \mathrm{d} u\right) f_{\hat{r}}\left(r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}} g-\frac{\Delta_{a}}{3}\right) \mathrm{d} g \\
&=\int_{0}^{\infty}\left(\int_{u}^{\infty} f_{\hat{r}}\left(r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}} g-\frac{\Delta_{a}}{3}\right) \frac{c}{k^{1-\frac{1}{p}}} \mathrm{~d} g\right) \frac{h(u)}{1-F(u)} \mathrm{d} u \\
&=\int_{0}^{\infty}\left(\int_{-\infty}^{\left.r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}}{ }^{u-\frac{\Delta_{a}}{3}} f_{\hat{r}}(g) \mathrm{d} g\right) \frac{h(u)}{1-F(u)} \mathrm{d} u}\right. \\
& \quad=\int_{0}^{\infty} \mathbb{P}\left(r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}} \geq \frac{c}{k^{1-\frac{1}{p}}} u+\frac{\Delta_{a}}{3}\right) \frac{h(u)}{1-F(u)} \mathrm{d} u \tag{C.12}
\end{align*}
$$

Similar to C.11, we have

$$
\mathbb{P}\left(r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}} \geq \frac{c}{k^{1-\frac{1}{p}}} u+\frac{\Delta_{a}}{3}\right) \leq \exp \left(-u-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right)
$$

112
By using the change of variable formula,

$$
\begin{aligned}
& \int_{I_{1}} \rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) \\
& =\int_{-\infty}^{r_{a^{\star}}-\frac{\Delta_{a}}{3}} \rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) f_{\hat{r}}(x) \mathrm{d} x \\
& =\frac{c}{k^{1-\frac{1}{p}}} \int_{0}^{\infty} \rho(g) f_{\hat{r}}\left(r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}} g-\frac{\Delta_{a}}{3}\right) \mathrm{d} g
\end{aligned}
$$

where $f_{\hat{r}}$ is the density function of the measure $\mathbb{P}(\hat{r} \in \mathrm{~d} x)$. Note that the following equality holds by the fundamental theorem of calculus

$$
\rho(g)=\frac{F(g)}{1-F(g)}=\int_{0}^{g} \frac{h(u)}{1-F(u)} \mathrm{d} u+\frac{F(0)}{1-F(0)}
$$

Therefore,

$$
\begin{align*}
\frac{c}{k^{1-\frac{1}{p}}} & \int_{0}^{\infty} \frac{F(g)}{1-F(g)} f_{\hat{r}}\left(r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}} g-\frac{\Delta_{a}}{3}\right) \mathrm{d} g \\
= & \frac{c}{k^{1-\frac{1}{p}}} \int_{0}^{\infty}\left(\int_{0}^{g} \frac{h(u)}{1-F(u)} \mathrm{d} u+\frac{F(0)}{1-F(0)}\right) f_{\hat{r}}\left(r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}} g-\frac{\Delta_{a}}{3}\right) \mathrm{d} g \\
= & \frac{F(0)}{1-F(0)} \mathbb{P}\left(\frac{\Delta_{a}}{3} \leq r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}}\right) \\
& \quad+\frac{c}{k^{1-\frac{1}{p}}} \int_{0}^{\infty}\left(\int_{0}^{g} \frac{h(u)}{1-F(u)} \mathrm{d} u\right) f_{\hat{r}}\left(r_{a^{\star}}-\frac{c}{k^{1-\frac{1}{p}}} g-\frac{\Delta_{a}}{3}\right) \mathrm{d} g . \tag{C.10}
\end{align*}
$$

Thus, we obtain the upper bound of (C.12) as follows

$$
\begin{aligned}
& \int_{0}^{\infty} \mathbb{P}\left(r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}} \geq \frac{c}{k^{1-\frac{1}{p}}} u+\frac{\Delta_{a}}{3}\right) \frac{h(u)}{1-F(u)} \mathrm{d} u \\
& \leq \int_{0}^{\infty} \exp \left(-u-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \frac{h(u)}{1-F(u)} \mathrm{d} u \\
& \quad \leq \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \int_{0}^{\infty} \frac{\exp (-u) h(u)}{1-F(u)} \mathrm{d} u \\
& \quad \leq C \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right),
\end{aligned}
$$

where the last inequality holds due to the assumption on $F(x)$. Therefore,

$$
\begin{align*}
\int_{I_{1}} \rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) & \leq C \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \tag{C.13}\\
& +\frac{F(0)}{1-F(0)} \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \tag{C.14}
\end{align*}
$$

$F(0) \leq 1 / 2$, it is easy to see that

$$
\begin{equation*}
\rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \leq 2 F\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \tag{C.15}
\end{equation*}
$$

for $x \in I_{2} \cup I_{3}$. Hence, for $x \in I_{2}$,

$$
\begin{aligned}
& \int_{I_{2}} \rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) \\
& \quad \leq \int_{r_{a^{\star}}-\frac{\Delta_{a}}{3}}^{r_{a^{\star}}-\frac{\Delta_{a}}{6}} 2 F\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) \\
& \quad \leq 2 \mathbb{P}\left(\frac{\Delta_{a}}{6} \leq r_{a^{\star}}-\hat{r}_{\tau_{k}, a^{\star}}\right)
\end{aligned}
$$

Finally, due to C.15 again,

$$
\begin{align*}
& \int_{I_{3}} \rho\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) \\
& \quad \leq 2 \int_{r_{a^{\star}-\frac{\Delta_{a}}{6}}}^{\infty} F\left(\frac{k^{1-\frac{1}{p}}}{c}\left\{r_{a^{\star}}-x-\frac{\Delta_{a}}{3}\right\}\right) \mathbb{P}(\hat{r} \in \mathrm{~d} x) \leq 2 F\left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{6 c}\right) . \tag{C.17}
\end{align*}
$$

120
By combining C.14, C.16, and C.17,

$$
\begin{aligned}
\sum_{k=1}^{T} \mathbb{E}\left[\left.\frac{Q_{\tau_{k}, a^{\star}}}{1-Q_{\tau_{k}, a^{\star}}} \right\rvert\, \mathcal{H}_{\tau_{k}}\right] \leq & \sum_{k=1}^{T}\left\{C \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\right. \\
& \left.+\frac{F(0)}{1-F(0)} \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\right\} \\
& +\sum_{k=1}^{T} 2 \exp \left(-\frac{\Delta_{a} k^{1-\frac{1}{p}}}{6 c}+\frac{b_{p} \nu_{p}}{2 c^{p}}\right)+\sum_{k=1}^{T} 2 F\left(-\frac{k^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right) \\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C+\frac{F(0)}{1-F(0)}\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \\
& +2 \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right) \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{6 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}+\sum_{k=1}^{T} 2 F\left(-\frac{k^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \\
& +\sum_{k=1}^{T} 2 F\left(-\frac{k^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right)
\end{aligned}
$$

The remaining part is to derive the upper bound of the last term. For $T>2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}$, let ℓ_{-}be the maximal time such that

$$
F\left(-\frac{\ell_{-}^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right) \geq \frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}
$$

Then, we have ℓ_{-}as follows,

$$
\ell_{-}=\left(\frac{6 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{-F^{-1}\left(\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}^{\frac{p}{p-1}}
$$

For $k>\ell_{-}$, the following inequality holds,

$$
F\left(-\frac{\ell_{-}^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right)<\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}
$$

