In training distribution Out of training distribution results

Thick lines Reflectors Shuffled reflectors Random reflectors

Sensor trace .

Baseline UNet

—

FIONet (Ours)

llluminated
ground truth

—

Ground truth
perturbation

Figure 9: Reflector imaging with a single source, in the second last row, we mask the interfaces that
are not illuminated by the source for a fair comparison.

Appendix A Additional results

A.1 Reflector imaging

In reflection seismology, reverse time migration is an important method for imaging the subsurface of
a planet. A source pulse is sent from the surface which hits various subsurface interfaces and gets
reflected back to the sensors (see Figure 13 bottom right). Again, the map from the sensor trace to
the reflector interfaces is an FIO [1] given the background velocity model. We use this to learn the
reflector imaging geometry and get reconstructions with a single source without knowing the velocity
model. We highlight that in practice one uses multiple sources since not all interfaces are illuminated
with a single source. Therefore in Figure 9, we also show an “illuminated-only” version of the
ground-truth as well. This only shows the interfaces that were recorded by the sensors. The results
are shown in Figure 9. The baseline, same as in other experiments, memorizes data specific patterns
and attempts to use them to synthesize the interface distribution. We provide further quantitative
results in Table 3. Interestingly, our reconstructions show migration “smile” artifacts [55] in some
out-of-distribution reconstructions which is a well-known phenomenon in seismic imaging when
using a single source.

A.2 Quantitative results

We give a quantitative summary of the performance in reverse time continuation, inverse source
and reflector imaging problems in Tables 1, 2 and 3 respectively. Note that since we apply entropic
smoothing to the Wasserstein-2, W, ,, metric, we see negative values in the metric. The ordering can
still be considered maintained meaning that a lower value is better. The second metric we use is the
. . . . Tz
normalized cross-correlation between the images x(z,) = W For each dataset, we choose
x|z
a random sample of 20 images and report the average metric. Note that for the inverse source and
reflector imaging problems, the metrics are calculated based on what data can be plausibly observed
by the sensors (see second last row in Figures 8 and 9). For dataset details, refer Appendix D.

13

Table 1: Reverse time continuation quantitative results. All networks were trained only on the thick
lines dataset.

1000 samples 3000 samples 30000 samples

Wae, L x 1t Warl x 1 Worl x 1
U-Net 33.45 0.08 1.15 0.92 3.55 0.81

Dataset Model

Thick lines
FIONet 1847 0.72 -7.40 097 -4.89 094
U-Net 56.84 0.02 50.80 0.21 13.71 0.53
Shapes
FIONet 9.67 0.61 1.71 0.81 -4.74 0.90
Reflectors U-Net 28.44 0.00 27.94 0.07 37.09 0.08
FIONet 11.73 0.53 3.52 0.63 4.01 0.56
MNIST U-Net 28.44 0.04 15.83 0.35 524 0.58
FIONet 11.73 0.69 -1.34 0.87 -3.75 092
CelebA faces U-Net 128.30 0.02 4520 0.27 5448 0.18

FIONet 68.53 0.69 593 0.83 5.63 0.85

Table 2: Inverse source problem quantitative results. All networks were trained only on the thick
lines dataset.

Dataset Model V~V2,1g2 b x 1
U-Net 83.28 0.60
FIONet 17.76 0.68

U-Net 29.06 0.38
FIONet -4.02 0.87

U-Net 74.10 0.53
FIONet 33.84 0.67

U-Net 63.07 0.43
FIONet 41.15 0.58

Thick lines

Reflectors

Random shapes

MNIST

Table 3: Reflector imaging quantitative results. All networks were trained only on the lines dataset.

Dataset Model V~V2742 I x 7

U-Net 5.69 0.77
FIONet 6.74 0.75

U-Net 1022 0.42

Lines

Reflect

eflectors FIONet 317 0.74
U-Net 850 041

Sh d R 1

uffled Reflectors o1 3 Net 3.09 0.72
U-Net 541 038

Random Reflect
andom Reflectors pioNet 460 0.5

14

In training distribution Out of training distribution results
Thick lines Random shapes Rotated MNIST Exploding reflectors ~ CelebA face edges

Final pressure

Baseline UNet

FIONet (Ours)

Source pressure
(Ground truth)

Figure 10: Testing 10dB noisy inputs on networks trained on clean data.