Note that $\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \leq \frac{1}{2}$ for $T>\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}$ and $F^{-1}\left(\frac{1}{2 T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)<0$ from the assumption $F(0)<\frac{1}{2}$.
Therefore,

$$
\begin{aligned}
\sum_{k=1}^{T} 2 F\left(-\frac{k^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right) & \leq 2 \ell_{-}+\sum_{k=\ell_{-}+1}^{T} 2 F\left(-\frac{k^{1-\frac{1}{p}} \Delta_{a}}{6 c}\right) \\
& \leq 2 \ell_{-}+\sum_{k=\ell_{-}+1}^{T} \frac{2}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \\
& \leq 2\left(\frac{6 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{-F^{-1}\left(\frac{1}{2 T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}^{\frac{p}{p-1}}+2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \\
& \leq 2\left(\frac{6 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{-F^{-1}\left(\frac{1}{2 T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}+2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}
\end{aligned}
$$

For $T \leq 2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}$,

$$
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(2)}\right) \leq T \leq 2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}+2\left(\frac{6 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{-F^{-1}\left(\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}
$$

Thus, the upper bound also holds. By combining this upper bound, the Lemma is proved.
Lastly, we estimate the upper bound of $E_{t, a}^{(3)}$.
Lemma C.3. Assume that the p-th moment of rewards is bounded by a constant $\nu_{p}<\infty, \hat{r}_{t, a}$ is a p-robust estimator of B .10 and $F(x)$ satisfies Assumption 2. For any action $a \in \mathcal{A}$, it holds

$$
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(3)}\right) \leq\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}+2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}
$$

Proof. Recall τ_{k} from Lemma (C.1). Obviously,

$$
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(3)}\right) \leq \sum_{k=1}^{T} \mathbb{P}\left(\hat{E}_{\tau_{k}, a} \cap \tilde{E}_{\tau_{k}, a}^{c}\right)
$$

$$
\begin{equation*}
\ell_{+} \leq\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}^{\frac{p}{p-1}} \tag{C.19}
\end{equation*}
$$

and for $k>\ell_{+}$

$$
\begin{equation*}
1-F\left(\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}\right) \leq \frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \tag{C.20}
\end{equation*}
$$

Therefore, by (C.18), C.19, and (C.20,

$$
\begin{aligned}
\sum_{k=1}^{T} \mathbb{P}\left(\hat{E}_{\tau_{k}, a} \cap \tilde{E}_{\tau_{k}, a}^{c}\right) & \leq \sum_{k=1}^{T}\left(1-F\left(\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}\right)\right) \\
& \leq \ell_{+}+\sum_{k=\ell_{+}+1}^{T}\left(1-F\left(\frac{\Delta_{a} k^{1-\frac{1}{p}}}{3 c}\right)\right) \\
& \leq\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}^{\frac{p}{p-1}}+\sum_{k=\ell+1}^{T} \frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}} \\
& \leq\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}+2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}
\end{aligned}
$$

136
For $T \leq 2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}$,

$$
\sum_{t=1}^{T} \mathbb{P}\left(E_{t, a}^{(3)}\right) \leq T \leq 2\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}+\left(\frac{3 c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}
$$

137 Thus, the bound also holds. Consequently, the lemma is proved.

$$
\sum_{t=1}^{T} \Delta_{a} \mathbb{P}\left(E_{t, a}^{(3)}\right) \leq\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}}+2\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}
$$

Therefore, we can estimate the upper bound of (C.21) by combining the above results as follows

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \\
& +2\left(\frac{(6 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left\{-F^{-1}\left(\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}} \\
& +\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}_{+}^{\frac{p}{p-1}} \\
& \left.+4\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \\
\leq & O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}\right. \\
& \left.+\frac{(3 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[F^{-1}\left(1-\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}+\Delta_{a}\right)
\end{aligned}
$$

C. 2 Regret Lower Bounds

Theorem C.5. For $0<c<\frac{K-1}{K-1+2^{\frac{p}{p-1}}}$ and $T \geq \frac{c^{\frac{1}{p-1}}(K-1)}{2^{\frac{p}{p-1}}}\left|F^{-1}\left(1-\frac{1}{K}\right)\right|^{\frac{p}{p-1}}$, there exists a K-armed stochastic bandit problem for which the regret of APE-RE has the following lower bound:

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \geq \Omega\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} F^{-1}\left(1-\frac{1}{K}\right)\right) \tag{C.22}
\end{equation*}
$$

Proof. We construct a K-armed multi-armed bandit problem with deterministic rewards of which the regret analysis presents the regret bound C.22. Let the optimal arm a^{\star} give the reward of $\Delta=\frac{1}{2} c^{\frac{1}{p}}\left(\frac{(K-1)}{T}\right)^{1-\frac{1}{p}} F^{-1}\left(1-\frac{1}{K}\right)$ whereas the other arms provide zero rewards. Note that $\Delta \in[0,1]$ for $T \geq \frac{c^{\frac{1}{p-1}}(K-1)}{2^{\frac{p}{p-1}}}\left|F^{-1}\left(1-\frac{1}{K}\right)\right|^{\frac{p}{p-1}}$ and the estimator becomes $\hat{r}_{a}=\Delta \mathbb{I}\left[a=a^{\star}\right]$ since there is no noise. Let E_{t} be the set of events which satisfy

$$
\sum_{a \neq a^{\star}} n_{t, a} \leq c T
$$

If $\mathbb{P}\left(E_{t}\right) \leq 1 / 2$ holds for some $t \in[1, \cdots, T]$, then the regret bound is computed as follows

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \geq \frac{1}{2} \mathbb{E}\left[\mathcal{R}_{t} \mid E_{t}^{c}\right] \geq \frac{c T}{2} \Delta=\frac{c^{1+\frac{1}{p}}}{4}(K-1)^{1-\frac{1}{p}} T^{\frac{1}{p}} F^{-1}\left(1-\frac{1}{K}\right)
$$

hence it satisfies C.22). Otherwise, if $\mathbb{P}\left(E_{t}\right)>1 / 2$ holds for all $t \in[1, \cdots, T]$, it is sufficient to prove $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq 1 / 8$. Then, it holds

$$
\mathbb{E}\left[\mathcal{R}_{T}\right]=\sum_{t=1}^{T} \Delta \mathbb{P}\left(a_{t}=a^{\star}\right) \geq \frac{T}{8} \Delta=\frac{c^{\frac{1}{p}}}{16}(K-1)^{1-\frac{1}{p}} T^{\frac{1}{p}} F^{-1}\left(1-\frac{1}{K}\right)
$$

and we get the desired result since $0<c<\frac{K-1}{K-1+2^{\frac{p}{p-1}}}$.
Now, the remaining part is to prove that $\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq 1 / 8$ holds. First, we observe that

$$
\begin{aligned}
& \mathbb{P}\left(a_{t} \neq a^{\star}\right)=\mathbb{P}\left(\bigcup_{a \neq a^{\star}}\left\{\hat{r}_{a^{\star}}+\beta_{t, a^{\star}} G_{t, a^{\star}} \leq \hat{r}_{a}+\beta_{t, a} G_{t, a}\right\}\right) \\
& \quad \geq \mathbb{P}\left(E_{t-1}\right) \mathbb{P}\left(\bigcup_{a \neq a^{\star}}\left\{\hat{r}_{a^{\star}}+\beta_{t, a^{\star}} G_{t, a^{\star}} \leq 2 \Delta \leq \hat{r}_{a}+\beta_{t, a} G_{t, a}\right\} \mid E_{t-1}\right) \\
& \quad \geq \frac{1}{2} \mathbb{E}\left[\left.\mathbb{P}\left(\left.G_{t, a^{\star}} \leq \frac{\Delta}{\beta_{t, a^{\star}}} \right\rvert\, \mathcal{H}_{t-1}, E_{t-1}\right) \mathbb{P}\left(\bigcup_{a \neq a^{\star}}\left\{2 \Delta \leq \beta_{t, a} G_{t, a}\right\} \mid \mathcal{H}_{t-1}, E_{t-1}\right) \right\rvert\, E_{t-1}\right] \\
& \quad \geq \frac{1}{2} \mathbb{E}\left[\mathbb{P}\left(\left.G_{t, a^{\star}} \leq \frac{\Delta((1-c) T)^{1-\frac{1}{p}}}{c} \right\rvert\, \mathcal{H}_{t-1}, E_{t-1}\right)\right. \\
& \left.\quad \times \mathbb{P}\left(\bigcup_{a \neq a^{\star}}\left\{2 \Delta \leq \beta_{t, a} G_{t, a}\right\} \mid \mathcal{H}_{t-1}, E_{t-1}\right) \mid E_{t-1}\right]
\end{aligned}
$$

where the last inequality holds due to $n_{t-1, a^{\star}} \geq(1-c) T$ provided E_{t-1}. Since $c<\frac{K-1}{K-1+2^{\frac{p}{p-1}}}$, we have,

$$
\frac{\Delta((1-c) T)^{1-\frac{1}{p}}}{c}=\left(\frac{(1-c)(K-1)}{2^{\frac{p}{p-1}} c}\right)^{1-\frac{1}{p}} F^{-1}\left(1-\frac{1}{K}\right)>F^{-1}\left(1-\frac{1}{K}\right) .
$$

Observe that

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{a \neq a^{\star}}\left\{2 \Delta \leq \beta_{t, a} G_{t, a}\right\} \mid \mathcal{H}_{t-1}, E_{t-1}\right) \\
& \geq 1-\mathbb{P}\left(\left.\bigcap_{a \neq a^{\star}}\left\{G_{t, a} \leq \frac{2 \Delta}{\beta_{t, a}}\right\} \right\rvert\, \mathcal{H}_{t-1}, E_{t-1}\right) \\
& \geq 1-\prod_{a \neq a^{\star}} F\left(\frac{2 \Delta\left(n_{t-1, a}\right)^{1-\frac{1}{p}}}{c}\right) \\
& \geq 1-\left|F\left(2 \Delta \frac{\sum_{a \neq a^{\star}}\left(n_{t-1, a}\right)^{1-\frac{1}{p}}}{c(K-1)}\right)\right|^{K-1}
\end{aligned}
$$

Therefore, we get

$$
\mathbb{P}\left(a_{t} \neq a^{\star}\right) \geq \frac{1}{2}\left(1-\frac{1}{K}\right)\left(1-\left(1-\frac{1}{K}\right)^{K-1}\right) \geq \frac{1}{8}
$$

167 since $1-\frac{1}{K} \geq \frac{1}{2}$ and $1-\left(1-\frac{1}{K}\right)^{K-1} \geq \frac{1}{2}$ hold for $K \geq 2$ and the theorem is proved.

D Regret Bounds of Specific Perturbations

Corollary D.1. Suppose G follows a Weibull distribution with a parameter $k \leq 1$ with $\lambda>1$ with $c>0$. Then, the problem dependent regret bound is

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{k(p-1)}}+\Delta_{a}\right)
$$

169 The problem independent regret bound is, $\mathbb{E}\left[\mathcal{R}_{T}\right]=\Theta\left(\lambda^{\frac{p}{p-1}} K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{\frac{1}{k}}\right)$.
${ }^{170}$ The minimum rate is achieved at $k=1, \mathbb{E}\left[\mathcal{R}_{T}\right]=\Theta\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)$.
Proof. The CDF of a Weibull distribution with $k \leq 1$ is given as

$$
F(x)=1-\exp \left(-\left(\frac{x}{\lambda}\right)^{k}\right)
$$

Then, its inverse is

$$
F^{-1}(y)=\lambda\left[\ln \left(\frac{1}{1-y}\right)\right]^{\frac{1}{k}}
$$

Then,

$$
F^{-1}\left(1-\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}=\lambda^{\frac{p}{p-1}}\left[\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{k(p-1)}} .
$$

171 Thus, we compute C as follows,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{h(z) \exp (-z)}{1-F(z)} d z & =\int_{0}^{\infty} \frac{k}{\lambda}\left(\frac{z}{\lambda}\right)^{k-1} \frac{\exp \left(-\left(\frac{z}{\lambda}\right)^{k}\right) \exp (-z)}{\exp \left(-2\left(\frac{z}{\lambda}\right)^{k}\right)} d z \\
& =\int_{0}^{\infty} \frac{k}{\lambda}\left(\frac{z}{\lambda}\right)^{k-1} \exp \left(-z+\left(\frac{z}{\lambda}\right)^{k}\right) d z \\
& \leq \int_{0}^{\infty} \frac{k}{\lambda}\left(\frac{z}{\lambda}\right)^{k-1} \exp \left(-\frac{\lambda-1}{\lambda} z\right) d z \\
& =\frac{k}{(\lambda-1)^{k}} \int_{0}^{\infty} z^{k-1} \exp (-z) d z=\frac{k \Gamma(k)}{(\lambda-1)^{k}}=\frac{\Gamma(k+1)}{(\lambda-1)^{k}} \\
& \leq \frac{\Gamma(2)}{(\lambda-1)^{k}}=(\lambda-1)^{-k}
\end{aligned}
$$

For $\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}$, we have,

$$
\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}=0
$$

since the support of x is $(0, \infty)$. Then, the problem dependent regret bound becomes,

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C_{1}+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.1}\\
& +\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}} \tag{D.2}\\
& +\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}^{\frac{p}{p-1}} \tag{D.3}\\
& \left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.4}\\
\leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[(\lambda-1)^{-k}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.5}\\
& \left.+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{k(p-1)}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.6}\\
\leq & O\left(\sum_{a \neq a^{\star}} \frac{\left.\left.C_{c, p, \nu_{p}, F}^{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)\right]^{\frac{1}{p-1}}\left[\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{k(p-1)}}+\Delta_{a}\right)}{}\right. \tag{D.7}
\end{align*}
$$

The problem independent regret bound can be obtained by choosing the threshold of the minimum ${ }_{4}$ gap as $\Delta=c(K / T)^{1-\frac{1}{p}} \ln (K)^{\frac{1}{k}}$.