FIONet on perturbed
background

Input Required

Only routing output FIONet output Required

. . . . Figure 12: The background wavespeed is per-
Figure 11: Reverse time continuation: out- yrhed by 5% from the training condition and
put of the routing network already brings the he sensor recorded. On this trace, we see that
interfaces close to where they should be. the reconstruction from the FIONet is stable

in that we get the required interfaces.

A.3 Stability under noise

We evaluate the stability of our trained networks under additive noise by testing on 10dB noisy inputs.
For a comparison of performance, see Figure 5. Note that all networks were trained on clean data and
then tested on 10dB noisy inputs.

A.4 Routing network output

In order to understand how the routing network warps the image (per (v, k) channel), we show an
output from the first phase of training in Figure 11 for the reverse time continuation problem. Here
the u, s are directly warped over the grids given by the routing network. Note that here two separate
half-wave solutions need to synchronize to give the final image (see Appendix C), i.e. we have two
grids per v and therefore we warp the the input channel once on each grid and sum to get the final
output. We can see that the routing network already places the interfaces at almost the right locations
(obviously with artifacts). The convolutional module further filters and enhances the u,, s such that
after resampling on the grids given by routing network ultimately the reconstructions are close to the
required image. Note that the network has never seen any image like the sample in Figure 11 during
training.

A.5 Robustness against change of background

In our experiments, the background wave speed is unkwown but fixed. In the inverse source imaging
problem, we consider a case where the background wave speed at test time has about a 5% deviation
with respect to the training background wave speed. This is motivated by seismic applications where
a 3 — 5% variation in the Earth’s mantle wave speed is expected [30]. We can see in Figure 12 that
recovery is still stable.

15

A.6 Addendum to Figure 1

+1, Recording surface +1 Sensor traces
+\C
R AR :% N
Sl Gy t3)
- (b7 tl)
((1, t2)
> Trace at
I T: C
Inverse source problem Predict Sy, S5 and S3
S Recording
T ourceg\ surface

Interface

Dyadic-parabolic decomposition Reflector imaging

Figure 13: A: Wave packets S1, S5 and S5 are recorded at times ¢, ¢ and ¢3 at the recording surface.
Note that the sources travel in two directions(dashed and solid arrows)—two half-wave solutions (see
Appendix C). In the inverse source problem only one half-wave gets recorded by the sensors. B: The
sensor trace on the right shows these recordings in the (z1,¢) domain. We see 3 wave-packets at
(a,t2), (b,t1), (c,t3) corresponding to the arrival of S, S7, and S5 respectively. We also show a
single sensor trace line (blue) overlayed at x = c. The orientation and timing of the wave packets in
the trace is tied to the orientation and location of the wave packets at ¢ = 0. C: Dyadic-parabolic
decomposition of phase space. Wave packets are localized in frequency by directional bandpass filters
)2?, & shown in top right. The boxes shown in green,red and blue correspond to B, ;.. D: In reflection
imaging, a source emits a bandlimited pulse that is reflected at interfaces and recorded on the surface
(see Appendix A.1). Notice that the ray bends and scatters but we only have the scattered signals.

16

Appendix B FIONet approximates FIOs: Sketch of Proof of Theorem 1

The proof of Theorem 1 can be decomposed into three parts, namely showing that
(i) fr,0, approximates T, ;
(ii) fa,p, approximates Ayl){ for all v, k and r;

(iii) fm g, approximates H 1(/712 forall v, k and r.