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{a \neq a^{\star}, \Delta_{a}>\Delta} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{k(p-1)}}+\Delta T \tag{D.8}\\
\leq & K\left(\frac{C_{c, p, \nu_{p}, F}}{\Delta^{\frac{1}{p-1}}}+\left(\frac{(3 c \lambda)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\left[\ln \left(\frac{T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{k(p-1)}}\right)+\Delta T \tag{D.9}\\
\leq & K \frac{C_{c, p, \nu_{p}, F} \cdot T^{\frac{1}{p}}}{K^{\frac{1}{p}} \ln (K)^{\frac{1}{k(p-1)}}}+K\left(\frac{(3 \lambda)^{\frac{p}{p-1}} c T^{\frac{1}{p}}}{K^{\frac{1}{p}} \ln (K)^{\frac{1}{k(p-1)}}}\right)\left[\ln \left(K \ln (K)^{\frac{p}{k(p-1)}}\right)\right]^{\frac{p}{k(p-1)}} \tag{D.10}\\
& +c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{\frac{1}{k}} \tag{D.11}\\
\leq & \frac{C_{c, p, \nu_{p}, F} \cdot K^{1-\frac{1}{p}} T^{\frac{1}{p}}}{\ln (K)^{\frac{1}{k(p-1)}}}+c(3 \lambda)^{\frac{p}{p-1}} K^{1-\frac{1}{p}} T^{\frac{1}{p}}\left(\frac{\left[\left(1+\frac{p}{k(p-1)}\right) \ln (K)\right]^{\frac{p}{k(p-1)}}}{\ln (K)^{\frac{1}{k(p-1)}}}\right) \tag{D.12}\\
& +c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{\frac{1}{k}} \tag{D.13}\\
\leq & O\left((c \lambda)^{\frac{p}{p-1}} K^{1-\frac{1}{p}} T^{\frac{1}{p}}\left(\frac{\ln (K)^{\frac{p}{k(p-1)}}}{\ln (K)^{\frac{1}{k(p-1)}}}\right)\right)=O\left((c \lambda)^{\frac{p}{p-1}} K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{\frac{1}{k}}\right) . \tag{D.14}
\end{align*}
$$

175 Consequently, the lower bound is simply obtained by TheoremC.5, so we can conclude that regret bound is tight. The corollary is proved.

Corollary D.2. Suppose G follows a generalized extreme value distribution with a parameter with $0 \leq \zeta<1$ and $\lambda>1$. Then, the problem dependent regret bound is

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+2\left(\frac{(6 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln _{\zeta}\left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\Delta_{a}\right)
$$

Let $\ln _{\zeta}(x):=\frac{x^{\zeta}-1}{\zeta}$, then, the problem independent regret bound is

$$
\Omega\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln _{\zeta}(K)\right) \leq \mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \frac{\ln _{\zeta}\left(K^{\frac{2 p-1}{p-1}}\right)^{\frac{p}{p-1}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}}\right)
$$

177 The minimum rate is achieved at $\zeta=0, \mathbb{E}\left[\mathcal{R}_{T}\right]=\Theta\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)$.
Proof. The CDF of a generalized extreme value distribution with $0 \leq \zeta<1$ is given as

$$
F(x)=\exp \left(-\left(1+\zeta \frac{x}{\lambda}\right)^{-1 / \zeta}\right)
$$

Then, its inverse is

$$
F^{-1}(y)=\lambda \frac{[\ln (1 / y)]^{-\zeta}-1}{\zeta} \leq \lambda \frac{[1-y]^{-\zeta}-1}{\zeta},
$$

and

$$
\lambda \frac{[\ln (1 / y)]^{-\zeta}-1}{\zeta} \geq \lambda \frac{\left[\frac{y}{1-y}\right]^{\zeta}-1}{\zeta}
$$

where $\ln (x) \leq x-1$ is used. Then,

$$
\left[F^{-1}\left(1-\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]^{\frac{p}{p-1}} \leq \lambda^{\frac{p}{p-1}}\left[\frac{\left(T \Delta_{a}^{\frac{p}{p-1}} / c^{\frac{p}{p-1}}\right)^{\zeta}-1}{\zeta}\right]^{\frac{p}{p-1}}
$$

We compute the $\sup h$ can be obtained as follows,

$$
\begin{aligned}
\sup h & =\sup _{x \in[0, \infty]} \frac{\left(1+\zeta \frac{x}{\lambda}\right)^{-1 / \zeta-1} \exp \left(-\left(1+\zeta \frac{x}{\lambda}\right)^{-1 / \zeta}\right)}{\lambda\left(1-\exp \left(-\left(1+\zeta \frac{x}{\lambda}\right)^{-1 / \zeta}\right)\right)} \\
& =\sup _{t \in[0,1]} \frac{t^{\zeta+1} \exp (-t)}{\lambda(1-\exp (-t))} \leq \sup _{t \in[0,1]} \frac{t \exp (-t)}{\lambda(1-\exp (-t))}=\frac{1}{\lambda}
\end{aligned}
$$

M can be obtained as,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\exp (-z)}{1-F(z)} d z & =\int_{0}^{\infty} \frac{\exp (-z)}{1-\exp \left(-\left(1+\zeta \frac{z}{\lambda}\right)^{-1 / \zeta}\right)} d z \\
& \leq \int_{0}^{\infty}\left(1+\left(1+\zeta \frac{z}{\lambda}\right)^{1 / \zeta}\right) \exp (-z) d z \\
& =1+\int_{0}^{\infty}\left(1+\zeta \frac{z}{\lambda}\right)^{1 / \zeta} \exp (-z) d z \\
& \leq 1+\int_{0}^{\infty} \exp \left(-z+\frac{\ln \left(1+\zeta \frac{z}{\lambda}\right)}{\zeta}\right) d z \\
& \leq 1+\int_{0}^{\infty} \exp \left(-z+\frac{z}{\lambda}\right) d z \\
& =1+\frac{\lambda}{\lambda-1} \because \lambda>1 \\
& =\frac{2 \lambda-1}{\lambda-1}=: M_{1}
\end{aligned}
$$

Hence, $\sup h \cdot M_{1} \leq \frac{2 \lambda-1}{\lambda(\lambda-1)} \leq \frac{2}{\lambda-1}$.
181 For $\frac{\left(6 c c^{\frac{p}{p-1}}\right.}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}$, we have,

$$
\begin{aligned}
\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}} & =\frac{(6 c \lambda)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[\frac{1-\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{-\zeta}}{\zeta}\right]^{\frac{p}{p-1}} \\
& \leq \frac{(6 c \lambda)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[\frac{\ln \left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\zeta}-1}{\zeta}\right]^{\frac{p}{p-1}} \\
& \leq \frac{(6 c \lambda)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[\frac{\left(\frac{T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\zeta}-1}{\zeta}\right]^{\frac{p}{p-1}} \\
& \leq \frac{(6 c \lambda)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}} \ln _{\zeta}\left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}
\end{aligned}
$$

where $-\ln _{\zeta}(1 / \ln (x)) \leq \ln _{\zeta}(\ln (x)) \leq \ln _{\zeta}(x)$ is used.

Then, the problem dependent regret bound becomes,

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{R}_{T}\right] \leq \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{\|h\|_{\infty} M+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.15}\\
& +\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}} \tag{D.16}\\
& +\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right]_{+}^{\frac{p}{p-1}} \tag{D.17}\\
& \left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.18}\\
& \leq \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[\frac{2}{\lambda-1}+\frac{e}{e-1}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.19}\\
& +\frac{(6 c \lambda)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}} \ln _{\zeta}\left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln _{\zeta}\left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}} \tag{D.20}\\
& \left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.21}\\
& \leq O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+2\left(\frac{(6 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln _{\zeta}\left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\Delta_{a}\right), \tag{D.22}
\end{align*}
$$

where $\ln _{\zeta}(x):=\frac{x^{\zeta}-1}{\zeta}$.
The problem independent regret bound can be obtained by choosing the threshold of the minimum gap as $\Delta=c\left(\frac{K}{T}\right)^{1-\frac{1}{p}} \ln _{\zeta}(K)$ Note that $\lim _{\zeta \rightarrow 0} \frac{x^{\zeta}-1}{\zeta}=\ln (x)$

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{\Delta_{a}>\Delta}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[\frac{\lambda+1}{\lambda-1}+\frac{e}{e-1}+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.23}\\
& +2\left(\frac{(6 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln _{\zeta}\left(\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}} \tag{D.24}\\
& \left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.25}\\
\leq & K\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[\frac{\lambda+1}{\lambda-1}+\frac{e}{e-1}+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right. \tag{D.26}\\
& +2\left(\frac{(6 c \lambda)^{p}}{\Delta}\right)^{\frac{1}{p-1}} \ln _{\zeta}\left(\frac{T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}} \tag{D.27}\\
& \left.+\left(\frac{c^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.28}\\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[\frac{\lambda+1}{\lambda-1}+\frac{e}{e-1}+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right)(3 \lambda)^{\frac{p}{p-1}} \frac{c K^{1-\frac{1}{p}} T^{\frac{1}{p}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}} \tag{D.29}
\end{align*}
$$

$$
\begin{align*}
& +2(6 \lambda)^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}}\left(\frac{\ln _{\zeta}\left(K \ln _{\zeta}(K)^{\frac{p}{p-1}}\right)^{\frac{p}{p-1}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}}\right) \tag{D.30}\\
& +c \frac{K^{1-\frac{1}{p}} T^{\frac{1}{p}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}}+c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln _{\zeta}(K) \tag{D.31}\\
& \leq \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[\frac{\lambda+1}{\lambda-1}+\frac{e}{e-1}+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right)(3 \lambda)^{\frac{p}{p-1}} \frac{c K^{1-\frac{1}{p}} T^{\frac{1}{p}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}} \tag{D.32}\\
& \tag{D.33}\\
& +2(6 \lambda)^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}}\left(\frac{\ln _{\zeta}\left(K^{\frac{2 p-1}{p-1}}\right)^{\frac{p}{p-1}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}}\right) \tag{D.34}\\
& \tag{D.35}\\
& +c \frac{K^{1-\frac{1}{p}} T^{\frac{1}{p}}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}}+c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln _{\zeta}(K) \tag{D.36}\\
& \because \ln _{\zeta}\left(x \ln _{\zeta}(x)^{\frac{p}{p-1}}\right) \leq \ln _{\zeta}\left(x^{1+\frac{p}{p-1}}\right) \text { for } x>2 \\
& \leq O\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \frac{\ln _{\zeta}\left(K^{\frac{2 p-1}{p-1}} \frac{\frac{p}{p-1}}{\ln _{\zeta}(K)^{\frac{1}{p-1}}}\right) .}{} .\right.
\end{align*}
$$

For the lower bound,

$$
\lambda \frac{\left[\ln \left(\frac{1}{1-\frac{1}{K}}\right)\right]^{-\zeta}-1}{\zeta} \geq \lambda \frac{[K-1]^{\zeta}-1}{\zeta}=\lambda \ln _{\zeta}(K-1) .
$$

Consequently, the lower bound is simply obtained by Theorem C.5. The corollary is proved.
Corollary D.3. Suppose G follows a Gamma distribution with a parameter $\alpha \geq 1$ and $\lambda \geq 1$. Then, the problem dependent regret bound is

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 \lambda \alpha c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln \left(\frac{\alpha T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\Delta_{a}\right) \tag{D.37}
\end{equation*}
$$

The problem independent regret bound is

$$
\begin{equation*}
\Omega\left(\lambda K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right) \leq \mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left((\lambda \alpha)^{\frac{1}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \frac{\ln \left(\alpha K^{1+\frac{p}{p-1}}\right)^{\frac{p}{p-1}}}{\ln (K)^{\frac{1}{p-1}}}\right) \tag{D.38}
\end{equation*}
$$

The minimum rate is achieved at $\alpha=1, \mathbb{E}\left[\mathcal{R}_{T}\right]=\Theta\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)$.
Proof. The CDF of a Gamma distribution is given as

$$
F(x)=\frac{\gamma(x ; \alpha, \lambda)}{\Gamma(\alpha)}
$$

where $\Gamma(\alpha)$ is a (complete) Gamma function and $\gamma(x ; \alpha, \lambda)$ is an incomplete Gamma function defined as

$$
\gamma(x ; \alpha, \lambda):=\int_{0}^{x} \frac{z^{\alpha-1} \exp \left(-\frac{z}{\lambda}\right)}{\lambda^{\alpha}} d z
$$

Before finding a lower and upper bound of F^{-1}, we introduce a lower and upper bound of a Gamma distribution. In [3], the bounds of $F(x)$ is provided as follows, for $\alpha>1$

$$
\left(1-\exp \left(-\frac{x}{\lambda \Gamma(1+\alpha)^{\frac{1}{\alpha}}}\right)\right)^{\alpha} \leq F(x) \leq\left(1-\exp \left(-\frac{x}{\lambda}\right)\right)^{\alpha}
$$

From these bounds, we have,

$$
\lambda \ln \left(\frac{1}{1-y^{\frac{1}{\alpha}}}\right) \leq F^{-1}(y) \leq \lambda \Gamma(1+\alpha)^{\frac{1}{\alpha}} \ln \left(\frac{1}{1-y^{\frac{1}{\alpha}}}\right) .
$$

Note that the following inequality holds: for $\alpha>1$,

$$
\Gamma(\alpha+1)=\alpha(\alpha-1) \cdots(\alpha-\lfloor\alpha\rfloor+1) \Gamma(\alpha-\lfloor\alpha\rfloor+1) \leq \alpha^{\lfloor\alpha\rfloor} \Gamma(1) \leq \alpha^{\alpha} .
$$

We have a simpler upper bound as

$$
F^{-1}(y) \leq \lambda \Gamma(1+\alpha)^{\frac{1}{\alpha}} \ln \left(\frac{1}{1-y^{\frac{1}{\alpha}}}\right) \leq \lambda \alpha \ln \left(\frac{\alpha}{1-y}\right)
$$

Then,

$$
\left[F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right]^{\frac{p}{p-1}} \leq \lambda^{\frac{p}{p-1}} \alpha^{\frac{p}{p-1}} \ln \left(\frac{\alpha T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}
$$

192 C can be obtained as,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{h(z) \exp (-z)}{1-F(z)} d z & =\int_{0}^{\infty} \frac{z^{\alpha-1} \exp \left(-\frac{z}{\lambda}-z\right)}{\lambda^{\alpha} \Gamma(\alpha)\left(1-\left(1-\exp \left(-\frac{z}{\lambda}\right)\right)^{\alpha}\right)^{2}} d z \\
& \leq \int_{0}^{\infty} \frac{z^{\alpha-1} \exp \left(-\frac{z}{\lambda}-z\right)}{\lambda^{\alpha} \Gamma(\alpha) \exp \left(-2 \frac{z}{\lambda}\right)} d z \\
& =\int_{0}^{\infty} \frac{z^{\alpha-1} \exp \left(-z+\frac{z}{\lambda}\right)}{\lambda^{\alpha} \Gamma(\alpha)} d z=\int_{0}^{\infty} \frac{t^{\alpha-1} \exp (-t)}{(\lambda-1)^{\alpha} \Gamma(\alpha)} d t \\
& =\frac{1}{(\lambda-1)^{\alpha}}
\end{aligned}
$$

For $\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}$, we have,

$$
\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}=0
$$ since $x \in(0, \infty)$. Then, the problem dependent regret bound becomes,