Part (i) This follows from the results on universal approximation by deep neural networks [54] on
noting that (y, v) — T, (y) is smooth in both y and v. We can thus conclude that for any € > 0 there
exists a O (e) such that

sup ”fT,@T(e) (yv V) - Tv(y)H <€ 9
ve(0,27),ye€D

where D is the (compact) computational domain of interest. Since we measure the reconstruction
error in L2, this fact alone does not immediately give us the desired estimate. We lean on results
from [25] which assume that the diffeomorphisms are implemented perfectly; (9) does not yield a
satisfactory bound on the L? norm since

i u(fror o () = a(T(-)llz # 0

if u is allowed to contain arbitrarily high frequencies. Conveniently, this is not true in our case: as
we work with discrete pixels, we assume w is adequately bandlimited before sampling. This implies
that v is Lipschitz continuous (pending a few technicalities: we assume w is obtained as an inverse
Fourier transform of a bandlimited spectrum in L' N L?) ,

(1) — ()| < Lullzy — o,

where L, can be uniformly bounded by L depending on the maximum norm and bandwidth. Further,
we only compute the error over a compact domain. We can then write

lu(fr.or) (¥) = w(To(W)llL2py = W (y) + R(y)) — u(To ()l L2(p)
< LI R(Y)ll2(p)
< L./|D| ¢

where the last quantity can indeed be made arbitrarily small since D is fixed.
Part (ii) This follows trivially since Al(f,)v is a simple linear pointwise multiplication.

Part (iili) The technical difficulty in part (iii) is proving that a U-Net using small filters can

approximate convolutions with 19,% We use a technique from signal processing called the polyphase
decomposition [14, 51].

Consider a single discrete filter kernel h[ii], 7i € Z?* with possibly large but finite support contained
within the image. We introduce the 2D z-transform as

X(2) = aliz ", (10)
nez?

with 77 := 27 ™ 2, "™, We split the image x[ii] into its polyphase components z,[7i] = [27],

2|7 = z[ly + 2], 2o[f] = allo + 27), xs[fi] = z[l3 + 27), with [; = [1,0]7, Iy = [0,1]7,
I3 = [1,1]T. Note that = can be assembled from its polyphase components via upsampling and
interleaving.

We write

X(%) =Y w[A]F ", 1=0,1,2,3,
neZ?
and find that

X(2) = X(21,22) = Xo(2, 23) + 21 ' X1 (21, 23) + 25 Xa(21, 23) + 27 "2 X (2, 23).

17

and similarly
H(Z) = H(z1,22) = Ho(27,23) + 21 'H1(27,25) + 25 ' Ha(21,235) + 21 '25 ' Hs(27, 23).

We aim to compute y[7i] = (x * h)][7i] or, in the z-domain, Y (Z) = H(Z) X (Z). It is possible to write
Y (Z) as

)

2
V() =[1 =" 2" 'zl G(?) ;g . (11)
Z%)

such that the a priori non-unique G(Z) depends only on even powers of z1, zo. That is, the corre-
sponding filters live strictly on the subgrid M = { M7 : ii € Z?}, with M = diag(2,2). When
such a filter matrix is followed by regular downsampling, we can exchange the order of downsampling
and filtering, by replacing z2 by Z.

Some deliberation shows that

HO(Z_Z) Z;2H1—5232) zizHg(%'z) 2122222H3_,(2§Q)

6= HE = gl By P s

H3(Z%) Hy(Z?) Hy(Z?) Ho(Z?)

b Xo(2%)
O T S M I COR et

X3(2?)

and define the regular downsampling and upsampling operators as

Fid) i 272

(D22)[i7] = Z[M7i] and (Us2)[rt] = {0 otherwise.