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.39}\\
& +\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}+\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right]_{+}^{\frac{p}{p-1}} \tag{D.40}\\
& \left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.41}\\
\leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[(\lambda-1)^{-\alpha}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.42}\\
& \left.+\left(\frac{(3 \lambda \alpha c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln \left(\frac{\alpha T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.43}\\
\leq & O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 \lambda \alpha c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln \left(\frac{\alpha T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\Delta_{a}\right) . \tag{D.44}
\end{align*}
$$

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{\Delta_{a}>\Delta}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[(\lambda-1)^{-\alpha}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.45}\\
& \left.+\left(\frac{(3 \lambda \alpha c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}} \ln \left(\frac{\alpha T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.46}\\
\leq & K\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[(\lambda-1)^{-\alpha}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right. \tag{D.47}\\
& \left.+\left(\frac{(3 \lambda \alpha c)^{p}}{\Delta}\right)^{\frac{1}{p-1}} \ln \left(\frac{\alpha T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right)^{\frac{p}{p-1}}+\left(\frac{c^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.48}\\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[(\lambda-1)^{-\alpha}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right) 3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{-\frac{1}{p-1}} \tag{D.49}
\end{align*}
$$

$$
\begin{equation*}
+(3 \lambda \alpha)^{\frac{1}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \frac{\ln \left(\alpha K \ln (K)^{\frac{p}{p-1}}\right)^{\frac{p}{p-1}}}{\ln (K)^{\frac{1}{p-1}}} \tag{D.50}
\end{equation*}
$$

$$
\begin{equation*}
+c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{-\frac{1}{p-1}}+c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K) \tag{D.51}
\end{equation*}
$$

$$
\begin{equation*}
\leq \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[(\lambda-1)^{-\alpha}+2^{\frac{2 p-1}{p-1}}+1\right] \Gamma\left(\frac{2 p-1}{p-1}\right) 3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{-\frac{1}{p-1}} \tag{D.52}
\end{equation*}
$$

$$
\begin{equation*}
+(3 \lambda \alpha)^{\frac{1}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \frac{\ln \left(\alpha K^{1+\frac{p}{p-1}}\right)^{\frac{p}{p-1}}}{\ln (K)^{\frac{1}{p-1}}} \tag{D.53}
\end{equation*}
$$

$$
\begin{equation*}
+c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)^{-\frac{1}{p-1}}+c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K) \tag{D.54}
\end{equation*}
$$

$$
\begin{equation*}
\leq O\left((\lambda \alpha)^{\frac{1}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \frac{\ln \left(\alpha K^{1+\frac{p}{p-1}}\right)^{\frac{p}{p-1}}}{\ln (K)^{\frac{1}{p-1}}}\right) \tag{D.55}
\end{equation*}
$$

For the lower bound, we use,

$$
F^{-1}(y) \geq \lambda \ln \left(\frac{1}{1-y^{\frac{1}{\alpha}}}\right) \geq \lambda \ln \left(\frac{y}{1-y}\right)
$$

Thus, the lower bound becomes

$$
\Omega\left(\lambda K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)
$$

For $\lambda=\alpha$, the problem independent regret bound is

$$
\begin{equation*}
\Omega\left(\alpha K^{1-\frac{1}{p}+\frac{1}{\alpha}} T^{\frac{1}{p}}\right) \leq \mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\alpha^{1+\frac{p^{2}}{\alpha(p-1)^{2}}} K^{1-\frac{1}{p}+\frac{1}{\alpha(p-1)}} T^{\frac{1}{p}}\right) \tag{D.57}
\end{equation*}
$$

For $K>\exp \left(\frac{p^{2}}{p-1}\right)$, the minimum rate is achieved at $\alpha=\ln (K), \mathbb{E}\left[\mathcal{R}_{T}\right]=\Theta\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)$.

Proof. The CDF of a Pareto distribution is given as

$$
F(x)=1-\frac{1}{(x / \lambda)^{\alpha}}
$$

Then, its inverse is

$$
F^{-1}(y)=\lambda(1-y)^{-\frac{1}{\alpha}}
$$

Then,

$$
\left[F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right]^{\frac{p}{p-1}}=\lambda^{\frac{p}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}
$$

$201 \quad C$ can be obtained as,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{h(z) \exp (-z)}{1-F(z)} d z & =\int_{0}^{\infty} \frac{\alpha \lambda^{\alpha} z^{-\alpha-1} \exp (-z)}{(z / \lambda)^{-2 \alpha}} d z \\
& =\int_{0}^{\infty} \frac{\alpha z^{\alpha-1} \exp (-z)}{\lambda^{\alpha}} d z \\
& =\frac{\alpha \Gamma(\alpha)}{\lambda^{\alpha}}=\frac{\Gamma(\alpha+1)}{\lambda^{\alpha}} \\
& \leq 1 \quad \because \lambda \geq \alpha
\end{aligned}
$$

For $\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}$, we have,

$$
\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}=0
$$

202
where $-F^{-1}(y)$ is always negative since the support of x is (λ, ∞). Then, the problem dependent regret bound becomes,

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{C+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.58}\\
& +\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}+\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right]_{+}^{\frac{p}{p-1}} \tag{D.59}
\end{align*}
$$

$$
\begin{equation*}
\left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.60}
\end{equation*}
$$

$$
\begin{equation*}
\leq \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[2^{\frac{2 p-1}{p-1}}+2\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.61}
\end{equation*}
$$

$$
\begin{equation*}
\left.+\left(\frac{(3 \lambda c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.62}
\end{equation*}
$$

$$
\begin{equation*}
\leq O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 \lambda c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\Delta_{a}\right) \tag{D.63}
\end{equation*}
$$

The problem independent regret bound can be obtained by choosing the threshold of the minimum gap as $\Delta=c(K / T)^{1-\frac{1}{p}} \alpha$.

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \sum_{\Delta_{a}>\Delta}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[2^{\frac{2 p-1}{p-1}}+2\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.64}
\end{equation*}
$$

$$
\begin{align*}
& \left.+\left(\frac{(3 \lambda c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.65}\\
\leq & K\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[2^{\frac{2 p-1}{p-1}}+2\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right. \tag{D.66}\\
& \left.+\left(\frac{(3 \lambda c)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\left(\frac{c^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.67}\\
& \because x^{\frac{p^{2}}{\alpha(p-1)^{2}}-\frac{1}{p-1}} \text { is decreasing for } \alpha>\frac{p^{2}}{p-1} \tag{D.68}\\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[2^{\frac{2 p-1}{p-1}}+2\right] \Gamma\left(\frac{2 p-1}{p-1}\right) 3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \alpha^{-\frac{1}{p-1}} \tag{D.69}\\
& +(3 \lambda)^{\frac{p}{p-1}} c K^{1-\frac{1}{p}+\frac{p^{2}}{\alpha(p-1)^{2}}} T^{\frac{1}{p}} \alpha^{\frac{p^{2}}{\alpha(p-1)^{2}}-\frac{1}{p-1}}+c \alpha^{\frac{1}{p-1}} K^{1-\frac{1}{p}} T^{\frac{1}{p}}+c \alpha K^{1-\frac{1}{p}} T^{\frac{1}{p}} \tag{D.70}\\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[2^{\frac{2 p-1}{p-1}}+2\right] \Gamma\left(\frac{2 p-1}{p-1}\right) 3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \alpha^{-\frac{1}{p-1}} \tag{D.71}\\
& +3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}+\frac{p^{2}}{\alpha(p-1)^{2}}} T^{\frac{1}{p}} \alpha^{1+\frac{p^{2}}{\alpha(p-1)^{2}}}+c \alpha^{\frac{1}{p-1}} K^{1-\frac{1}{p}} T^{\frac{1}{p}}+c \alpha K^{1-\frac{1}{p}} T^{\frac{1}{p}} \tag{D.72}\\
& \because \lambda=\alpha \tag{D.73}\\
\leq & O\left(c \alpha^{1+\frac{p^{2}}{\alpha(p-1)^{2}}} K^{1-\frac{1}{p}+\frac{2 p}{\alpha(p-1)}} T^{\frac{1}{p}}\right) . \tag{D.74}
\end{align*}
$$