-

Noting that #(7?) coincides with d(2?) X (z?) on M, we can write

-

Y(2) = d(5)T (UQ(H(Z)DQ (cf(Z)X(Z)))),

with a slight abuse of the Dg, U2 notation. This exactly corresponds to a U-Net (with identity
activations and no bias) with one downsampling and one upsampling and four channels in between.
The filters in the first layer are given as cf(z) and they are of length at most 2; the filters in the second
layer (after the downsampling) correspond to the (shifted) polyphase components of H (%) so they are
of length about K /2 for a filter h[7i] with support size K x K. Recursively continuing this procedure
increases the number of channels by a factor of 4 and halves the filter lengths. We need about log, K
downsampling and log, K upsampling layers to implement h[7] using filters of size at most 3 x 3.
This implies that the number of channels in the innermost layer is about 41°82 X = 2. We note that
with ReLU activations a filtering can be standardly written as

ReLU(+ h*x)

hro=[1 -] ReLU(— hx*z) |’

(12)

yielding the way to insert ReLU activations in each layer. Thus, on the discretized level, the U-Net
architecture can exactly represent the convolutions with 191(/T1)c~u/ o

With Parts (ii) and (iii), the FIONet reproduces (3.11) in [4] upon eliminating cross channel interaction
in the filters of the U-Net. Part (i) provides an estimate of misalignment separately from this. The work
of [15] provides an estimate for the approximation of (4) by (3.11) referred to above using numerical
analysis which is controlled by an oversampling factor. We absorb the estimate of misalignment in
this estimate. We then apply Theorem 4.1 in [12] to obtain the result using curvelets from a tight
frame.

18

Appendix C FIOs and the wave equation

The Cauchy initial value problem for the scalar wave equation is given by

P(z,D,,D))u=0, P(z,D,,D;) =8+ c(z (ZD) (13)
U|t:0 = h, atu|t:0 = h/, (14)
where D, = —i% <> & (via the Fourier transform). We summarize how to solve (13)-(14) with the

plane-wave initial value,

h(x) =0, W'(x) = expli(§, x)],
where ¢ € R? \ {0} is a parameter. To construct solutions of the initial value problem, one may
invoke the so-called WKB ansatz [13],

Ug (I7 t) = a4 (xv t? 5) eXp[ia-i- (I, t7 E)] +a_ (I7 tv 5) eXp[iOé_ (I, t7 5)] (15)
Invoking the initial conditions yields
a+($,0,f) =047(x,0,§) = <£7$> (16)

and

Orax(x,0,€) = Fe(x)¢].
In the case that the wave speed, ¢, does not depend on we may easily find a1 and a+ explicitly,
and the WKB ansatz gives an exact solution: The eikonal equations are

atOé + C|a»c04‘ = 07 Oé:l:('raoag) = <£C,§>

and have solutions
O‘i(aj7 t7 f) = <JJ, £> + tc‘ﬂ

The transport equations are

<§7 awa:t> ?
Oray £2c>"—— =0, ax(z,0,§) =+—r7u,
' iy 2cl¢
the solutions of which are simply constant
1
at(z,t,&) = +——.
8=+

Thus, in the constant wave speed case the WKB ansatz yields

_r (ei(@,?ﬁ)ftc\f\) _ ei((x,§>+tc‘g‘)> _ i{a.€)
2cl¢] P

It is not difficult to check that when £ # 0 this is an exact solution of the scalar wave equation with
the plane wave initial data.

ue(z,t) = sin(tclé|)

If we integrate ug(x, t) with respect to &, then we obtain oscillatory integrals in depending on the
parameter ¢. The initial conditions imply that

u(z,0) = (277)_2/u§(x70) d¢=0
and
Byu(z, 0) = B0 (27) 2 / we(, 1) dE = 3(z).
Then

uet) = (22 [(w9 expliton (.1, Ol e

— (@2n)2 / a_ (.1, €) explifa_ (.1, 6)] ——d¢, (17)

2c IEI

19

yielding, at fixed time ¢, the amplitudes and phase functions of two FIOs representing the parametrices
of two half wave equations. The canonical transformations, with ¢ fixed, follow from

Dot 3
o e
8ai -
Ty = Y (19)
yielding
=n

(yﬂFtcé >—>(y £),
——

=T

signifying straight (bi)characteristics.