For the minimum rate, we set $\alpha=\ln (K)$, then,

$$
O\left(\ln (K)^{1+\frac{p^{2}}{\ln (K)(p-1)^{2}}} K^{1-\frac{1}{p}+\frac{2 p}{\ln (K)(p-1)}} T^{\frac{1}{p}}\right) \leq O\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)
$$

where $\ln (K)^{1+\frac{p^{2}}{\ln (K)(p-1)^{2}}} \leq e^{\frac{p^{2}}{e(p-1)^{2}}} \ln (K)$. For the lower bound,

$$
\Omega\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} F^{-1}\left(1-\frac{1}{K}\right)\right)=\Omega\left(\lambda K^{1-\frac{1}{p}+\frac{1}{\alpha}} T^{\frac{1}{p}}\right) \geq \Omega\left(\alpha K^{1-\frac{1}{p}+\frac{1}{\alpha}} T^{\frac{1}{p}}\right)
$$

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\Delta_{a}^{\frac{1}{p-1}}}+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\Delta_{a}\right) \tag{D.75}
\end{equation*}
$$

For $\lambda=\alpha$, the problem independent regret bound is

$$
\begin{equation*}
\Omega\left(\alpha K^{1-\frac{1}{p}+\frac{1}{\alpha}} T^{\frac{1}{p}}\right) \leq \mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\alpha^{1+\frac{p^{2}}{\alpha(p-1)^{2}}} K^{1-\frac{1}{p}+\frac{p^{2}}{\alpha(p-1)^{2}}} T^{\frac{1}{p}}\right) \tag{D.76}
\end{equation*}
$$

210 For $K>\exp \left(\frac{p^{2}}{p-1}\right)$, the minimum rate is achieved at $\alpha=\ln (K), \mathbb{E}\left[\mathcal{R}_{T}\right]=\Theta\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)$.

Proof. The CDF of a Fréchet distribution is given as

$$
F(x)=\exp \left(-\left(\frac{x}{\lambda}\right)^{-\alpha}\right)
$$

Then, its inverse is

$$
F^{-1}(y)=\lambda \ln (1 / y)^{-1 / \alpha} \leq(1-y)^{-1 / \alpha}
$$

and

$$
\lambda \ln (1 / y)^{-1 / \alpha} \geq \lambda\left(\frac{y}{1-y}\right)^{\frac{1}{\alpha}}
$$

where $\ln (x) \leq x-1$ is used. Then,

$$
\left[F^{-1}\left(1-\frac{c^{2}}{T \Delta_{a}^{2}}\right)\right]^{2} \leq \lambda^{2}\left[\frac{T \Delta_{a}^{2}}{c^{2}}\right]^{2 / \alpha}
$$

211 In [1], we have $\sup h \leq 2 \frac{\alpha}{\lambda} \leq 2$ due to $\lambda \geq \alpha$, and M can be obtained,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\exp (-z)}{\left(1-\exp \left(-\left(\frac{z}{\lambda}\right)^{-\alpha}\right)\right)} d z \leq & \int_{0}^{\infty}\left(1+\left(\frac{z}{\lambda}\right)^{\alpha}\right) \exp (-z) d z \\
& \because 1 /\left(1-\exp \left(-x^{-1}\right)\right) \leq 1+x \\
& =1+\int_{0}^{\infty}\left(\frac{z}{\lambda}\right)^{\alpha} \exp (-z) d z \\
& =1+\frac{\Gamma(\alpha+1)}{\lambda^{\alpha}} \\
& \leq 1+\frac{\Gamma(\alpha+1)}{\lambda^{\alpha}} \leq 2
\end{aligned}
$$

Thus,

$$
(\sup h) M \leq 4
$$

For $\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}$, the summation is zero,

$$
\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}}=0
$$

212
since its support is $(0, \infty)$. Then, the problem dependent regret bound becomes,

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{\|h\|_{\infty} M_{1}+\frac{F(0)}{1-F(0)}+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.77}\\
& +\frac{(6 c)^{\frac{p}{p-1}}}{\Delta_{a}^{\frac{1}{p-1}}}\left[-F^{-1}\left(\frac{c^{\frac{p}{p-1}}}{T \Delta_{a}^{\frac{p}{p-1}}}\right)\right]_{+}^{\frac{p}{p-1}} \tag{D.78}\\
& +\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left\{F^{-1}\left(1-\frac{1}{T}\left(\frac{c}{\Delta_{a}}\right)^{\frac{p}{p-1}}\right)\right\}^{\frac{p}{p-1}} \tag{D.79}\\
& \left.+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.80}\\
\leq & \sum_{a \neq a^{\star}}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left\{4+2^{\frac{2 p-1}{p-1}}+1\right\} \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.81}\\
& \left.+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}+\Delta_{a}\right] \tag{D.82}\\
\leq & O\left(\sum_{a \neq a^{\star}} \frac{C_{c, p, \nu_{p}, F}}{\left.\Delta_{a}^{\frac{1}{p-1}}+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta_{a}^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\Delta_{a}\right) .}\right. \tag{D.83}
\end{align*}
$$

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq & \sum_{\Delta_{a}>\Delta}\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[5+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right. \tag{D.84}\\
& \left.+\left(\frac{(3 c \lambda)^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\left(\frac{c^{p}}{\Delta_{a}}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.85}\\
\leq & K\left[\exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[5+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right)\left(\frac{(3 c)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right. \tag{D.86}\\
& \left.+\left(\frac{(3 c \lambda)^{p}}{\Delta}\right)^{\frac{1}{p-1}}\left[\frac{T \Delta^{\frac{p}{p-1}}}{c^{\frac{p}{p-1}}}\right]^{\frac{p}{\alpha(p-1)}}+\left(\frac{c^{p}}{\Delta}\right)^{\frac{1}{p-1}}\right]+\Delta T \tag{D.87}\\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[5+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right) 3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \alpha^{-\frac{1}{p-1}} \tag{D.88}\\
& +3^{\frac{p}{p-1}} c \lambda^{\frac{p}{p-1}} K^{1-\frac{1}{p}+\frac{p^{2}}{\alpha(p-1)^{2}}} T^{\frac{1}{p}} \alpha^{\frac{p^{2}}{\alpha(p-1)^{2}}-\frac{1}{p-1}}+c{\alpha^{\frac{1}{p-1}}}_{1^{1-\frac{1}{p}} T^{\frac{1}{p}}+c \alpha K^{1-\frac{1}{p}} T^{\frac{1}{p}}}^{\leq} \tag{D.89}\\
\leq & \exp \left(\frac{b_{p} \nu_{p}}{2 c^{p}}\right)\left[5+2^{\frac{2 p-1}{p-1}}\right] \Gamma\left(\frac{2 p-1}{p-1}\right) 3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}} T^{\frac{1}{p}} \alpha^{-\frac{1}{p-1}} \tag{D.90}\\
& +3^{\frac{p}{p-1}} c K^{1-\frac{1}{p}+\frac{p^{2}}{\alpha(p-1)^{2}}} T^{\frac{1}{p}} \alpha^{1+\frac{p^{2}}{\alpha(p-1)^{2}}-\frac{1}{p-1}}+c{\alpha^{\frac{1}{p-1}}}_{L^{1-\frac{1}{p}} T^{\frac{1}{p}}+c \alpha K^{1-\frac{1}{p}} T^{\frac{1}{p}}}^{\leq} \tag{D.91}\\
\leq & O\left(\alpha^{1+\frac{p^{2}}{\alpha\left(p^{2}-1\right)^{2}}} K^{1-\frac{1}{p}+\frac{p^{2}}{\alpha(p-1)^{2}}} T^{\frac{1}{p}}\right) . \tag{D.92}
\end{align*}
$$