Appendix D Training and dataset details

We generate all our data using the MATLAB kWave toolbox[48, 49]. All the scripts required to
generate the data are available at https://github.com/kkothari93/fionet. We choose our
computational domain to be 1024 x 1024 meters with a grid of size 512 x 512 keeping the grid
spacing at 2 meters. Our background wavespeeds vary from 1400 m/s to 4000 m/s for the reverse
time continuation and the inverse source problems and from 2500 to 4300 m/s for reflector imaging
problem. For simplicity we chose the same background for the reverse time continuation and inverse
source problems. For all the problems we choose a propagation time of 7' = 200 ms. In order to
maintain CFL condition, we need a small time-step. Consequently, our sensor traces in the latter two
problems are quite long - with N > 1500 data samples in time. To keep the computational burden
under control, we subsample all our inputs and outputs to be 128 x 128 pixels. For the inverse source
and reflector imaging problem this represents a subsampling of about 12x which affect performance.
However, we find that we are still able to recover geometry.

We get the filtered directional components of our inputs using PyCurvelab [47]. We choose to have
k = 4 scales with 1, 16, 32 and 1 wedges respectively per scale. For all our results, we ignore the
first and the last scale completely and show results on the middle frequencies. Our method does
not change even if we partition all scales. We avoid them here to keep the computational burden
under control — curvelets are very redundant frames, therefore with N boxes in the Fourier space one
would convert the input from a single channel input to an /N channel input, one per box. A wedge
partitioning of the Fourier space as proposed in [9] would work in our scheme in terms of learning
the geometry, however, theoretically this is not the ideal partitioning for having a sparse separated
representation (see Section 2).

In all the problems, unless otherwise mentioned the boundary of the domain is modeled via the
standard PML (perfectly matched layer) conditions. This means that signals are not reflected back
into the domain at the boundaries.

In order to illuminate a larg J\Fortlon of the domain in the inverse source problem, we reduce our area

of interest to [0, 2] x [2321] in a domain of size M x M. Note that our sensors are at {0} x [0, M].

Similarly for the reflector i 1mag1ng problem, we reduce our area of interest to [0, 2] x [32L 23],
The reflector imaging problem is more nuanced in that the rays from the reflector are unidirectional
as opposed to the inverse source problem where sources propagate in an omnidirectional fashion.
Therefore, seismologists would use multiple sources in order to illuminate more orientations in the

image space.

The reverse time continutation problem is tested on dataset of randomly oriented thick lines, random
shapes (a mix of circles, rectangles, triangles), randomly rotated MNIST digits, sinusoidal exploding
reflectors (inspired from seismics) and Canny edge filtered celebA images [33]. The inverse source
problem is trained on thick lines and tested on the reflectors, shapes and rotated MNIST dataset. For
the reflector imaging problem, since this is mainly a seismic imaging technique we keep our datasets
restricted to “layer-like” inferfaces as seen in the reflectors dataset. To simulate faults, we partition
the reflectors dataset into random columns and shuffle them around. We call this shuffled reflectors
dataset. Lastly we perform elastic transform on a layered medium and shuffle after partitioning into
columns to get more arbitrarily shaped interfaces which we call the random reflectors dataset.

20

https://github.com/kkothari93/fionet

All components of our network are trained by Adam optimizer with a learning rate of 10~%. The
routing network has a learning rate of 10~°. The U-Net portion of our network has 5 downsampling
blocks and 5 upsampling blocks in the style of [27] with 16 starting channels that double in each
donwsampling block. All activations within the U-Net are leaky ReLUs. The downsampling is done
via 2D max pooling. The U-Net takes in all frequencies to allow for channel interaction as per (4).
Each channel in the output of the UNet is warped as per the grids given by the routing network
and then summed to give the final output. In this work, we use R = 1. We also find that having
the multipliers do not signficantly add to the performance of the network. We run our first stage of
training for 40 epochs (e in Section 3.2) and the second stage for another 80 epochs.

The baseline network is a U-Net with everything the same except it has 6 downsampling blocks and
32 starting channels and therefore about 6 — 10x more parameters. In our tests, these U-Net networks
performed the best. The baseline is trained over 120 epochs of the training data.