The optimal rate is obtained by setting $\alpha=\ln (K)$,

$$
O\left(\ln (K)^{1+\frac{p^{2}}{\ln (K)(p-1)^{2}}} K^{1-\frac{1}{p}+\frac{2 p}{\ln (K)(p-1)}} T^{\frac{1}{p}}\right) \leq O\left(K^{1-\frac{1}{p}} T^{\frac{1}{p}} \ln (K)\right)
$$

where $\ln (K)^{\frac{p^{2}}{\ln (K)(p-1)^{2}}} \leq e^{\frac{p^{2}}{e(p-1)^{2}}}$. Before proving the lower bound, note that

$$
F^{-1}\left(1-\frac{1}{K}\right)=\lambda \ln \left(\frac{1}{1-\frac{1}{K}}\right)^{-1 / \alpha} \geq \alpha(K-1)^{1 / \alpha}
$$

Convergence of Estimator We compare the p-robust estimator with other estimators including truncated mean, median of mean, and sample mean. To make a heavy-tailed noise, we employ a Pareto distribution as follows,

$$
z_{t} \sim \operatorname{Pareto}\left(\alpha_{\epsilon}, \lambda_{\epsilon}\right)
$$

where α_{ϵ} is a shape parameter and λ_{ϵ} is a scale parameter. Then, a noise is defined as $\epsilon_{t}:=z_{t}-\mathbb{E}\left[z_{t}\right]$ to make the mean of the noise zero. In simulation, we set a true mean $y=1$ and $Y_{t}=y+\epsilon_{t}$ is observed. The p-th moment of Y_{t} is computed as follows,

$$
\begin{equation*}
\mathbb{E}\left|Y_{t}\right|^{p}=\mathbb{E}\left|y+z_{t}-\mathbb{E}\left[z_{t}\right]\right|^{p} \leq\left(\left|y-\mathbb{E}\left[z_{t}\right]\right|+\left(\mathbb{E}\left|z_{t}\right|^{p}\right)^{1 / p}\right)^{p} \tag{E.1}
\end{equation*}
$$

where the triangular inequality is used. Since z_{t} is a Pareto random variable with α_{ϵ} and λ_{ϵ}, we have, for $\alpha_{\epsilon}>p$,

$$
\mathbb{E}\left[z_{t}\right]=\frac{\alpha_{\epsilon} \lambda_{\epsilon}}{\alpha_{\epsilon}-1}
$$

and

$$
\mathbb{E}\left|z_{t}\right|^{p}=\frac{\alpha_{\epsilon} \lambda_{\epsilon}^{p}}{\alpha_{\epsilon}-p}
$$

Hence, the upper bound of the p-th moment is given as

$$
\nu_{p}:=\left(\left|1-\frac{\alpha_{\epsilon} \lambda_{\epsilon}}{\alpha_{\epsilon}-1}\right|+\frac{\alpha_{\epsilon}^{1 / p} \lambda_{\epsilon}}{\left(\alpha_{\epsilon}-p\right)^{1 / p}}\right)^{p}
$$

While the proposed method does not require ν_{p}, truncated mean or median of mean estimator requires ν_{p}.

Multi-Armed Bandits with Heavy-Tailed Rewards Entire experimental results are shown in Figure E.1. For robust UCB [4], we modify the confidence bound as

$$
c \nu_{p}^{1 / p}\left(\frac{\eta \ln (1 / \delta)}{n}\right)^{1-1 / p}
$$

where $c>0$. Since the original confidence bound makes convergence slow, we scale down the confidence bound. This modification shows much better performance than the original robust UCB and we optimize c by using the grid search over $[0.001,5.0]$. We make the grid by dividing $[0.1,5.0]$ into 50 parts, $[0.01,0.1]$ into 10 parts. Furthermore, 0.005 and 0.001 are also tested. Total 62 trials are conducted for the grid search and the best parameter is selected. For the proposed method and DSEE [7], the best parameter is chosen by the same way. Unlikely to other methods, the hyperpamrameter q of GSR [5] is within [0.0, 1.0]. Thus, we make the grid by dividing [0.02, 1.0] into 50 parts, ($0.002,0.02$] into 10 parts and finally, 0.005 and 0.0001 are searched. Total 62 trials are conducted for the grid search and the best parameter is selected.

From a practical perspective, reducing the number of tuning parameters makes the algorithm more robust. In particular, the perturbations do not depend on both bound and moment. So, the exploration tendency is not much sensitive to the mismatch of the moment parameter. To verify this, we add simple simulations by mismatching the moment parameter where all other settings are the same as the experiments in the manuscript. As shown in the above \mathcal{R}_{t} / t plot in Figure E. 2 , (a) APE^{2} with Frechet perturbation shows a robust performance while (b) the robust UCB is sensitive depending on the choice of q, the moment parameter for the algorithm (here $p=1.5$ is the true moment).

References

[1] Jacob D. Abernethy, Chansoo Lee, and Ambuj Tewari. Fighting bandits with a new kind of smoothness. In Advances in Neural Information Processing Systems (NeurIPS), December 2015.
[2] Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In Proc. of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS), April 2013.
[3] Horst Alzer. On some inequalities for the incomplete gamma function. Math. Comput., 66(218): 771-778, 1997.
[4] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tail. IEEE Transactions on Information Theory, 59(11):7711-7717, 2013.
[5] Anmol Kagrecha, Jayakrishnan Nair, and Krishna P. Jagannathan. Distribution oblivious, riskaware algorithms for multi-armed bandits with unbounded rewards. In Advances in Neural Information Processing Systems (NeurIPS), December 2019.
[6] Baekjin Kim and Ambuj Tewari. On the optimality of perturbations in stochastic and adversarial multi-armed bandit problems. In Advances in Neural Information Processing Systems (NeurIPS), December 2019.
[7] Sattar Vakili, Keqin Liu, and Qing Zhao. Deterministic sequencing of exploration and exploitation for multi-armed bandit problems. IEEE Journal of Selected Topics in Signal Processing, 7(5): 759-767, 2013.

Figure E.1: Time-Averaged Cumulative Regret. p is the maximum order of the bounded moment of noises. Δ is the gap between the maximum and second best reward. For $p=1.5, \lambda_{\epsilon}=1.0$ and for $p=1.1, \lambda_{\epsilon}=0.1$. The solid line is an averaged error over 40 runs and a shaded region shows a quarter standard deviation.

Figure E.2: \mathcal{R}_{t} / t plot with $p=1.5, \Delta=0.1$. (a) APE^{2} with Frechet perturbation shows a robust performance while (b) the robust UCB is sensitive depending on the choice of q, the moment parameter for the algorithm. Other perturbations show similar tendency.