All our hyperparameters were tuned only on the reverse time continuation problem based on a
validation set of 100 images. The same hyperparameters were used for all three problems. For all the
problems, our training set had 3000 input-output images. All results are shown on images never seen
by the networks during training. This is obviously true for out-of-distribution distribution results.

Pretraining of wave packet routing network A randomly initialized routing network outputs
degenerate grids where almost all points are close to zero. Post resampling this leads to a almost a
constant image as most pixels have been sampled from a small portion of the domain. Therefore, we
pretrain our routing networks.

Obviously we do not know the background wavespeed and hence choose an arbitrary p = 3 parameter
family of radial basis functions. The first two parameters (z1, z2) signify the center of the Gaussian
and the last parameter, z3 signifies its isotropic standard deviation. We generate a training set of
warped grids for different values of z and pretrain our WP routing networks on those. We then fix
another randomly chosen 2 as an initial guess for the parametrization of background wave speed,
o = o(Z when training for downstream imaging applications in Section 4. Note that this is done only
for a good initialization of the routing networks. In fact in our experiments, we found that pretraining
using constant wave speeds that do not vary over the domain also works well.

Appendix E Training the canonical relation from ray paths

In the process of building our architectures, we built a debugging tool which can be used to learn the
geometry directly from a dataset of end points of ray-paths which is an interesting inverse problem
in itself. For the reverse time continuation problem we solve both half-waves (refer Appendix C),
for the inverse source problem and reflector imaging problems we solve only the half-wave from the
sensor line into the interior of the domain. First, we explain the reverse time continuation problem as
that is the simplest to understand due to the source and target wave-packets both being snapshots in
time.

Consider any parametric family of backgrounds, cg(-) : R? = R, 6 € RP, from which we sample
{z} 5\/:"1 points according to some prior pg (we chose uniform). For each of the sampled backgrounds,
we sample M phase-space points {(z;, &)}, and simulate how wave-packets at this location in
phase space would travel over the background c,, by solving the Hamilton flow using the 4*" order
Runge-Kutta scheme for integration. We note the final locations of these wave packets at time 7" in
phase space as {(y;,)}, and thus generate M N, training pairs {(yx, &k, Iy), (g, mp) yMNe,
Note that we have the final location and initial orientation as input and initial location and final
orientation as output in accordance with the box algorithm laid out in [4]. We proceed by training a 4
layer fully-connected network N (y, &, z) that takes in (y, &) along with the parameter vector, z and
gives the estimate for (Z, 7). Note that due to homogeneity of the phase function, .S the network only

cares about the direction é and not the magnitude. Our network layer sizes are (4 + p, 32, 64,128,4)
with leaky ReLU activations except for the last layer which has identity activation. We do not employ
any normalizing or dropout strategies for training.

We also use the trained fully connected networks to generate training data for our WP routing network
by calculating how an entire grid, G of wave-packets oriented in direction v would warp. This is

21

4000

3000

2000

1500

Figure 14: Examples of the learnt coordinate transforms trained directly from ray paths over a
3-parameter family (2 for center location, 1 for standard deviation) of simple radial basis functions.
The red grid is our prediction while the black grid shows the actual deformed grid calculated using
Hamilton flows. Note from the top left and bottom right figures that we can also predict caustics.

because routing network outputs entire warped grids in one pass through the network and therefore
cannot be trained on ray paths directly.

We find that such a simple characterization of the canonical relation also allows for caustics to develop
as shown in Figure 14 which is usually avoided in the literature on FIOs [8].

Note that the training is slightly different for the inverse source and reflector imaging problems.
For these problems we need pairs {(y;, ({11, 7:), [k), (@14, t5),) } 2LV as we pair each wave-
packet seen in the sensor trace (21,t) domain to the initial source location in (y1, y2) domain. Here

T = c,(z)|€] V (x, &) since rays follow a Hamiltonian system. In reflector imaging, the (y,7) point
corresponds to the point on the ray right after reflection.

22

